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Abstract

Nowadays, smartphones and tablets are replacing the personal computer for the
average user. As more activities move to these gadgets, so does the sensitive data
with which they operate. However, there are few data protection mechanisms for
the mobile world at the moment, especially for scenarios where the attacker has
full access to the device (e.g. when the device is lost or stolen). In this thesis,
we tackle this problem and propose a novel encryption system for Android, the
top-selling mobile operating system.

Our investigation of the Android platform leads to a set of observations
that motivate our effort. Firstly, the existing defense mechanisms are too weak
or too rigid in terms of access control and granularity of the secured data unit.
Secondly, Android can be corrupted such that the default encryption solution
will reveal sensitive content via the debug interface. In response, we design and
(partially) implement an encryption system that addresses these shortcomings
and operates in a manner that is transparent to the user. Also, by leveraging
hardware security mechanisms, our system offers security guarantees even when
running on a corrupted OS. Moreover, the system is conceptually designed to
operate in an enterprise environment where mobile devices are administered
by a central authority. Finally, we provide a prototypical implementation and
evaluate our system to show the practicality of our approach.
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Chapter 1

Introduction

The smartphone and tablet computer marked has grown constantly over the last years,
and, as a result, the competition between vendors to pack even more complex function-
ality in these gadgets has intensified. The capabilities of mobile devices nowadays are
getting close to those of personal computers, and, for the average user, a tablet or smart-
phone could easily replace a laptop for daily tasks that cover both work and entertainment.

The way in which people use the mobile phone has changed significantly: they use it as a
personal digital assistant, for online shopping, to manage emails and so on. Together with
these activities, the sensitive data they operate with has moved to the mobile devices:
private information, online banking credentials, possibly confidential emails. However,
most users do not realize that they walk around with mini-computers in their pockets,
for example, it is uncommon for a laptop not to have a login password, whereas for most
smartphones, users only use the simple ”slide to unlock” screen to protect their devices1.

1.1 Motivation

The market for mobile device operating systems is dominated by Android at the moment,
with roughly 50% of all smartphones and tablets sold in 2011 running an Android dis-
tribution. This provides the first incentive behind our decision to focus on Android: its
popularity also made the system a preferred target for attackers. Android comes as a
proprietary software stack that runs on top of a Linux kernel, it offers a custom Java
API that allows for development of third-party applications and the entire source code of
the platform is available for download. The open nature of Android has encouraged the
development of a variety of applications, but it also led to numerous vulnerabilities to be
found and exploited.

Android is advertised as having been built with security in mind and this claim is sup-
ported by the very infrastructure of the OS: processes are sandboxed and isolated, such
that malware can only produce limited damage. However, the protection offered against
an attacker that has direct access to the device (if the smartphone is lost or stolen) is

1A survey conducted in March 2011 by Ponemon Institute for AVG Technologies, showed that less than
half of the consumers use passwords or a similar type of locking for their mobile devices.
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rather weak. This type of attack is referred to as local and it constitutes the very problem
that we tackle in this thesis.

1.2 Goals

As stated in a previous paragraph, most users do not use any device locking scheme; even
when such a mechanism is employed, it can easily be bypassed on some devices (see a
real attack in Chapter 3). For extra protection, Android does provide its own partition
encryption system, but there are several problems with this solution (discussed in more
detail in Section 2.6), the most important of which is its lack of flexibility.

We seek to provide a better encryption solution that can be just as easily integrated
with Android. Our encryption system focuses on the ”Android way” of storing data, the
Content Providers (more on these later), it comes with a user management and access
control scheme, and it can easily be extended for use in an enterprise setting . The user
thus has the possibility to decide what type of data is encrypted (contacts, emails etc.)
and who has access to each of these containers (configure several user accounts).

This encryption system needs to be implemented such that it can be easily installed on
a default Android image. Also, the changes brought to the implementation of existing
Content Providers need to be minimal and third party applications that access Content
Providers must not be affected in any way.

There is one extra goal that we set for our solution: it must offer security guarantees
even when running on a tainted OS. In other words, if the attacker has full control over
code execution and he has access to all the layers of the memory hierarchy, our device will
still not reveal some secrets.

1.3 Contribution

In this thesis we provide the design and implementation details of such an encryption
system for Android. We investigate the operating system in order to find the appropriate
modules that need to be changed in order to secure the data containers of Android (the
Content Providers) and we propose a design that puts emphasis on flexibility and trans-
parency.

Moreover, we make the assumption that the Android software platform can be corrupted
in all its layers. Therefore we turn our attention towards hardware security enhancements
and investigate some solutions which allow us to move code and data to an execution
environment that is isolated from the untrusted operating system. Our design is based on
such a technology that is already available on many mobile devices.

Finally, we provide the conceptual design in which our encryption system is extended
to be used in an enterprise environment: several mobile devices can communicate with
a central server that coordinates access control policies and also these devices have the
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possibility to exchange information from their encrypted containers.

1.4 Outline

The first chapter of this thesis gives an overview of the Android platform with a focus on
the application development environment, the Content Providers and the inbuilt security
features. We then formulate a set of requirements, what is to be expected of an encryption
system for Content Providers. These requirements point out some vulnerabilities that the
system may have and this leads to investigating what the hardware has to offer in terms
of protection. The next chapter describes the conceptual design of an application that
matches the aforementioned requirements. This is followed by a detailed description of
a software module that implements the part of the encryption system that is set to run
on the mobile device (the encryption library) and we conclude by offering a performance
analysis of our implementation.

8



Chapter 2

Android

Since its introduction in 2008, the Android operating system has had a constant growth on
the mobile devices marked, covering roughly half of all smartphones and tablets delivered
in 2011. This, on the one hand, spawned an entire industry of third-party applications
for Android, and on the other hand, increased the number of attacks aimed at mobile
platforms.

Android is in fact more than an operating system as it offers an entire software stack
built on top of a modified Linux distribution. The entire platform is open-source, so all
layers of Android can be extended, the new image can be compiled from source and flashed
on Android-ready devices. Moreover, a Java API offers the possibility to develop user ap-
plications that can be easily deployed on running Android instances.

In this chapter we will give an overview of the system architecture, list some of the tools
used in code development, explain the security features of Android, and also discuss some
third-party security-related applications.

2.1 Architecture overview

The Android software stack is composed of four layers (see figure 2.1): a Linux kernel,
a set of native libraries, a Java application framework, and on top of that, a set of core
applications [2]. A minimal understanding of these layers is required since we need our
system to integrate transparently with Android.

Android is based on a modified Linux kernel version 2.6. The kernel performs core tasks
(such as memory management, process scheduling) and it acts as a hardware abstraction
layer for the software that runs on top of it (it offers a set of drivers for all system compo-
nents). The differences from the mainline kernel mostly consist of implementing support
for tasks that are specific to embedded devices, for example power management.

The kernel functionality is made available to the upper layers via a set of user-space native
libraries and services. This layer also contains the so-called Android runtime: every appli-
cation runs in a separate process in such a self-contained environment. This runtime loads
a set of core libraries as well as a custom Java virtual machine, the Dalvik VM (more on
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Figure 2.1: The architecture of Android [2]

this in the next sections). As a result applications are isolated with respect to accessing
each other’s system resources (memory and file system objects). If two applications need
to communicate they can do so by using a dedicated inter-process communication (IPC)
mechanism, the Binder.

The next layer, the application framework, consists of a set of Java libraries (jar packages)
that use the native layer and extend its functionality. Communication with the underly-
ing native libraries is achieved via Java Native Interface (JNI) calls. In the design and
implementation of our system we will be working with these two middle layers (the native
libraries and the application framework).

Finally, Android is delivered with a set of ready built applications such as a contacts
manager, an email client, a browser and others. All these applications are implemented in
Java with support from the framework layer. The applications layer will not be affected
in any way by the presence of our encryption system, i.e. existing applications do not
require modifications in order to benefit from the functionality of our security extensions.

2.2 The Android API and software development tools

In this section we give an overview of the tools employed during development in order to
show how our system will be built and how it can be set to run on Android. Also, we offer
some insight into how data can be retrieved from a device connected to a PC. We will be
referring to these concepts in chapters 6 and 7 where we also provide more details on the
limitations imposed on our implementation by the API.
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One of the reasons behind the popularity of Android, is the support that it offers for
software development in Java as well as in C/C++ (native code): an emulator for various
platforms1, a Java Software Development Kit (SDK), native compilers for the ARM ar-
chitecture, debuggers and profilers. An overview of the main concepts used in application
development is given below.

The Android API comes in the form of a java archive (the android.jar file) that the
user-defined Java code links against. The Java code is compiled to byte-code, it is stored
in class files (one such file per Java class), and these files are then merged into a single
.dex file. The format of the dex file is proprietary to Android and it is especially crafted
to run on the Dalvik VM, a register-based virtual machine (as opposed to conventional
Java machines that are stack-based) optimized for low memory requirements.

For performance reason, some applications may choose to implement part of their func-
tionality in native code. This code will be compiled with the ARM gcc toolchain and
packed in a shared library file (a .so file) that needs to be dynamically loaded from the
Java code. The dex file and the so libraries (if any) are packed in an application package
(apk) together with a manifest file. The manifest lists Android specific settings, amongst
which the most important are the permission of the application, the system resources that
it has access to: internet access, the right to interrogate certain Content Providers and so
on. This file can also specify the user under which the application runs (the Linux UID)
and it can set the new module to receive special signals called intents.

The new apk can then be sent to a device (this can also be the emulator) via a dedi-
cated interface, the Android Debug Bridge or adb. This tool runs a client application on
the development machine and it connects to the target device via USB. In order for the
corresponding adb service to run on the Android machine, it needs to be explicitly enabled
from the Android settings menu; once the connection is established, the client can start
issuing commands in order to install applications, copy files to and from the device or
open a shell on the Android machine.

Opening a shell on the device allows for Linux applications to be executed from com-
mand line. However, the user has limited access to the platform since, on most devices,
root access is disabled. The process by which the Android image on a device is modified
such that some applications (e.g. the shell) are set to run as root is called rooting. There
are numerous reasons for which a device would be rooted, the most common being the
desire to overcome restrictions imposed by the mobile network carriers. Rooting requires
for the device to be reflashed (some Linux partitions are overwritten), an operation that
can be performed only if the bootloader allows it. The means by which the bootloader is
unlocked vary greatly with the device: for instance, on Motorola Xoom it can be unlocked
by first pushing a combination of keys that puts the phone in the so-called recovery mode,
whereas on HTC Desire unlocking is blocked by hardware.

1This is actually an ARM emulator and the supported platforms can be configured in terms of display
size and memory size.
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2.3 The application development model

We have seen how to build and install applications, however we have not mentioned how
to develop applications in the first place. In this respect, the Android API imposes a
specific model, that all software modules need to follow; the components of this model
are: Activities, Services, Binders, Intents and Content Providers (see figure 2.2).

There are two main ingredients to Android applications: activities and services. The
main difference between the two categories of application components is that activities
are attached to a user interface, whereas services are designed to run in the background;
services can either be spawned from an application in order for some work to be performed
in the background, or they can be long-term-running tasks that answer requests coming
from remote applications. Typically, an application is composed of several interconnected
activities and services.

Figure 2.2: Android applications

In the case of remote services, applications can establish connections using the Binder
mechanism: a service declares the methods that it wishes to export in a special format,
the Android Interface Definition Language(aidl). A dedicated build tool generates stub
java classes from these aidl files and the service needs to provide the implementation of
each method. In order to call these methods, an application needs a local copy of this aidl
file, and once bound to the service, it can issue remote procedure calls (RPC): method
parameters are packed in objects called Parcels, they are sent to the service in a special
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message format, and the application blocks waiting for the execution of the remote method
to complete. The communication details of this mechanism are handled by the Binder,
thus, from the point of view of the client application, the these remote calls are no different
from local calls.

Android offers a second IPC mechanism, intents; they provide an asynchronous message
passing scheme. The intent itself is an object that encapsulated the description of a task
to be performed, or a notification of an event that has already occurred. Applications can
both generate intents and register as receivers of intents - a special entry is added to the
manifest and a user-defined callback function needs to be registered. Intents also provide
the default mechanism by which applications connect to services in the first place, in an
operation called binding : the details of this operation are not relevant, but it is important
to notice that the initial connection to the service is non-blocking. Before the application
can start issuing synchronous RPC calls to the service, it needs to wait for the notification
that the connection has been established.

