Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelor Thesis

A Developer-Centric Approach to A
Dynamic Android Permission System

submitted by

Oliver Schranz

submitted
September 30, 2013

Advisor
Sven Bugiel

Reviewers

Prof. Dr. Michael Backes
Dr. Matteo Maffei

Eidesstattliche Erklarung

Ich erklare hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstandig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

| hereby confirm that | have written this thesis on my own and that | have not used
any other media or materials than the ones referred to in this thesis

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veroffentlicht wird.

Declaration of Consent

| agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbricken,

(Datum/Date) (Unterschrift/Signature)

Abstract. In the last few years, Android did not only evolve into the most
widespread Linux based operating system, but also became the world market
leader in the mobile operating systems market. Encouraged by the open nature
of the platform and its popularity among end users, many researchers focused
their work on Android. One of the most popular topics is the Android secu-
rity architecture which isolates applications and only allows access to resources
from outside the sandbox through well defined channels. For this reason, An-
droid provides a privilege based security measure, relying on permissions that
denote the right for applications to access a remote resource. Those permissions
are granted at install time and there is currently no way to modify or revoke
them afterwards, so even developers that are willing to improve the end user’s
privacy by supporting dynamic permissions do not have the facilities to do so
on stock Android. Some experimental changes in Android 4.3 indicate that
Google prepares such a system, but at the time of this writing, these features
are hidden and marked as not approved. There have been different approaches
to replace the current system with permissions that are dynamically revocable
by the end user. But in contrast to solutions employing inline reference mon-
itoring and rewriting techniques or system-centric approaches that necessitate
a modified Android version, we propose a more developer-centric solution that
solely runs at the application layer and thus works on stock Android. We en-
courage developers to use a newly designed API provided by our solution to
access security and privacy sensitive resources, such as contact data or call logs.
While offering the end user tools to be able to revoke and grant permissions at
runtime, we provide the developer facilities to dynamically react to permission
revocations and to prevent his applications from showing undefined behaviour
or crashes. To provide this alternative permission system, we introduce new
dynamic permissions that are provided by a support library to include in third
party applications and enfoced by an application that guards the access to crit-
ical resources. Altogether, our solution proposes a new implicit contract for the
permission system, which ensures that the end user has full control over the
permission access of third-party applications and guarantees the developer to
use protected APIs in every possible way as long as the user has granted the
permission to do so.

Contents

Introduction
1.1 Motivation e
1.2 Outline e

Background

2.1 Android’s Main Application Components
2.2 Android Inter Process Communication
2.3 Android Permissions L.
2.4 A Sample API Call In Android

Related Work
3.1 Inline Reference Monitoring Using Rewriting
3.2 System-Centric Solutions

Design

4.1 The Overall Design Principle

4.2 Architecture Components
421 The GuardApp«
4.2.2 The GuardLib
4.2.3 Prerequisites and Assumptions

4.3 The Communication between the GuardLib and the GuardApp .

4.4 Maintaining Two Mirrored Hierarchies

4.5 Designing the Guard Permissions

Realization
5.1 Communication Through Remote Service Binding: AIDL
5.2 Implementation of the Hierarchies
5.3 Realization of the Guard Permissions
5.4 Identification of Different Applications
5.5 Data Management,
5.5.1 Data Management at Runtime
5.5.2 Persistent Storage
5.6 The Graphical User Interface
5.7 Remote Exception Handling
5.8 Developer Tools
5.8.1 An Exception for Revoked Permissions
5.8.2 The Permission Libraries
5.8.3 The Control Service
5.9 Extending the Main Component’s Lifecycles

vi

N -

Ne

13
13
13
14
15
17
19
19
20

59.1 onCreate
5.9.2 onStart and onStopo
5.9.3 The New allLibrariesReady Callback
5.10 A Sample Application

6 Discussion

6.1 Security
6.2 Usability

7 Future Prospects
7.1 Improvements for the Current Application Based System

7.2 Towards A System-Centric Implementation

8 Conclusion
Appendices
A The Shared AIDL Interface of the Internet Service

Bibliography

41
41
43

45
45
47

49

50

50

51

Chapter 1

Introduction

1.1 Motivation

In the past few years, Android has become the world market leader in the mo-
bile operating systems market. Its open source nature as well as its success on
the consumer market offered a great opportunity for researchers to work with a
fully open platform and simultaneously produce results potentially relevant for
a huge mass of consumers.

Since then, a large body of literature on Android security has been established,
especially to improve the Android permission system. Its intention is to guard
access to critical system resources, like hardware and privacy-critical data, by
sandboxing single apps and imposing an obligation to the developer to explicitly
request access to these APIs.