2.4 Content Providers

Content Providers are a core component of the Android software development model as
they are the main mechanism by which data can be written to permanent storage such
that it can be shared between applications. The Content Provider actually defines the
software module, the dedicated service, that manages data access to such a shared con-
tainer. The term, however, is sometimes used to denote the data container itself. More
details are given in Chapter 6, but it is important to see what they do since they lie at
the center of our encryption system.

The main idea behind Content Providers is that they group data by type, in a way that is
convenient for the applications that operate with this data. For instance, Android is de-
livered with a set of Content Providers for data such as contacts, emails, browser settings
and so on. Also, the API exposes the necessary mechanisms for the user to define custom
containers. Another advantage of this concept is that it offers a standard way of accessing
data, i.e. a set of data management functions that hide the actual implementation details.
For this reason, there is no actual constraint on how data is stored and retrieved in the
Content Provider, however the most convenient and the most frequently used alternative
is to employ the SQLite library included in the application framework.

Moreover, an application that request data from a container does not have to cope with
the details of locating the data and connecting to the appropriate provider. Every Content
Provider is associated with a system-wide unique identifier, the so-called AUTHORITY. If
an application wishes to access data stored under this identifier, it can do so by the use of
an object, the ContentResolver, that is loaded by the system in the runtime environment
of the application. Since the Content Provider can run in a different process than that of
the calling application, the Content Resolver handles all inter process communication in
a transparent manner.
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2.5 Security features

Android is advertised as having been designed with security in mind [3]. There are several
features that increase the level of security for applications and the most important are
listed below.

Application isolation, or sandboxing, is a key feature of the Android model. This is achieved
by the fact that, by default, every application is installed under a different UID and every
Android application runs in its own process. This approach relies on the underlying Linux
layer to enforce access boundaries between processes: a process cannot directly access
filesystem resources that were created by a different user.

This sandboxing model comes with data access limitations, therefore, if applications need
to cooperate, they will have to make use of Binders, Intents and Content Providers2. An-
droid offers the possibility to set access rules for these IPC mechanisms in code or in the
manifest files of applications that use them. For example, when an application sends an
intent, it can specify that the receiver needs to have certain properties set in its manifest
(only applications that have the property will receive the intent). Also, Content Providers
can set access rules in their manifests. Binders however, are not declared in the manifest,
but they can explicitly check permissions at runtime: if an application calls a remote
method on a service, the service can first verify if the caller has certain attributes set in
its manifest.

Manifests play an important role in setting application permissions. It is important to
note that all these permissions are set in a static manner: the manifest rules are parsed
when the application is set to run and they cannot be changed dynamically, at runtime.
Also, the set of requested permissions is displayed when the application is installed and it
is the exclusive task of the user to inspect these permissions, decide if the application is
trustworthy and if it safe to give it the required privileges. The main problem with this
setting is that, even if the application is known not to be malware (the vendor is trusted),
it may still have bugs and thus expose certain vulnerabilities. Nevertheless, the user will
grant all requested privileges to this trusted application. An ill intended application can
then be installed and, in order for it not to raise suspicion, it will not ask for any sensitive
privileges, but instead use the trusted vulnerable application to access whatever resources
it needs.

In addition to listing all required privileges in the manifest, all applications need to be
signed with a certificate whose private key is held by the developer. There are two main
reasons for which signing is required: first of all, the certificate identifies the application
vendor. It is however perfectly acceptable, and quite common, that the certificates are
self signed; Android will not check the entire chain of trust, it will just test if the certifi-
cate matches the signature. Secondly, if two apk’s are signed with the same key they are
allowed to freely share system resources and they can be set to run in the same process.

2UNIX-type communication objects like local sockets or signals can still be used, but Android recom-
mends using the mechanisms provided by the API.
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2.6 Security applications

By the means of its core design features, Android offers application isolation such that, if
a malicious application is downloaded on the device it will do as little damage as possible.
In a scenario where the attacker will try to retrieve personal information from the phone,
sandboxing will prevent a newly downloaded application from accessing Content Providers
(if, of course, the permission is not set in the manifest, assuming that the user will not
install an application that requires access to private data in the first place). This type of
protection isn’t of any help for an attacker who has physical access to the device and, as
shown below protection against such a scenario is rather weak.

Figure 2.3: Unlock pattern

Android offers the possibility to protect the phone with a password or unlock pattern
(see figure 2.3). These mechanisms are not enabled by default and in some cases they can
be bypassed by simple ”smudge attacks”: finger traces may be visible on the touch-screen
and thus reveal the unlock pattern or password. Even with a locked screen, if the debug-
ging interface is left enabled on the device, the adb client has access to a large part of the
Android filesystem. Moreover, if the device is also rooted, the entire content of the flash
memory and the SD card is exposed via adb.

To cope with this issue, starting with Android 3.0, a block encryption mechanism is pro-
vided (Android 3.0 is a tablet-only version introduced in February 2011). The encryption
solution is also included in Android 4.0, a smartphone version released in October 2011,
but the number of devices that support this release is still rather low in comparison with
the ones that use Android 2.3.

This block encryption system uses the dm-crypt Linux kernel encryption module and
a custom frontend; this frontend will ask for a password to be introduced when the device
is first encrypted (the key is actually derived from this password) and this same password
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needs to be provided in order to unlock the screen. This encryption module only works
at block level, so it is not possible to pick only the sensitive data to be protected. The
Android filesystem comes with the following set of partitions, each having a designated
purpose:

• boot - the bootloader and the Linux kernel.

• system - all system components with the exception of the kernel.

• recovery - a reduced OS image that is used in order to fix problems that may appear
with the main image.

• data - data used by the applications.

• cache - applications may choose to use space on this partition as a buffer at runtime.

• sd-card - the (optional) SD card.

• sd-ext - this partition has the same role as the cache partition, only that it is located
on the SD card.

Out of these partitions, only data and sd-card are encrypted. This may pose a prob-
lem if some sensitive data is left on the cache or sd-ext. Also, the fact that encryption
is performed at block level (the entire partition is encrypted) can incur performance is-
sues for every data access, even when retrieving public information from the flash memory.

Moreover, the data partition is not unmounted when the screen is locked (the data par-
tition is first mounted when the device boots). If the debug interface is enabled, the adb
client will have full access to the data stored on the flash, without the need to input the
password used in the encryption: the filesystem driver will decrypt data before it is passed
to the adb service that runs on the device.

Another problem with the integrated encryption solution is that it offers little flexibil-
ity: the user cannot decide what data is sensitive and needs to be encrypted. There are
third-party applications that tackle this problem, such as Secrets for Android [5]; they of-
fer the possibility to enter data in a special form and use the Java security API to encrypt
it with a key derived from a password.

However, the encryption solution that comes with Android 3.0 is too coarse (works at
partition level) and third party encryption applications only offer protection for data that
is input via the application. The problem that we are tackling in the rest of this document
is to find a way to offer encryption for the dedicated data storage mechanism in Android,
the Content Provider.
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Chapter 3

Requirements

In this chapter we will give details about the requirements for out Content Provider en-
cryption system. We will begin by discussing the threats that our system needs to defend
against and then describe a set of usage scenarios for our security enhancements.

3.1 Attacker model

Before we set off to designing the operation scenarios, we must establish the type of threats
that we are trying to mitigate. There are two types of attacks that could target an An-
droid device: local and remote, where, in local attacks the attacker has physical access to
the device (as opposed to remote attacks).

A remote attack doesn’t necessarily imply that it is being run from a location outside
the device; malware running on the phone can also be considered remote since it had
to be downloaded from a remote location in the first place. This is the type of attacks
for which application isolation as enforced by Android offers protection and we will not
discuss them any further.

Our Content Provider encryption system focuses on scenarios where the attacker has
full access to the device. A typical situation for which we want to offer protection is that
where the phone is lost or stolen, and, as discussed in the previous section, the screen
locking application is not of much help. Therefore, we need to look into solutions that
encrypt the data stored on the device.

In a scenario where full physical access to the phone is granted, there are three main
types of attacks, according to the Trusted Computing Group whitepapers [9]: hack at-
tacks, shack attacks and lab attacks. The first category contains software attacks: the
device can be connected to a PC and the ill-intentioned user will try to exploit vulnerabil-
ities in the Android stack in order to get access to the data stored therein. Shack attacks
are those that use low-budget hardware in order to read electrical signals of various ports
and try to reconstruct data that is being exchanged between various hardware modules
on the phone. Finally, lab attacks are the most intrusive type: it can be assumed that the
attacker has the proper resources to slice chips open and analyze them at transistor level.
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Given that mobile platforms are delivered as System-on-a-Chip (SoC) - the CPU together
with memories and other modules are packed in a single chip - a shack attack would have
small chances of success (there are not many open lines to tap into and inspect). Also,
a lab attack falls out of the scope of our protection system. We will assume that data of
such value that it would determine someone to perform a lab attack in order to retrieve
it, should not be stored on a mobile device.

Our Content Provider security system only deals with the first type of attacks, those
done by hacking. We will assume that a device is found with the screen locked and the
only extra tools that an attacker will use are a PC and an USB cable. The device can also
have the debug interface enabled (the user has at some point downloaded some data from
the PC via USB, using the adb tool, and forgot to disable the debug interface). Moreover,
the device can be rooted and the bootloader can be unlocked.

3.2 A real attack

The degree of effort that needs to be invested in performing a local attack highly varies
with the device. We will give an example of how data can be retrieved from a Motorola
Xoom tablet running Android version 3.2. The only restriction to our attack is that the
bootloader is unlocked, but, given that this device allows for the bootloader to be unlocked
and relocked from software, the attack scenario is still valid (the user may have unlocked
the phone to try a custom Android image). It is important to have this assumption as
unlocking the bootloader also performs a factory reset - it wipes the entire content of the
data partition, thus removing all user data.

At this point the attacker can boot the device and enter the bootloader menu (by pressing
the volume rocker and the power button at the same time) with the phone connected to a
PC via USB. The attack then proceeds by reflashing the recovery partition with one where
the shell application is installed with root privileges - this operation will not affect the
other partitions, so user data is left untouched. At this point the attacker can mount other
partitions and dump the entire content of the data partition, or it can change the UID of
the shell application installed on the system partition such that it runs as root. This final
operation would put the entire system at the attacker’s disposal, even after the device is
rebooted. This attacks will of course not obtain any valuable information if sensitive data
is encrypted.

3.3 The encryption system

So far we have established the attack vectors that we want to defend against. We next
need to establish the type of user for which we are designing the application; the tasks
that the system needs to fulfil are detailed in the rest of this section.

We start by mentioning that the security system allows for multiple users to be regis-
tered and they can log in on a mobile device without having to restart the operating
system. Also, the basic unit that is secured is the Content Provider, or, to be more spe-
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cific, the data container managed by a provider. This means that there is a unique key
per container and that encryption is atomic with respect to a container - either the entire
data in the container is encrypted or no data entry at all. Also, access rights are defined
per user with respect to a set of containers.

The encryption targets two types of usage scenarios:

1. Domestic or standalone usage - the device acts independently of any external au-
thority with respect to the container encryption system.

2. Enterprise usage - all devices are registered with a Central authority that manages
the set of users. A given user account can be declared system-wide, i.e. it can use
some credentials to log in on every device and its access rights are also valid on all
registered devices. If user A has access to container C on a device, it will have access
to the respective container on any registered device.

3.3.1 Domestic usage (no central authority)

In this scenario, the device operates independently of any other device or central authority.
Access policies are set locally via a special admin application. The incentive behind allow-
ing several users on a device comes from the fact that some containers may be considered
more sensitive than others. For example a user may want to have access to the encrypted
email container only when he is at work and disable this access by switching to an account
with less privileges outside office hours.

This usage scenario requires two types of accounts to be installed on the device:

1. An admin account needs to be created when the encryption system is first installed.
The only purpose of this account is to allow for various configuration options to be
set via a dedicated monitor application: add or delete user accounts, decide what
containers to encrypt and assign these user accounts to the existing containers (allow
and revoke access to the containers). This application can also set login policies, i.e.
decide when the user needs to enter the login credentials (e.g. on screen unlock or
at least every 30 minutes).

2. A set of user accounts is created by the aforementioned monitor application. In
order to access any of the encrypted containers, the user needs to login with the
credentials of such an account and, once the device is unlocked, data access tasks
will perform cryptographic operations in a transparent manner. The user does not
need to be aware that any encryption is performed in the background, he will only
notice this when he tries to access some container for which he does not have the
proper authorization.

The entire encryption system interacts with the user via two dedicated interfaces:

1. A monitor application that requires admin credentials and offers a graphical interface
for all administration operations.

2. A login application that asks for the login credentials and unlocks the containers.
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As far as the end-user is concerned, he only needs to input the proper login credentials
before accessing a container and he needs to have access to the admin credentials if he
wishes to modify access policies.

3.3.2 Enterprise usage

This second mode of operation is targeted at the business environment: a set of devices
are connected to some remote server, the central authority (CA), and have the possibility
to exchange data from their encrypted containers.

In this operation scenario user identifiers are unique across the entire systems i.e. user
A on device D1 is the same as user A on device D2 meaning that they have the right to
access the same containers.

The system also supports user groups; this design decision is motivated by the fact that
in a business environment, users will change more often that their functions. With this
feature, access rights can be configured per group and a user will always inherit the priv-
ileges of the groups to which it is assigned, but it can also be endowed with extra access
rights.

The main purpose of the central authority is to impose an extra degree of control over
the set of users and their access privileges and also to ensure that these access rights are
enforced on all registered devices. A device does not have to be connected to the CA
at all times, but it needs to communicate with the CA at given intervals in order to re-
ceive updates for the access control lists (for instance the CA may have decided that a
user account is revoked, so this change needs to be propagated to all registered devices
in order to prevent the respective user from further accessing information). This means
that any change in access policies can only be done when the device is connected to the CA.

Devices also have the possibility to share encrypted content i.e. some entries can be
exported in an encrypted form and assume that the receiving device has the proper mech-
anisms to decrypt it.

It is desirable to also have the possibility to declare local users (user accounts that are
only known to the local device and are not valid on other devices in the system). This
can be useful if, for instance, the device is used for personal purposes outside the business
environment; a local user account will be declared such that it allows only for non-critical
encrypted containers to be accessed. The CA still needs to be informed when such a user
is created, in order to verify the type of access the new account requires, but it will not
inform the other devices of this change.

Similar to the previous scenario, there are two main type of accounts: an admin account
and a regular user account. Their purposes are the same as in the case of the domestic
type of usage, with the exception that the admin account is also responsible for the proper
setup of the communication with the CA. Also, local users can be created on the device
using admin credentials, in which case the proposed change needs to be first approved
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by the CA. Regular global users are however only created and revoked by the CA and
broadcasted to all registered devices1.

The device also needs to have a monitor application and a login application for regu-
lar users, which need to fulfil the same tasks as in the case of the domestic usage scenario.
In the enterprise scenario, there is a third application in the system, the CA; it can be
implemented as a web service and it needs to be aware of the configuration of all access
lists on all registered devices. This service also needs to handle change requests from
registered devices and broadcast these changes to the other members.

3.4 Observations

In this chapter we only offered an overview of what is expected from the encryption system.
However, some implementation challenges can already be pointed out. For example ,
devices are able to share data, which means that they need to also share some keys. If
these keys are exposed, they need to be changed on all devices registered with the CA.
This operation can be expensive and also, retrieving the key from a device can make all
registered devices vulnerable. In conclusion, we need a better mechanism to store these
keys such that they never leave the device, even when running with a corrupted Android
OS.

1The devices need to check for updates on a regular basis. If the local configuration is outdated and
the device does not connect to the CA, the encryption system will simply refuse to perform any data
decryption operations.
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Chapter 4

Hardware-enhanced security

A complex software system like Android is prone to vulnerabilities. Given the fact that
Android is also relatively new, and that it runs on a multitude of devices with (slightly)
varying hardware architectures, it is quite likely that it hides a set of exploitable faults.
The main idea behind hardware security enhancements in general is that they move some
sensitive code or data out of the exclusive control of the (possibly faulty) OS. Regardless
of the specific implementation, such a security mechanism will isolate code or data in a
hardware-protected location. No assumption can be made on the degree of protection An-
droid offers for the content of the internal memory, therefore, the following scenario needs
to be taken into consideration: a malicious user can dump and investigate the content of
the entire flash memory and even take snapshots of the address space of random processes.

In this section we will be looking at what the hardware security enhancements have to
offer and how these mechanisms can be employed in our encryption system. More pre-
cisely, since we want the devices to be able to perform crypto operations locally, we need
to guard a set of encryption keys as best as possible. In other words, we need a hardware
mechanism that will hide these keys: the hardware prevents this data from ever being
exposed to the operating system.

In order to actually use the hidden encryption keys there are two design possibilities.
In the first case, the cryptographic operations are implemented in hardware on the same
chip that guards the keys and they run in order to serve encryption requests that come
from outside the chip. The second choice is to ensure that the hardware creates an isolated
virtual environment, outside the operating system, where some code is allowed to run and
use these keys. In both cases, a trust relationship needs to be established: in the first
case the encryption chip needs to trust the external components that send requests. In
the second case, the actual code needs to be trusted i.e. it needs to be implemented such
that it does not leak any valuable information to the outside world (outside its virtual
environment) and also, the hardware platform needs to guarantee that the code has not
been changed by a malicious user. More details on how trust is achieved are given later
in this section.

It is important to note that hardware solutions alone are by no means expected to elimi-
nate all vulnerabilities from a system - the mere fact that part of the execution path moved
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in hardware, or is protected by hardware, does not mean that the rest of the code should
be less rigorous with respect to security (a hardware implemented decryption function
that can be called by any user offers just as much protection as not having any encryption
at all). These hardware security enhancements, if properly employed, only offer an extra
layer of security to a software system built with security in mind.

In the next sections we will give an overview of three technologies that address this prob-
lem, and that correspond to three different approaches: the Trusted Platform Module
(TPM) proposes an all-in-one solution (a separate chip that handles all your sensitive
operations), Intel Trusted Execution Technology (Intel TXT) combines the virtualization
support of the CPU with a TPM in order to secure its virtual environments, and, finally,
ARM TrustZone moves the focus on processor-supported virtualization and removes the
TPM chip entirely .

4.1 Trusted Platform Module

The Trusted Platform Module (TPM) is the most well-known of the hardware security
solutions, mainly due to its popularity on the PC market - since 2006 it is common for
laptops to be delivered with such a TPM chip. It is also used extensively in disk encryp-
tion systems such as Microsoft BitLocker [1].

The TPM is a hardware device compatible with the requirements of the Trusted Com-
puting Group [10]: security, privacy, interoperability, portability, controllability and ease-
of-use. This document is accompanied by a set of specifications comprised in a design
principles document [19], a description of the structures used by the TPM [20] and the
set of supported commands [21]. These documents comprise an architectural description,
the functional requirements, and standardize the TPM to host device communication.

The most important features of the TPM are its ability to:

• Store and hide security tokens (passwords, certificates and encryption keys). These
tokens never leave the chip in plain-text form, they can however be packaged and
exported for use on other TPM chips.

• Offer various cryptographic functions implemented in hardware. In order to ensure
interoperability, there is a minimal set of algorithms and protocols that all TPM
chips need to implement: RSA, SHA-1, HMAC.

• Store platform measurements in so called Platform Configuration Registers (PCR),
thus ensuring that the host device has not been tampered with. There are two types
of PCRs: static PCR values can only be reset upon platform boot1 whereas dynamic
PCRs can be reset during system runtime - measurements can be taken across all
software layers, these values are hashed and combined with the hashes stored in
the static PCRs; these new values will reflect the changes that have occurred in
the system since the last reboot. The static PCRs are used by BitLocker: when

1This occurs during the initial boot sequence that runs from BIOS.
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the system is installed, some code in BIOS will take a measurement of the system
configuration, hash this value and send it to the TPM. The TPM will store this hash
in a PCR, seal a secret using this value, and only reveal the secret in the future if
the same hash is provided.

These features can be easily employed in order to provide access control for common
security-related processes such as digital signing - the software will never have direct ac-
cess to the signing key and the TPM will refuse to sign some document if the user is not
properly authenticated with the TPM or if the state of the platform has changed without
the TPM having been noticed.

Figure 4.1: TPM Architecture

The functionality of the TPM chip is reflected in its hardware architecture, as depicted
in figure 4.1. Note that every supported algorithm corresponds to a separate silicon area.
This also means that the more functions are supported, the more space and power the
chip requires, which makes it incompatible with the restrictions of mobile platforms. This
observation is confirmed by the fact that, while the TPM technology has been widely
adopted in the PC industry (100 million devices with TPM chips sold in 2007, according
to the Trusted Computing Group [22]), there are hardly any mobile devices that offer it.

4.2 Trusted execution

Several CPU vendors have developed extensions to the TPM in order to provide support
for trusted hardware-enhanced virtualization. The aim of these technologies - Intel TXT
(Trusted Execution Technology) and AMD Secure Execution Mode - is to provide the
means to create a trusted execution environment on top of the normal execution mode. In
other words it is possible to have a trusted application launched from a possibly tainted
operating system. They do so by having the CPU work in conjunction with a TPM chip
such that the state of the system can be checked for consistency against a previous con-
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figuration that is known to be trusted before certain operations are performed.

Intel TXT technology [17] creates so-called Measured Launched Environments (MLE)
that only run if the system is in a trusted state. Intel TXT can launch MLEs at any
time without having to reboot the platform; it does so by making use of a specific CPU
instruction and the dynamic registers in the TPM. This instruction, SENTER, triggers an
interrupt that acts as a reboot without actually reseting the platform [15]. This instruc-
tion broadcasts messages to the chipset and other (physical and logical )processors in the
platform that, in response, perform basic cleanup.

When a MLE is set to run, two code blocks are loaded in memory: the MLE code it-
self and an authenticated code module (AC) that is digitally signed by the chipset vendor.
This AC will test for various chipset configurations and if the platform is found to have an
acceptable configuration, it measures the MLE code and passes the control to this code
block.

Intel TXT can only work in conjunction with a TPM chip that it uses in order to store
measures of the MLE code; it also makes use of the Intel Virtualization Technology for Di-
rected I/O (VT-d) in order to make sure that the MLE code runs in an environment that
is isolated and protected from DMA accesses (this technology allows for specific physical
memory pages to be blocked).

In a nutshell, this type of hardware offers the possibility to run trusted code on top of an
untrusted software platform: this code cannot be corrupted in an undetectable manner
and it will run in its own safe virtual environment. It is, however, important to notice
that the system only ensures that the running code has not been tainted. It is the pro-
grammer’s duty to make sure that the code cannot be exploited during runtime. This can
be achieved by making the attack surface as small as possible and by maintaining a small
trusted code base that can be easily inspected for vulnerabilities.

Since Intel TXT requires the presence of a TPM chip, it cannot be ported entirely to
a mobile processor. However, the main principle of operation, secure hardware enhanced
virtualization, does not require the entire functionality of the TPM and can be imple-
mented in a lightweight form on mobile processors.

4.3 ARM TrustZone

Given the space and power constraints on mobile devices, having a dedicated security
processor is infeasible. The alternative offered by the TrustZone technology is to have
the CPU create a protected virtual environment: all system resources are split between a
so-called Normal world and a Secure world (hardware enhanced virtualization) [9].

Any CPU that has a Memory Management Unit (MMU)2 and offers at least two op-
eration modes (a normal mode and a protected mode) can be used to implement software

2A hardware component integrated in the CPU that handles physical to virtual address translations.
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virtualization. A special process, the hypervisor, runs in the protected mode and isolates
memory accesses and possibly other IO resources amongst the processes under its control.
In what security is concerned, without proper hardware support, other modules that con-
trol the BUS (such as the DMA or the GPU), can bypass the hypervisor.

The main idea of the TrustZone is that it moves this hypervisor in hardware and redesigns
some of the platform components such that two virtual environments are created, and one
of them is not only isolated, but also trusted (i.e. the code running in this environment
has not suffered any unauthorized modifications). This privileged virtual environment is
called the Secure world, whereas the other one is referred to as the Normal world.

Figure 4.2: The TrustZone virtual cores [9]

4.3.1 Hardware design

ARM platforms and in general mobile solutions are delivered as System-on-a-chip (SoC) -
the main CPU together with memory controllers, some RAM and flash memory modules,
other dedicated processing units and the main bus (see figure 4.3). The changes required
by the TrustZone occur in several of these components as follows:

• There are two main bus lines on the platform: a system bus, the Advanced eXtensible
Interface (AXI), and a peripheral bus, the Advanced Peripheral Bus (APB). Both
of these are modified such that no Secure world resources can be accessed by the
Normal world components.

• The CPU runs code from both worlds in a time-sliced fashion.

The extended BUS comes with an extra control signal for the channels of the main
system bus, a Non-secure(NS) bit. The peripheral bus (APB) itself does not support this
extension in order to maintain compatibility with legacy peripherals, but the AXI-to-APB
bridge (see figure 4.3) ensures that the NS bit is properly handled when communicating
outside the AXI bus. All bus masters set this signal when making a transaction and the
logic in the secure slaves checks for security violations. This is equivalent to having 33-bit
addresses that map over a 32-bit physical address space for secure transactions and a sim-
ilar address space for non-secure transactions (possible cache coherency problems need to
be handled by the operating system).
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Figure 4.3: The architecture of an ARM SoC [9]

The CPU provides the two virtual cores and a context switching mechanism, the so-
called monitor mode. For each data access operation the NS bit on the bus is set according
to the currently running core: the Non-secure virtual core will only be allowed to access
Non-secure system resources, whereas the Secure core has access to all resources. The two
cores execute in a time-sliced manner and all context switches pass through the monitor
mode: a specific interrupt puts the processor in this mode and the code in the monitor
(always running in the secure world) will handle the switch.

Each of the two virtual processors is equipped with a virtual MMU, therefore each core can
independently manage address translations. Translation tables descriptor formats include
an NS (Non-secure) field - the secure virtual processor uses the field in virtual to physical
address mappings (in order to access non-secure addresses), whereas the non-secure core
ignores the field. Entries in the Translation Lookaside Buffer (TLB) also include the NS-
bit, allowing addresses from both worlds to coexist in the same tables and enabling faster
context switching (no need to flush the tables). Also, any attempt to access a page with
NS set to zero (a protected page) from the Normal world would result in a processor fault.

There are two possibilities for the Normal world to communicate with the Secure world.
The first mechanisms uses interrupts: the Normal world calls a dedicated CPU instruc-
tion that results in an interrupt to be triggered in the TrustZone monitor. An interrupt
table set in the monitor will then point to the appropriate handler code that runs in the
Secure world. The underlying mechanism uses interrupts, but from the point of view of
the developer, this communication scheme behaves like Remote Procedure Calling where
parameter values are placed in the CPU registers and passed to the Secure world.
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Since the secure world has access to the entire address space, the second communica-
tion mechanism uses shared memory. An application can be designed to allow the Secure
world to directly map non-secure memory pages. The Normal world will write data to the
shared memory area, the Secure world will perform some operation and return the new
data in the same memory area. This is achieved with no loss of performance since this
memory sharing scheme can occur at any level in the memory hierarchy: the applications
in the two worlds will even share the same cache lines.

So far we have established that the resources of the Secure world are out of the reach
of the Normal world. However, an attacker can attempt to replace the Secure world on-
flash software image on a powered down device. At boot time the platform needs to check
the Secure world software for authenticity. This operation is performed by the bootloader
stored in the on SoC ROM: a hash of the Secure world image is signed with a vendor
private key and verified with the matching public key stored on the device. The key pair
is generated at device manufacture (not unique per vendor) and the public key is stored
using a one-time-programmable (OTP)3 memory. To be more precise, the on SoC ROM
has a small size so it will only verify a second level bootloader that in turn verifies the
rest of the code. This mode of operation establishes a chain of trust rooted in the OTP
key and it can be extended to an unlimited tree of applications that need to be verified
by their parent before they are allowed to run.

4.3.2 Software for the TrustZone

There is no standard software architecture for TrustZone enabled platforms, but, as ARM
suggests, there are two main design options:

• A dedicated operating system running in the Secure world in parallel with the Normal
world OS. Concurrent execution can be simulated in the Secure world and complex
tasks can be split across intercommunicating processes.

• A synchronous library: sensitive operations can be implemented in the Secure world
and they would perform tasks only when requested by the Normal world.

However, ARM has designed a software API (TrustZone API) to standardize communica-
tion between the two worlds. It enables a Normal world client to authenticate with and
send commands to a security service and also use shared memory for data exchange.

There are no restrictions on how to implement the software that runs in the Secure world,
however, a rule of the thumb dictates that the code should be kept small and it should
maintain a small interface for the outside world (reduce the trusted code base and the
attack surface).

4.3.3 Related work and Implementations

The TrustZone technology is deployed with the ARM Cortex-A processor family that in
turn are integrated in some of the best-selling mobile platforms (Qualcomm Snapdragon,

3This memory is based on fusible resistors that can only be burnt once such that the value stored on
this chip cannot be changed by any means.
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based on Cortex-A8, was market leader in 2011). However, there is a small number of
software solutions that make use of this technology.

A first solution is offered by Green Hills Software; they extended their Integrity Multivisor
to use TrustZone [11]. This solution offers a hypervisor that comes with its own real-time
micro-kernel, such that all other operating systems run on top of it. On TrustZone-enabled
platforms, Android can run in the Normal world whereas the hypervisor, together with
security-critical code will run in the Secure world. The Normal world will act as a virtual
machine under the control of the Secure world. The hypervisor provides an implementa-
tion of the TrustZone communication API, i.e. it enables the Normal world software to
sent requests to the Secure world. However, no ready built Secure world software is offered.

A second solution was proposed by Giesecke & Devrient in 2010, their Mobicore platform
for Qualcomm Snapdragon processors [14]. This is a full fledged operating system that
runs in the Secure world and handles the execution of secure applications called trustlets
as well as the communication with the Normal world. The OS comes with an open API
that allows for the creation of user defined trustlets; a platform can run Android in the
Normal world and use custom tasks running on Mobicore to perform security-sensitive
operations requested by Android applications.

Both aforementioned solutions are commercial. There are several academic implemen-
tations such as the one proposed by Santos et al.[18] - they design a .NET-based custom
framework that allows for parts of an application to be run in the TrustZone. The sensitive
parts of a .NET solution can be moved in a class called a trustlet and the framework takes
care of running this class in the Secure world inside a minimal language runtime based
on the .NET Micro Framework. The two worlds communicate via a secure procedure call
mechanism that also handles context switches (trigger an interrupt, enter monitor mode
and have the monitor jump to the appropriate interrupt handler in the trusted framework
driver). The application however is meant to be a proof-of-concept and it does not yet
support shared memory. Data exchange between the two worlds is only done via CPU
registers, which is a serious limitation if the TrustZone is used by applications that operate
with big data blocks.

4.3.4 Observations and Conclusions

TrustZone technology is delivered with many ARM chips, but it is often left disabled by
the firmware. There are however some development boards with full TrustZone function-
ality, such as the Freescale iMX53 [13]. Also, ARM Development Studio 5 [4] offers full
emulation of this technology.

It is also important to notice that the TrustZone only offers protection at runtime. If
an attacker had the proper resources to extract the flash chip from the device and inspect
its content he would find the Secure world software image unencrypted and he would be
able to retrieve the encryption keys. This is what the TrustZone whitepapers define as a
lab attack and are considered beyond the scope of an encryption system for mobile de-
vices - if some data were valuable enough for some attacker to go through this amount
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of trouble to retrieve it, this data should not be stored on a mobile phone in the first place.

The implementation of a software module for the TrustZone is a complex task and it
falls out of the scope of this thesis. However, given the attention that this technology has
drawn over the past years, we chose to design the Content Provider encryption system
around this concept, i.e. some sensitive operations are considered to be executed in the
Secure world.

We will make the assumption that some encryption keys cannot be retrieved even if the
Android instance installed on the machine is corrupted. An attacker would use root priv-
ileges to dump flash and RAM content, but the keys would be stored in secure memory
areas and the Normal world Android would not be able to access them. Also we designed
the system such that all sensitive operations were moved to a separate service and we mod-
ified the libraries used by the Content Providers to forward all data encryption(decryption)
requests to this service using shared memory. Porting this implementation to a TrustZone-
enhanced OS would only require the addition of the proper TrustZone API calls that switch
the CPU from the Normal to the Secure world mode.
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Chapter 5

System design

This chapter discusses technical details of the Content Provider encryption system i.e. the
exact means by which encryption keys and user configurations are stored and managed
and how data is encrypted.

This system is designed with the TrustZone technology in mind. To be more precise,
it is assumed that some components will run in the Secure world and they can only be
accessed from the Normal world in a manner that is controlled by the hardware platform.
However, as shown in Chapter 4, this technology is disabled by the firmware on most de-
vices, and the system should work under these conditions as well, at least in the domestic
mode (where no communication to a CA is required and exposing a container encryption
key would not cause damage to more than one device). For this reason, some data struc-
tures that are only accessible to the Secure world (and are therefore protected by hardware
mechanisms) are nevertheless encrypted. In other words, our system offers the strongest
security guarantees under the assumption that the TrustZone is active, otherwise, if the
OS is corrupted1, the encryption system is also vulnerable.

In the design of our system we will assume that the enterprise mode only works with
TrustZone-enabled devices. Certain restrictions, that will be pointed out in this chapter,
constrain us to only use this operation mode if the hardware platform supports the Trust-
Zone technology. On the other hand, the domestic mode can be installed on devices that
do not have a TrustZone, but in this case there are some vulnerabilities that will also be
discussed.

5.1 Local applications

There are two main software modules that run on the mobile device and ensure data
access: a monitor service and a cryptographic service. The monitor service is in charge
of all account management operations: it ensures that the user provided the proper au-
thentication credentials and that it is entitled to access the container that it requests.
The cryptographic service only encrypts or decrypts data as requested by the user and is
under the control of the monitor service. This means that it is only given access to the

1More precisely, if a malicious process finds a way to inspect the memory image of the process that
manipulates encryption keys, these keys can be revealed.
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necessary keys by the monitor service and, as long as it is not notified by the monitor that
it must no longer answer queries coming from the user applications, it will do so without
any extra access verifications. These two services will run as threads in the same process,
thus there is no IPC mechanism employed when they need to share data. In fact, they
could be merged into one single service. The decision to have two such services is only
motivated by the wish to obtain a clean design, where each service corresponds to one of
the major tasks of our system: manage users and encrypt/decrypt data.

Ideally, both these services would run in the Secure world. However, if the device is
not endowed with this technology, the container encryption key will appear at some point
in the memory image of the cryptographic service and, since there is no hardware memory
protection, an attacker with root privileges will be able to inspect this image. At this point
the system will have to rely on the fact that the service cannot be brought in a running
state unless the end-user introduced the proper login credentials. In other words, without
a valid password, that is not stored anywhere on the device, encryption keys will not be
loaded in memory. Even with the limitation of not having a TrustZone, our encryption
system offers better functionality than the default Android encryption: access control can
be configured and screen locking will prevent the adb from reading decrypted data.

5.2 Control structures on the device

In this section we give a detailed overview of the internal mechanisms that manage the
users and access control lists on the device.

5.2.1 High-level overview

On-device access control is based on a hierarchy of Critical Data Blocks (CDB)2 associated
to users, groups and containers. Every user is mapped to one User CDB (UCDB) and to
a number of Group CDBs (if the user is part of one or several groups). Group CDBs have
the same structure and are employed in the same manner as the User CDBs, i.e. they give
the list of containers that every user account is allowed to access. In a similar manner,
every encrypted container is associated with one Container CDB (CCDB) that holds the
encryption information (encryption keys) for exactly one container.

Figure 5.1: Control structures

2This name is used in the FreeOTFE [12] disk encryption system, where such a structure is associated
with each encrypted drive. Our system uses Content Providers instead of drives as the encrypted unit and,
also, these blocks have an entirely different structure.
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The purpose of this three tier architecture depicted in figure 5.1 is to allow for user
addition and revocation without the need to re-encrypt the data stored in the containers.
Also notice that in this design, the encryption keys stored in the Container CDBs are the
most sensitive (they create the most damage if exposed) and for this reason they must
never leave the Secure world. They are never explicitly returned to the user requesting
to access data, but instead, a dedicated service running in the Secure world will handle
cryptographic operations on behalf of the user.

There is a second reason for which the container encryption keys need to be strictly
guarded: in enterprise mode, our system offers the possibility to share encrypted content
amongst registered devices. The easiest way to implement this data sharing scheme is to
actually use the same key for a given container on all devices (e.g. contacts are encrypted
with the same key); these keys will be further referred to as having global scope, as opposed
to keys that are only valid on a given device and therefore have local scope. These keys are
set on the device in a special setup phase and they are only used from the Secure world.
In the enterprise usage scenario, these keys are also known to the Central Authority that,
as a result, can choose to broadcast encrypted information to all devices (a new contact
entry needs to be made available to all registered devices).

For this data sharing scheme to work (more precisely the usage of system-wide keys),
it is important to point out that the system setup phase is critical and it can only be
performed in a safe environment. Again, the TrustZone provides the proper support for
this trusted setup: a system administrator will have the signing key for the code and data
that is written to the TrustZone3 and it is only this person that can change this data.

Another advantage to this simple data sharing scheme comes from the fact that no extra,
possibly expensive, cryptographic operations are performed before data is exported, which
is an advantage with respect to time and energy consumption.

With this CDB structure in place, and assuming that the device makes use of the Trust-
Zone to perform the sensitive cryptographic operations, we can extend the functional
requirements of our system. If a user was revoked, this user can access restricted content
only for a limited time, before the revocation announcement is received by the phone.
After the revocation decision has been enforced on the system, the revoked user has no
further access to protected content as the container encryption key was never revealed to
the user in the first place.

5.2.2 Control structures in detail

Container CDB (CCBD)
The purpose of this structure is to allow for easy user addition and revocation without
the need to change the master encryption key. This is also the most sensitive structure in
the system since the master keys are are set at install time are never supposed to change.
The structure itself contains the Master key (MK) that is used to decrypt container data

3Recall from Chapter 4 that the TrustZone comes with a public key stored on a OTP chip and that
only the entity that holds the corresponding private key can push valid data to the Secure world.
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and a hash of that value; this structure is encrypted with KSMCCDB(C), a symmetric key
with local scope generated by the monitor service.

Figure 5.2: Container critical data block

The purpose of KSMCCDB(C) is to offer protection if the system runs without a TrustZone
- the master key is never stored in the flash memory unencrypted, such that if an attacker
has access to the content of the entire flash memory, he will not be able to find the key in
plaintext. Finally the purpose of the hash is to check that the provided KSMCCDB(C) is
correct: when the CCDB is decrypted, check that the hash of the decrypted master key
matches the stored hash.

User CDBs (UCDB)
These structures form the second layer in the key storage scheme (see figure 5.3); they are
control structures that hold all the KSMCCDB(C) keys for all the containers that a user
has access to. Every user is associated to such a structure as well as every group of users.
When the user logs in, the monitor service will find the UCDB for the current account and,
in enterprise mode, the GCDBs for all groups in which the user is a member; the monitor
then sends these structures to the crypto service. From this point onwards it is the task
of the crypto service to use this structure and load the appropriate container master keys
(MK(C)) when some data request is received. The idea behind this mode of operation is
that the master keys are only loaded in memory when they are used (alternatively, the
monitor service could send the master keys to the crypto service, but this would mean
that the master keys are at all time in the memory image of the monitor service).

Figure 5.3: User critical data block

where a CCDB(Ci) access block has the following structure:

Figure 5.4: User access block

The UCDB itself is protected by KSMUser(A), a symmetric key derived from the user
password and a random cryptographic salt - the key is obtained directly from the pass-
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word entered in the user interface and the derived key will be sent to the crypto application
along with the UCDB. This key also provides the authentication mechanism for the cor-
responding user: if the crypto service fails to decrypt the UCDB4 with the KSMUser(A)
value that it received from the monitor service, it will not answer any incoming data re-
quests.

The password is never stored in plaintext so an attacker with full access to the flash
memory would not be able to obtain the container master key only by inspecting the data
stored there. However, with full memory access and a known password, nothing stands
between the attacker and the master keys.

Finally, groups are only available in enterprise mode: they contain keys that are used
by several users, thus the encryption key for the GCDB structure cannot be derived from
the password of one user. Also, when running without a TrustZone, it is not safe for the
GCDB encryption key to be placed in persistent storage. However, in enterprise mode,
when making use of a TrustZone, GCDBs do not have to be encrypted since they will
never leave the Secure world.

Monitor TTL(Time to Live)
This is a special token that dictates the points in time when the monitor service needs
to connect to the Central Authority to retrieve configuration updates. This does not
necessarily have to be a time interval, it can also be a given number of login operations
performed by the user (or a count of some other operation).

This validity expiration mechanism must not only notify the monitor that it needs to
update, but rather force it to do so. For a TrustZone-enabled device, a TTL token can
be stored in a region controlled by the Secure world and is therefore unforgeable (from
the Normal world). However, for a platform that does not support TrustZone and runs
a possibly corrupted Android, storing this token can be problematic5. For this reason we
will restrict the usage of our encryption system to only run in domestic mode for platforms
that do not support the TrustZone (there is no need to update the control lists in this case).

Key wallet, ACL and user groups
These two structures are only used by the monitor service and they centralize all the
access rights. The key wallet is a list of Container CDB encryption keys (KSMCCDB(C))
and in the access control list each user is mapped to a list of containers that it is allowed
to access. Both these structures are protected by a key derived from the Administrator
password that is configured at install time and is never stored in plain-text on the device.

4The CCDB holds a ”magic value” in a separate field and this value can be checked after decryption.
5It could be stored in a file that contains the token and an HMAC of the token. In order to do this, the

key for the HMAC needs to be stored somewhere in the flash, but, since we agreed that the entire content
of the flash memory can fall in the hands of the attacker, the key can be retrieved, rendering the whole
validity checking mechanism useless.
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Figure 5.5: Key Wallet

Figure 5.6: Access Control List

In enterprise mode, these structures are synchronized periodically with the CA and are
also used to create and propagate changes to the User CDBs in a lazy manner (see details
in the Common operations section).

The monitor service also manages a user groups structure, a mapping that contains the
list of members of each group. This mapping is used in enterprise mode by the monitor
to send the appropriate GCDBs to the cryptographic service.

5.3 Communication mechanisms

In the first half of this section, we discuss the communication protocols employed when the
device connects to the CA for updates or when devices share encrypted container entries.
This type of communication only pertains to the enterprise mode, so we can also assume
that there is a TrustZone available. In the second part, we detail the mechanisms used in
on-device communication: client applications running in the Normal world exchange data
and commands with the security services that run in the Secure world.

5.3.1 Network communication

Device to CA message exchange occurs when the device connects to the CA in order to
ensure that its access policies are consistent with those stored on the CA. In this case,
secrecy does not necessarily have to be enforced, but the communication protocol needs to
ensure that the communicating parties are properly authenticated and that the messages
are unforgeable. Authentication needs to be established both ways: the device must only
receive messages from the real CA, otherwise an attacker could inform the device that
a fake user was created and use that new account to access some restricted data. Also,
the CA needs to be aware of the state of the entire system, therefore it must know that
acknowledgement messages come from the real registered device.

For this task, a simple protocol can be devised: a message can be sent along with a
HMAC that uses a secret key shared between the Secure world of the device and the CA
(this key can be set at install time). However, given the fact that this type of communica-
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tion doesn’t occur very often, the extra time and power consumption of a more complex
protocol like TLS [16] would not be a problem. Also, TLS is known to be stable, it is
widely used in practice, and the necessary configurations can be easily done on our system:
again, the Secure world on the device and the CA can share a pair of certificates when
the system is first installed on the mobile device.

There is also the case when devices exchange content from encrypted containers. In this
case we rely on the fact that it is only the devices that know the container encryption keys,
so container entries can be directly copied (encrypted with the container master key) and
sent over the network with no extra encryption. This model can also be extended such
that the CA can broadcast container entries to the registered devices - the CA also needs
to have the encryption key for that given container.

5.3.2 On-device communication

This data exchange scheme applies to the enterprise mode of operation, where a Trust-
Zone is available. Client applications that request data access operations run in the Normal
world and they need to communicate with the monitor service and the cryptographic ser-
vice that run in the Secure world.

Figure 5.7: Communication with the TrustZone

For this task we will use the two communication mechanisms offered by the TrustZone
technology: interrupts and shared memory. Before a Content Provider can access data
for the first time (in this login session), it has to agree on a shared memory area with the
cryptographic service (see figure 5.7, where the Monitor mode corresponds to the special
CPU mode offered by the TrustZone, not the monitor service). This is done by the use
of interrupts: the Normal world application will reserve a memory area, place the address
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of this area in a register and trigger an interrupt6. The interrupt will be handled in the
Secure world by the cryptographic service that will map this memory region in its address
space and use it to receive data requests.

This memory area is used by the client Content Provider to copy bulks of data that
needs to be decrypted/encrypted and the cryptographic application returns the result in
the same buffer. The two communicating process will synchronize7 via semaphores that
can be placed in the same memory area.

If the TrustZone is not available, this would reduce to a scheme with two processes that
use remote procedure calls and shared memory to communicate. The mode of opera-
tion remains the same, only that there is no Normal to Secure world context switch that
accompanies every RPC call.

5.4 Common operations

In this section we clarify the mode of operation by describing some common tasks that
occur in the system when installed as an enterprise application (the tasks performed in
the domestic mode are a subset of the tasks that occur in the enterprise mode).

5.4.1 Installation/registration

The system is installed on the device only in the presence of the CA to which it connects via
a trusted medium (e.g. a direct connection via USB). The mobile device needs to receive
the keys for container encryption, the admin account is configured and also, the set of user
account that exist in the system are configured on the device. The device downloads the
access control lists and creates the UCDBs for all existing users and groups. In this step
also the containers are encrypted.

5.4.2 Login and access data

In this encryption system there can only be one user logged in at a given time. The
login procedure is handled by the monitor service, and, if the user changes, the crypto-
graphic service needs to be notified such that it can suspend all operations requested by
the previous user. The monitor service will compute KSMUser(A), the key that secures
the UCDB for that given user, and send this key to the cryptographic service. The cryp-
tographic service will verify that it can decrypt the UCDB and, if this operation succeeds,
it is ready to receive data request connections. It will serve these request as long as the
user does not change and the session time for the user has not expired (the monitor can
set a login validity interval, after which the user needs to enter the login credentials again).

As long as the user is logged in, the cryptographic service will answer all requests for

6This interrupt is done via the Secure Monitor Call (SMC) CPU instruction. The Normal world can
place arguments in the CPU registers and trigger this instruction that, in turn, will yield the processor to
the Secure world.

7The client application needs to signal that fresh data needs to be processed and the cryptographic
service will signal that the data is ready.
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containers to which the user has access: it will receive interrupts that set shared memory
areas and then continue to decrypt/encrypt data using these shared buffers. When the
login session expires, the monitor service will signal the cryptographic service that it must
block until it is again notified to resume operation.

5.4.3 Create user

These operations can only be initiated by the Central Authority. This is a typical enter-
prise setting: if a new user needs to be added, the central administrator is notified, that
person will create the necessary updates and broadcast them to all registered devices. The
CA sends the update information over the air together with a hash of the new user pass-
word (the login credentials for the new account are sent to the user via some other channel).

This operation mode also applies to the case when a user account is deleted or it ap-
partenance to a group changes, with the exception that no further credentials need to be
sent.

5.4.4 Access extension and revocation

It is also the CA that initiates changes in the access rights for a given user (add or remove
access to some container) - the update message is broadcasted to all devices.

The changes are propagated to the access control structures in a lazy manner: the pass-
word for the affected user is needed in order to write the changes to the corresponding
UCDB, but that user may never be active on a given device (the users have system-wide
validity, but a person holding a device may only use one account and not have the creden-
tials for other accounts). Therefore, the changes to the UCDB are made when the affected
user logs in: the monitor will ask for the Administrator password as well and it will use
the user password to decrypt the UCDB and copy new keys to this structure or remove
the keys for the revoked containers.

5.5 Observations

The system is designed to run on a platform that supports the TrustZone technology; for
enterprise usage this is a strict requirement, whereas for domestic usage this restriction
can be overseen (with some risks). Regardless of the operation mode, the system has a
common weak spot, the user password.

If the platform is endowed with the TrustZone technology and a password is obtained
by the attacker, the master passwords for container encryption will still not be revealed.
If this technology is not present, a lost password could lead to all container keys for that
user to be revealed. In order to secure the password itself, some external hardware token
(a smart card) would need to be employed together with the password. Such a two-factor
authentication mechanism is technically feasible (connect over USB or Bluetooth with the
mobile device), the only problem being its usability: the user needs to carry the security
token at all times in order to access any of the encrypted containers.

39



Chapter 6

Implementation details

In this section we will discuss Content Providers in depth (and the most important Android
modules that they use) in order to find an appropriate design for an application that would
enhance these providers with the possibility to encrypt their data. We will then describe
the implementation details of a library that achieves this objective and it does so with
minimal changes to the Content Provider software stack.

6.1 Android content management

Before we set off to designing our encryption system, we first need to establish the direc-
tions in which the application will extend the functionality of the existing data manage-
ment system. There are two main tasks that our module needs to perform whenever data
from a Content Provider is requested:

1. Enforce extra permissions. Access rights for a regular Android application are set
in the manifest file of the application; these privileges are preserved but they are
combined with a set of per-user access rights (see Chapter 5). A dedicated software
component must handle these dynamic permission verifications - we will further refer
to this module as the monitor service.

2. Handle encryption/decryption of the requested data. These cryptographic opera-
tions must be transparent to the applications that connect to the Content Provider
i.e. these applications do not have to be modified in any way in order to accommo-
date encryption and, ideally, the cryptographic operations do not have a noticeable
impact on the overall user experience.

The first task requires implementing dynamic access control on Android. Currently, An-
droid only handles this operation in a static manner: access privileges are set in the
manifest of an application, if an application has the proper rights when it starts, it will
retain these privileges as long as it runs. On the other hand, our security system needs to
cope with scenarios where several users (with different access rights) can log in without
having to restart the device. In other words it needs to check access rights dynamically,
whenever data is retrieved from (or modified in) the containers.

For the second task changes need to be made to the specific mechanisms used by the
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Content Providers to manage data. There are no restrictions on how this can be done on
user defined providers - a Content Provider can define and use its own data structures.
However, the Android SDK offers support for a more convenient solution: using SQLite
databases. For this reason we chose to concentrate on adapting the Android SQLite library
to fit our purposes.

6.1.1 Binders

The Binder inter-process communication (IPC) mechanism constitutes one of the core
components of Android and is also a basic ingredient of the Content Provider implemen-
tation. It abstracts a message passing communication scheme and it is defined in the
Android API by the IBinder interface that is in turn implemented by the Binder class
(the remote object, where the actual operations are performed) and the BinderProxy class
(the object located on the client side). When a client requires a remote operation, the
client that holds a BinderProxy object calls BinderProxy.transact which is reflected in
the Binder.onTransact method on the server side. Transaction requests and their results
are marshalled in Parcel objects before being passed between the communicating entities.

Android Content Providers are implemented as remotable objects (i.e. reachable from
other processes) and this is achieved with support from the Binder IPC: Content Providers
in Android extend the ContentProvider class which in turn extends the Binder class.
The observation that the Content Provider itself serves as an IPC mechanism points out
the fact that there are several processes involved in operations such as retrieving data
from a container. We will be inspecting these processes in the next sections.

6.1.2 Content Providers

Android is delivered with a set of ready-built Content Providers, the so-called system
containers - the most frequently used are listed below together with a short description:

• ApplicationProvider: the list of installed applications as used by the application
launcher1.

• SettingsProvider: various system settings.

• CalendarProvider: alarms and the widgets that use them.

• ContactsProvider: the list of contacts along with the call history.

• DownloadProvider: information about downloaded applications.

• MediaProvider: the content referred by the Media Store application.

• TelephonyProvider: information on the current telephony operator and various com-
munication settings.

• UserDictionaryProvider: the dictionary that is used for typing suggestions whenever
the keyboard is employed.

1The application launcher is a special Android service that initiates the runtime environment for an
application that is set to execute.
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• BrowserProvider: browser search history.

• EmailProvider: the email container.

Every Content Provider (including the system providers) is associated with at least one
identifier, the so-called AUTHORITY. This identifier can be seen as the name of the
container and it is used by Android to find the Content Provider (the application) that
handles the data stored in the container. A provider is usually instantiated when some
process requests data from the respective authorities for the first time, it resides in a des-
ignated service (specified in the manifest), it never dies (if a crash occurs, it is restarted
by the OS) and it is contacted by remote applications whenever they need to retrieve or
update data.

Most of these Content Providers store data in SQLite databases2 and therefore are backed
up by a SQLite driver. This observation supports our decision to design the encryption
system around the SQLite driver for Android, as a great number of system providers could
easily be adapted to benefit from this service.

6.1.3 Important applications and services

As mentioned earlier, the answer to a data request on a Content Provider is the result of
an inter-process communication scheme involving the following entities:

• The system server, a core Android process, runs two important services:

1. ActivityManagerService: keeps track of all running Activities. It also creates
the system Content Providers upon request and it stores ContentProviderProxy
objects for all running providers. These proxy objects will be passed to appli-
cations that require access to the respective containers.

2. ContentService: dedicated objects called ContentObservers register with this
service in order to be notified when changes are made to the Content Provider
that is being observed.

• The process where the Content Provider resides: this differs with the provider type.
For example the ContactsProvider resides in android.process.acore(the Android core
process), and the SettingsProvider runs in com.android.settings.

• The process where the application that runs the data request resides. Each such
application has a main thread, an instance of the ActivityThread class. This class
handles operations such as contacting the ActivityManagerService in order to
obtain ContentProviderProxy objects.

6.1.4 Connecting to a Content Provider

Before any data can be retrieved from a container, a process must connect to the associated
Content Provider i.e. obtain a proxy to the process that manages the respective container.

42



UserActivity ActivityThread ActivityManagerService

ContentResolver.acquireProvider()

getProvider()

getContentProvider()

ContentProviderHolder

installProvider(holder)

ContentProviderProxy
ContentProviderProxy

ContentProviderProxy

Figure 6.1: Gaining Access to a Content Provider

The user Activity and the ActivityThread run in the same process (every Activity is
attached to such an ActivityThread) whereas the ActivityManagerService runs in the sys-
tem server process. This Activity is an instance of the Activity class and it contains
the user defined code - this is the only part that the developer is concerned with, cre-
ating the corresponding ActivityThread is the responsibility of the Android platform. If
the Activity wishes to retrieve data from a given container, it only needs to provide the
proper AUTHORITY name and formulate a request using a method exposed by the Ac-
tivityThread. When the user Activity runs such a request for the first time (for a given
container) , its ActivityThread contacts the ActivityManagerService and obtains a de-
scriptor for the Content Provider (the ContentProviderHolder) that is in charge of the
required AUTHORITY. Using this descriptor, the ActivityThread installs the provider
i.e. depending on how the Content Provider is set to run, it actually starts a new Content
Provider instance in the current process or it just retrieves a proxy to an already running
remote provider. This proxy is then passed to the UserActivity that requested the Content
Provider.

The call to ActivityManagerService.getContentProvider results in a call to
ActivityManagerService.getContentProviderImpl - in this method an initial access
privileges check3 is performed in checkContentProviderPermissionLocked before the
ContentProviderHolder is returned.

6.1.5 Running a query

Once a proxy to the Content Provider is obtained, the user Activity can start retrieving
data. In diagram 6.2, ContentProcess depicts the process in which the Content Provider
runs. A call to the query function on a ContentProviderProxy results in the request

2The only exception is the Media Provider where the actual content is stored in media files, but a
SQLite database keeps an index of these files.

3The privileges set in the manifest file are inspected. The right to access the specific Content Provider
needs to be explicitly stated in this file.
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parameters being marshalled in Parcels and a remote request being sent over the Binder
interface. On the server side of the Content Provider, the request is unmarshalled and the
call is being forwarded to the actual Content Provider implementation. The result of the
query is a Cursor object that is in turn packed into a Parcel and sent to the party that
initiated the query call.

UserActivity ContentProcess

ContentProviderProxy.query()

mRemote.transact()

QUERY request

ContentProviderNative.onTransact()

ContentProvider.query()

ContentProviderConcrete.query()

Cursor

Cursor

Cursor
QUERY response

Cursor

Cursor

Figure 6.2: Running a query on a Content Provider

All Content Provider implementations stay within the lines of the following class hier-
archy: ContentProvider extends ContentProviderNative and, in turn, the actual Con-
tent Provider implementation (in the diagram, ContactsProviderConcrete) extends the
ContentProvider class. On the server side of the Content Provider, all data requests go
through the onTransact method that, based on the transaction request, dispatches the
call to the corresponding function: query(), insert() etc.

This is also the spot where Android makes a second access check via calls to
enforceReadPermission(uri) and enforceWritePermission(uri). The URI that is
sent as a parameter to these functions contain the name of the AUTHORITY. These
methods contact the ActivityManagerService in order to check the access rights of the
calling activity: they use the Binder to retrieve and send the PID and UID of the UserAc-
tivity to the ActivityManagerService, that checks if the manifest of the user application
does indeed have access to the AUTHORITY listed in the URI. In order to enforce extra
permissions these two verification methods can be extended to also connect to a dedicated
monitor service.
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6.1.6 The problem with cursors

A call to the query method of a Content Provider returns a Cursor object. The main pur-
pose of Cursors is to cache query results for future uses. They are in fact more that mere
containers since they are implemented as self-refreshable remotable objects. This means
that the Cursors that the User Activity receives, holds the requested database entries, but
it also serves as a proxy for a BulkCursor object that resides in the Content Provider
process. Whenever a new Cursor is returned by the Content Provider implementation,
this Cursor is registered with the ContentService so that it is notified whenever other
threads make changes to the database to which it is linked. If such a change is triggered,
the Cursor updates itself - it runs a requery operation on the remote Cursor object, with-
out the Content Provider ever being notified.

This entire refresh mechanism stays within the lines of the Android static permission
checking mechanism - if an application was able to retrieve the Cursor in the first place,
it can never lose access to the Content Provider and it can refresh the retrieved data
at will. However, this behavior may pose problems in our dynamic access enforcement
mechanism - if the current user changes, the new user must be forbidden from further
accessing data in a container before a new privilege check is performed, which means that
the ContentService needs to be aware of what Cursors need to be invalidated.

6.2 The crypto application

A quick look at the implementation of Content Providers offers an idea on how to integrate
our encryption system with Android: force the ActivityThread to check with the monitor
service when first instantiating a provider, force calls to ContentProvider.onTransact

to connect to this service as well, disconnect all invalid cursors when the user changes,
and modify the SQLite driver to support encryption.

We designed an encryption library that can be easily employed by the existing Con-
tent Providers. The purpose of this library is to offer a proof-of-concept for the system
described in Chapter 5: it is only a demo application and we leave a complete implemen-
tation for future work. This reduced encryption system concentrates on the part that
runs on the mobile device and shows how Android can be modified to accommodate our
security mechanism.

The library is built such that an existing Content Provider can be rewritten to support
encryption with minimal changes and the modifications necessary to the Android software
stack, are minimal. Also, the design stays within the lines of the TrustZone model - all
sensitive operations are isolated in a service and the Content Providers communicate with
this service using shared memory.

The two tasks that the system needs to fulfill are implemented as follows:

• The encryption/decryption operations are handled by a modified SQLite driver.

• Access verifications accompany every request. The Content Provider sends packages
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to be decrypted by the cryptographic service; if the currently logged in user is not
allowed to access the desired container, the service will refuse to decrypt and will
signal an error. This error code is set in the first bytes of the response message
delivered by the crypto service and it is the duty of the Content Provider to handle
this exception. A more elegant (and considerably more complex) solution would also
consider disconnecting Cursors that are no longer valid (prevent them from requery-
ing the database). In general, a complete solution would implement a mechanism
which notifies all the objects that interact with the database that they may not be
valid when the current user changes.

6.3 Architectural overview

The solution that we propose introduces two new Android system services: a monitor
service and a cryptographic service. Both these services are started at boot-time and pro-
cesses can connect to them using the ServiceManager, a dedicated service that runs in the
system server process, handles all Android system services, and offers a simple interface
that allows processes to retrieve proxies for the services under its control.

ContentProvider CryptoService

Wait(Sem1)

copy to shared buffer

Post(Sem1)

Wait(Sem2)

Enc/Dec data

Post(Sem2)

copy from shared buffer

Figure 6.3: Remote data encryption

The monitor service manages the access control lists and exposes user management meth-
ods to a login application and a monitor application. The user login application pops-up
when the screen is unlocked (it receives the android.intent.action.USER PRESENT in-
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tent) and connects to the monitor service in order to check user credentials. If the user
changes and some containers are no longer available, the monitor service notifies the
cryptographic service that some requests must not be serviced any longer. The monitor
application offers a set of user management functions - user addition/deletion, container
addition/deletion and adding/removing the access right to a container for a given user.

As stated earlier, most Content Providers manage their data via a SQLite driver. A
SQLite solution for Android that supports encryption is offered by the SQLCipher library
[8] - this package was modified such that instead of encrypting data in the process where
the library is loaded, it connects to a designated service and it uses a shared memory
area and two semaphores to place encryption requests (see figure 6.3). In order to keep
the synchronization scheme simple, every time a new Content Provider connects to this
service, a new encryption thread is spawned. These threads run independently and can
only be interrupted by the monitor service: if the user changes, the monitor service notifies
the threads that serve containers which are no longer available to the user. These threads
will signal an encryption error on all subsequent incoming requests, but are kept alive and
will be re-enabled once a user with proper privileges logs in.

6.4 The SQLCipher library

SQLite [7] is an open-source software library that implements a SQL database engine. It is
written in ANSI C, which makes it easy to cross-compile, and it offers a self-contained (in
that it only uses libc functions), serverless solution: a database management application
loads this library and works directly on the database files. The fact that it is also quite
small (350 KB) and its simple structure make it a desirable data management solution for
mobile platforms.

Moreover, the overall memory consumption of a running SQLite driver is kept low. This is
achieved not only by the fact that an entire database is packaged in a single file, but also
by having databases partitioned in one KB4 chunks called pages. The internal mechanisms
of this driver organize data in B-trees of pages such that whenever some data is requested,
an index is queried and only the required pages are loaded in memory.

The SQLite pager mechanism offers another handy feature: so-called codecs can be added
to the SQLite library such that custom operations can be performed on a data page right
before it is written to the database file or after it has been read from the file. The SQLite
library offers a dedicated API for the addition of such codecs and also allows for the ad-
dition of custom PRAGMA calls - special instructions that can be employed in order to
send configuration parameters to the database driver.

The SQLCipher [6] project makes use of the codec API and adds encryption operations to
the SQLite pager - the SQLite code is linked against an OpenSSL library that performs
256-bit AES encryption upon page retrieval and insertion. Encryption keys are derived
from user provided passwords that are fed to the driver via a PRAGMA key instruction.

4This value can actually be configured at compile time, but the default size is 1024 bytes.
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The Android API offers its own implementation of the SQLite library - it consists of
a Linux SQLite shared library compiled for the underlying platform (for most Android
distributions this is an ARM processor), a Java interface, and the Java Native Interface
(JNI) adapter layer. It provides a convenient way to manipulate transactions and cursors
from Java code. Most applications that use the SQLite module will only interact with this
Java interface and rely on the hidden native implementation for low level data manage-
ment tasks (use Java calls to open a database and manage transactions).

The Guardian Project [8] ported the SQLCipher library to Android. Their solution comes
in the form of a native SQLCipher driver enhanced with a Java interface that replaces
the default Android SQLite implementation and adds the necessary API calls for crypto-
graphic operations. The changes that this new Java library brings to the Android database
API mostly consist of having added a password parameter to the function that opens the
database - all other functionality exposed by the API remains unchanged.

6.5 Remote SQLite encryption

The SQLCipher for Android library does not fulfill all the needs of our Content Provider
encryption system since all cryptographic operations are performed in the local process (in
our case this is the process where the Content Provider resides). However, it does provide
a good starting point. This library was modified such that, instead of encrypting data in
the local process, it receives as a parameter the name of a service to which it sends pages
to be encrypted or decrypted.

6.5.1 The native driver

In the native library, libsqlcipher.so, the codec function is modified as follows: when a page
is read from persistent storage, it needs to be decrypted before it is returned. Instead of
performing the decryption operation locally, the ciphertext is written to a shared memory
area, the post function is called on the first semaphore (Start semaphore), and then the
thread waits on the second semaphore (Done semaphore). The post operation notifies the
remote crypto service that fresh data is available; the crypto service processes the data,
writes it back to the same shared memory region and posts the Done semaphore, signaling
to the SQLite driver that the requested operation has completed.

ctx−>shared_mem_address [ 0 ] = ( char ) mode ;
∗ ( ( unsigned short ∗ ) ( shared_mem_address + 1))

= ( unsigned short ) size ;
memcpy ( shared_mem_address + 2 , in , size ) ;
sem_post ( start_sem_address ) ;
sem_wait ( done_sem_address ) ;

Listing 6.1: The codec function - snippet

As shown in the attached code listing, the first three bytes have a special meaning: the
first byte depicts the requested operation (encryption or decryption) and the next two
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bytes store the length of the page in little endian format5 (the maximum page length
supported by SQLite fits in an ANSI C unsigned short). If an error occurs on the server
side, this will be signaled in the first byte of the return message and it will be propagated
upwards on the call chain.

The shared memory address and the addresses of the two semaphores are created in the
Java layer of the SQLite driver (more details in the next section) and are passed to the
native code via PRAGMA calls. The SQLite driver offers this dedicated interface such
that various setting can be sent to the driver in key-value pairs - for user defined pairs,
the appropriate processing code needs to be added to the native library.

6.5.2 The Java interface

The Java interface provided by the SQLite for Android library seeks to replace the origi-
nal Android SQLite packages entirely. In fact this implementation copies the code in the
android.database and the android.database.sqlite packages and operates the neces-
sary changes. The most notable modification comes in the form of an extra parameter,
the password, being sent to the constructor of the SQLiteDatabase class (this constructor
sends the password to the native driver via a ”PRAGMA key = password” call).

Since our remote encryption driver does not need the password to be set locally, this
parameter can be removed. Instead, the SQLiteDatabase constructor needs to receive the
address of the shared memory region along with the address of the two semaphores. These
three addresses are sent to the underlying driver using three newly added pragma calls,
one for each of the required addresses.

It is also this Java layer that connects to the cryptographic service and sets the commu-
nication primitives. It does so by using a call to the ServiceManager to retrieve a proxy
to the cryptographic service (see details in the next section). As soon as the connection
is established, the identifier of the container for which crypto operations are requested
is sent to the cryptographic service - this will allow the service to pick the appropriate
key in all subsequent operations. It then creates three shared memory areas, obtains
the file descriptors for these areas and uses the Binder to marshall these descriptors in
ParcelFileDescriptors6. These values are sent to the cryptographic service using the Binder
remote procedure call mechanism. Once both processes have agreed on these primitives,
no further Binder calls are used - communication is only done via shared memory and
semaphores.

Android comes with a proprietary implementation of shared memory, the ashmem (anony-
mous shared memory) Linux driver; the main difference from the POSIX implementation
is that it is not associated with an unique identifier that other processes can use in order

5If this message is processed in Java code on the receiving side, the big endian JVM needs to rebuild
this value correctly.

6Linux file descriptors are in fact integer values that are associated to a file structure - this mapping
is only valid in the process that opens the file. Fortunately, the Binder offers this mechanism to share
file descriptors between processes, such that, when unmarshalled on the receiving side, the file descriptor
maps to the same file as in the first process.
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to refer to the same memory area7, two processes need to use the Binder in order to pass
the associated file descriptor. The Android API also offers a Java wrapper for shared
memory, the MemoryFile class that facilitates operations such as data read and write.

In what semaphores are concerned, Android offers POSIX semaphores, with the men-
tion that they cannot be shared amongst processes based on their identifier. Instead a
semaphore object (a sem t structure) needs to be placed in a shared memory area such
that both processes can call POSIX functions (sem open, sem post, sem wait etc.) from
the JNI layer, using the address of this structure.

6.5.3 The cryptographic service

The cryptographic service is the core of the entire security system. On a TrustZone en-
abled platform, this module along with the monitor service would run in the Secure world
as we need these services to be trusted and untouchable during runtime. It works together
with the monitor service (in fact they share the same process) that provides the encryption
function with the appropriate key.

The mode of operation is kept simple: whenever a new connection is established, the ser-
vice spawns a new encryption thread that will be associated with the container identifier
received from the party that initiated the connection. All these threads run independently,
communicate with their peers using the aforementioned semaphores and shared memory,
and are monitored by the monitor service - if the user changes, the monitor service can de-
cide to suspend8 the threads that serve requests for containers that are no longer available.

Given its importance, this service was implemented as a so-called system service. As
opposed to regular user-defined services (extensions of the Service class), system services
are registered with the ServerManager process, they are never killed by Android and they
can receive connections in a synchronous manner. The default way to define a service
only allows for connections to be established asynchronously: the process that wishes to
open a connection sends an intent and registers a callback function that will be notified
when the proxy to the service is ready; after this callback function has run, the process
can call the methods defined in the service aidl (see Chapter 2 for details). The problem
with this mode of operation is that the calling process is blocked until the connection
notification arrives in its message queue9. Moreover, the process does not busy-wait for
the notification, instead, it sleeps and it will only inspect newly arrived messages when it
is again brought in a running state by some external action (the service receives another
remote call). With a system service this is not the case: a proxy to the service can be
obtained with a blocking call to (ServiceManager.getService(service name)).

7The POSIX implementation actually creates an entry in the /dev/shm folder, that other processes open
as a file before mapping the memory area it corresponds to. Given that in Android processes run with
different UIDs, other processes will not be allowed to open this mock-file, therefore some other mechanism
needs to be used in order to do the actual resource sharing.

8The thread is notified that it should answer all incoming requests with an error message.
9Every Activity or Service is associated with a message queue that is managed by a dedicated thread

called Looper.
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6.6 Android API related issues

We will begin by pointing out that some components of Android, though fully functional,
are not exposed in the API; this is the so-called hidden and internal API. Most of this
hidden functionality covers parts of the API that are considered unstable or vulnerable
at the time of release, parts that may change in the future (thus generating backwards
compatibility issues for the applications that use them), or that are considered irrelevant
for regular application development. Also, it must be pointed out that we developed our
application for Android 2.3.5 and some hidden parts of this API have already been dis-
closed in Android 4.0. In this section we will list some of the issues that we came across
while developing the encryption system and the means by which they can be overcome.

One example of an issue with the hidden API is the fact that the methods in the
ServerManager class cannot be directly accessed from user-defined code. Another prob-
lem arose when using the shared memory mechanism: the Java wrapper, the MemoryFile

class, opens a new memory area in read-write mode, but it allows a remote process to map
the area only in read mode, although the Android implementation of the Linux mmap func-
tion is perfectly capable of mapping the memory region in write mode. There are several
more locations where our code had to cope with such limitations, but all these problems
can be overcome by the use of Java reflection (as mentioned earlier, this functionality is
there, only that hidden).

A second problem is given by the fact that one of the purposes of our encryption system
is to provide extra security to the existing Content Providers. These Content Providers
are delivered as apk’s located in the /system/app folder in the Android image and they
are installed when Android boots. In order to replace these providers, root privileges are
required and also the new apk needs to be signed with a specific key, the shared key10.
This key can be found in the Android source tree and it can be replaced with some custom
key before Android is built. It is however necessary to replace the Android image on the
device with the one containing the new key. Also this key is not available to the end user
for the original Android image delivered with the device.

There is a second reason for which the device needs to be reflashed when the encryp-
tion system is installed: recall from the previous sections that the cryptographic service
is a system service. This means that it must run under the shared UID called ”system”
so it needs to be signed with a specific key, the platform key. As in the case of the shared
key, it is not available to the user for the Android image provided with the device.

A potential problem can come from the fact that the Android API does not provide a
way to define modal dialogs. As a result, our login screen can be bypassed, but since
the previous user is invalidated on screen lock, this doesn’t create a security issue: if the
user decides to bypass the login screen, there will be no access to any of the encrypted
containers.

10This is actually only needed for the providers that run under the special UID called ”shared” (e.g. the
Contacts Provider)
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Finally, we start our cryptographic service at boot time by registering a receiver for the
BOOT COMPLETED intent. However, this approach will not work in Android 4.0 - the
service is not put in a running state, it needs to be started explicitly by some user action.
This can be overcome by placing the code for the service in a dedicated folder, adding
a new entry in init.rc (the file where all system services are listed) and recompiling the
Android image. This, of course, requires for the entire OS image to be reflashed.
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Chapter 7

Evaluation

In this chapter we provide an evaluation of the encryption system in terms of usability and
performance. A first requirement of our system is that it integrates easily with Android
and that it does not affect existing applications. Also, one of the concerns with using an
encryption system is the impact that is has on the overall performance of the platform.
This concern is even more justified on a mobile device, where processor speed, memory
limitations and power consumption play an important role in the design of applications.

7.1 Test platform

During the development of the encryption application we used an Android 2.3.5 image
compiled from source, and running on an emulator. This tool provided together with the
Android SDK is an actual ARM emulator (it emulates the behavior of the ARM CPU and
other peripherals and it runs a standard Android image on top of this virtual platform).
All our tests run the Android emulator on commodity hardware: a personal computer with
an Intel Core i5 CPU and 3 GB or RAM. In terms of user experience, the performance
offered by the emulator is comparable to that of using a real device.

7.2 Integration with Android

In order to demonstrate the versatility of our encryption library, we built a modified
version of the Contacts Provider that uses encryption and replaces the default provider.
The changes consists in linking the system provider with our SQLite encryption library
and adding the proper exception handling code that manages disconnections form the
encryption service. This package was built in an apk, the manifest of this package set
to associate the new provider with the Android AUTHORITY string for the Contacts
Provider, signed with the shared key for our Android image, and deployed on the emulator.
Once these steps are performed, the Contacts and Call Log applications (the applications
that run when the call button is pressed) will automatically start using the new provider,
with no change to their code. Moreover, the encryption system runs transparently with
respect to the user. The encryption system only becomes noticeable when the user changes
and the new account does not have the right to access the contact list: no contacts are
displayed in the application and no new contacts can be added.
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7.3 Performance measurement

We ran performance measurements on a custom Content Provider that manages a set of
notes1: entries with a title and a body. We created two such Note Providers, one that
uses the default SQLite library and one that uses our encryption SQLite library. A test
application then connects to both providers and performs queries, inserts, and updates on
a similar set of entries (short notes with a title of roughly five characters and a body of
ten characters).

Table 7.1: Decryption time
for one page - samples [ms]

Server Client

0.391 2.518
0.339 9.134
0.229 0.794
0.212 2.013
0.211 1.575
0.193 0.900
0.187 0.797
0.182 0.922
0.161 1.989

Table 7.2: Encryption time
for one page - samples [ms]

Server Client

0.907 3.423
0.787 2.646
0.740 2.135
0.661 1.717
0.660 4.589
0.622 4.781
0.582 2.723
0.277 0.917
0.271 1.701

Table 7.3: Average time to encrypt/decrypt a page [ms]

Server decrypt Client decrypt Server encrypt Client encrypt

0.410 2.118 0.308 1.902

The encryption service operates with units called pages of 1024 bytes each. We mea-
sured the time in milliseconds necessary to decrypt a page and to encrypt a page; a few
samples are listed in table 7.1 and 7.2 respectively. Also, table 7.3 lists the average time
for cryptographic operations calculated from a set of 100 measurements for each of the
columns. In these tables, the server time measures only the interval for the cryptographic
operation performed in the encryption service, whereas the client time is the entire in-
terval necessary to obtain a page, as seen from the perspective of the Content Provider.
This interval includes the time spent in order to copy a page to shared memory, notify the
encryption service that new data is present, and wait for the result to show up in shared
memory. For a fair result, the operation that copies the data from shared memory back
to the client buffer is not included, as a similar operation would also occur if the default

1In fact this provider was used throughout the entire development phase in order to keep the structure
of the database simple.
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SQLite library was used (copying data from the database file to the client buffer).

There are noticeable inconsistencies in the client time for the samples in 7.1 and 7.2:
the difference between the client time and the server time should be constant as this dif-
ference is caused by the same sequence of data sharing and synchronization operations
that accompany every request. These inconsistencies can be explained by the fact that
the operating system may choose to schedule other tasks in this interval: the client process
posts a semaphore and then sleeps waiting for the other semaphore. This sleep operation
triggers the Linux scheduler to run some random task that was waiting, not necessarily
the encryption service. Moreover, the underlying Linux kernel in Android is preemptive
so both the client application and the encryption service can be interrupted at any time
(holding the semaphore does not disable preemption).

Table 7.4: No encryption [ms]

Row # Insert Update Query all

10 116.758 87.344 17.453
20 224.122 173.469 14.424
30 379.712 322.023 15.183
40 453.505 573.115 16.805
50 610.037 662.340 16.445
60 834.528 927.414 20.935
70 934.562 1071.927 17.883
80 1087.395 1358.585 18.395
90 1230.477 1528.834 19.082
100 1202.021 1742.441 20.351

Table 7.5: With encryption [ms]

Row # Insert Update Query all

10 186.774 95.586 30.519
20 356.225 211.782 22.957
30 489.417 328.163 32.480
40 676.117 671.346 39.912
50 826.060 714.512 49.439
60 1075.279 1040.313 59.189
70 1188.590 1081.876 56.164
80 1366.597 1462.620 62.267
90 1635.070 1628.988 62.449
100 1719.279 2170.913 66.288
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Given that our tests run on an emulator, the encryption/decryption time intervals may not
provide an exact measure of performance by themselves. Therefore, for a second test, we
measured the time in milliseconds for common database operations in a Content Provider
that uses encryption (table 7.5) and one that uses the default Android API (table 7.4) for
a variable number of database entries. In this case, the ratio of the time for each operation
when using the encryption system to that obtained with no encryption, is expected to be
preserved when the system runs on a real device: the emulator runs ARM instructions,
thus, on a real device, the exact same code would run, only that at a different frequency.
One important observation that can be made on these values is that they stay within the
same order of magnitude for a given number of entries.

Also, in these tables, the number of page encryption/decryption requests necessary for
each database operation cannot be established with precision. This number is highly de-
pendent on the internal mechanisms of SQLite. For example, to serve a database query
requesting a table row, the SQLite driver will first decrypt an internal index table and lo-
cate the necessary pages. If the requested data happens to reside in one single page, there
will be only one decryption request, otherwise all the necessary pages need to be decrypted.

The encryption system induces an overhead of roughly 40% for insert operations, 11%
for updates, and 150% when all database entries are retrieved. However, user experience
does no suffer a noticeable deterioration. For example, there are no lags when using the
Contacts application with our encryption system instead of the default application.

7.4 Observations

We have not included in our tests the Binder calls that are performed when the connec-
tion between the client application and the encryption service is established; the overhead
introduced by these remote procedure calls is negligible since they only occur when the
connection is first established or when the user changes.

Synchronization operations that use semaphores, on the other hand, occur for every page
access. Android user-space semaphores copy the standard Linux implementation, with
one minor detail that actually has an impact on performance, namely that they do not
use Futex2 objects. However, this is not a problem with our synchronization scheme,
since lock contention is kept at a minimum: every client process communicates with its
own encryption thread. Actually, these semaphores are used as a notification mechanism
rather than a mutual exclusion scheme. In other words, every time wait() is called on
a semaphore we want the calling process to sleep and be woken up when the requested
operation has finished.

This last observation takes us to a second point: even though there is a thread created for
every connection, these threads sleep most of the time. They are only active when some

2Fast user-space mutexes are optimized user-space mutexes that, unlike normal mutexes, only enter
kernel-mode when they need to sleep: a counter value is tested in an atomic manner form user-space and,
if the mutex can be acquired, the process enters the critical zone immediately. Otherwise they trigger the
necessary system call so that the process can sleep and be rescheduled at a later point.
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Content Provider requests data, for instance when the contacts application is used. There
is also an overhead associated to the creation of each thread, but this only occurs when
the encryption connection is first established.

Finally, we need to take into consideration how running on a processor with TrustZone
would impact performance: when the connection to the encryption service is first estab-
lished, a specific CPU instruction needs to be triggered in order to call functions that run
in the Secure world. However, once the shared memory area is set, there should not be
any communication overhead: the MMU makes the pages available to the Normal world
application, these pages are mapped in the virtual address space and used as if they were
part of the Normal world memory.
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Chapter 8

Summary

8.1 Conclusion

In this thesis we discussed the design and implementation details of a novel encryption
system for Android Content Providers.

While looking for a proper design for the encryption system, we gave an overview of
the type of support that dedicated hardware platforms have to offer for security-related
applications. We discussed the advantages and challenges of using the ARM TrustZone
technology and decided to base our design on this special CPU feature. The next two chap-
ters detailed the design of the enterprise encryption system and then we moved onwards
to the implementation details of an application that provides parts of the functionality in
this design.

Our defense system is designed such that it can be used in an enterprise environment
and offers security guarantees even when running on a corrupted OS. Moreover, our im-
plementation of the SQLite encryption library runs transparently with respect to the user
of the encrypted Content Provider, thus achieving one of the main goals set in the re-
quirements section: the developer of third-party applications needs not be aware that the
containers are encrypted. Also, the encryption library is implemented such that it can be
ported to a TrustZone-enabled platform with little effort: the parts that need to be moved
to the Secure world are well isolated. Finally, we give a set of performance measurements
for our implementation and offer an analysis of its runtime behavior, showing that user
experience will not deteriorate when our system is in use.

8.2 Limitations

There are two main points to be discussed in terms of limitations: first of all, if the en-
cryption system runs on a TrustZone enabled processor, conceptually, it is not possible
to retrieve the master encryption keys for the container. This is true only if the code
that runs in the Secure world is properly implemented. In other words, the TrustZone
technology will guarantee that it is not possible for an unauthorized process running in
the Normal world to randomly access system resources of tasks that run in the Secure
world. However, if a Secure world process decides to publish some sensitive information
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(or rather, it is tricked by a Normal world application into doing so) there is nothing that
would prevent this action. This is not a limitation of the TrustZone itself, but rather a
general coding guideline: the Secure world code is isolated and cannot be changed without
proper authorization, but it is the duty of the developer to check for confidentiality and
integrity (preferably by running some code analysis that checks for improper flow of data).

There is a second limitation to our encryption system: the end-user is the weakest point
in the system. If the user decides to make the password public, there is nothing standing
between the attacker and the confidential information stored on the device. This, how-
ever, is a problem with every encryption system and it can be mitigated by the use of an
external authentication token.

8.3 Future work

As discussed in Chapter 6, our demo implementation only covers part of the functionality
and it needs to be extended in two directions: in a first step, the application needs to
be ported on an Android version that has support for the TrustZone1 and the encryption
service needs to be implemented as a process in the Secure world. Also, in order to
make the system suitable for enterprise usage, the Central Authority together with the
communication module on the device need to be implemented.

1At the moment there is ongoing work from Linaro (www.linaro.org) in this direction. Their latest
Android distribution released in April 2012 is compiled for the Freescale iMX53 board and the kernel build
configuration has the TrustZone interrupt controller enabled.
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