When the user decides to install an application, he is prompted to approve the
granting of all permissions requested by this app, or to decline and cancel the in-
stallation process. In fact, end users have neither the opportuniry to selectively
grant or revoke permissions, nor the possibility to dynamically revoke them at
a later point in time.

Concluded from the number of papers that evolved in the last years dealing with
this problem, there is a huge demand for better solutions in this area. There
are patches that propose a system-centric solution [1][2], but as they require a
modified Android version, they are only gradually adopted by developers of the
Android system. In order to overcome this deficit, subsequent solutions working
on the application layer [3][4][5] are proposed to fill this gap.

The focus of this thesis is to propose a new, more developer-centric approach to
a more flexible and dynamic permission system, showing its improved robust-
ness compared to existing solutions, and prove its feasibility by introducing a
feasible proof of concept for everyone to try out on stock Android.

In contrast to prior approaches where the threat model considers the app de-
veloper to be malicious in general, this thesis takes a different point of view,

2 CHAPTER 1. INTRODUCTION

in which the developer would like to provide the users of his applications more
facilities to strengthen their privacy. In this scenario, the user benefits from
additional options to protect his privacy, while the developer profits from the
improved trust of the user in the application. The current Android permission
framework would not allow for such a developer-centric approach to dynamic
permissions. With this step towards the end user, the developer proves his
awareness of actual privacy problems that may arise while using mobile appli-
cations with extensive privileges.

This approach provides a possibility to put the end user in full control while still
giving the developer enough facilities to react to dynamic user decisions. While
a system-centric implementation is favorable in the long run, the approach in
this thesis does not require a modified Android version or an official patch and
is thus deployable on all current Android powered devices.

1.2 Outline

In Chapter 2, a common ground is established and some background relating to
the Android system itself is stated. Chapter 3 discusses related work on estab-
lishing more dynamic permissions on the Android system and their influence on
this approach. In Chapter 4, we take a closer look at the design principles of this
approach, while Chapter 5 discusses the realization and implementation of our
proof of concept system on stock Android. Chapter 6 evaluates the results of
this work with respect to security and usability. In Chapter 7, potential future
work is described, based on this one, and Chapter 8 concludes the proceedings
of this work. Finally, the last section states the references for the citations and
related work.

Chapter 2

Background

In order to be able to understand current research on the area of Android
security, we need to take some preparatory work and have a look at the concepts
and internals of Android that this approach builds on.

2.1 Android’s Main Application Components

There are four main components that make up the core of most Android appli-
cations. Those components are briefly introduced in order to find on common
ground for the further reading.

Activities

An Activity represents a single view on the device screen and carries the graph-
ical user interface. It is the main entrance point to most applications and its
creation, starting, stopping and so on, strictly follows the so-called Activity
lifecycle, depicted in Figure 2.1. The general GUI of an application is a combi-
nation of Activities which all inherit from the Activity class. Activities can be
started from the application itself, but can also be triggered by an Intent from
another application.

Services

A Service carries functionality that is intended to be executed without the need
of a graphical representation or user interface. Most Services do background
work, hence they follow a different lifecycle within the Android system. To im-
plement a new Service, one needs to extend the base class of the same name.

Broadcast Receivers

Broadcast Receivers are callbacks for the system to be called on the occuring of
so-called broadcasts (system wide messages). The most popular examples are
so-called short messages. If the device receives a new SMS, a special broadcast
is sent to the whole system which is only received by Broadcast Receivers that
explicitly subscribed to broadcasts of this type.

4 CHAPTER 2. BACKGROUND

Resumed
(visible)
(3 :ﬁ onResume() onPause()
- onResumel)
7 sStarted /" Paused
" (visible) _ (partially visible) / l
i/ 2.\'} onStart() onStop()
S onStart()
- . T
(Restar /" Stopped
—~ k Created onRestart() \ (hidden) y
._\1 onCreate() — e - 2 - - onDestroy()

|ﬁ1u \E

Figure 2.1: The Android Activity Lifecycle. !

Content providers

Those are Android’s general pattern for managing and sharing almost arbitrary
data. The idea is to offer a central access point to a set of data, a facade [6] to
hide the internal structure of the data, but also to provide a simple and stan-
dardized method to offer insertion, updating, reading and deleting operations.

2.2 Android Inter Process Communication

Android’s security architecture relies on isolation through sandboxing [7]. Hence,
there is a need for clearly defined and observable channels to resources outside of
the sandbox. As an application by default has no access rights to code or data of
another application (user), it needs to rely on the inter process communication
(IPC) mechanisms that Android provides.

For IPC, there is a demand for a secure, but also high performing mechanism,
to quickly send secure messages and data between processes and to call methods
remotely in other applications.

In Android, this work is done by the so-called Binder module [8].

There are restrictions on the type and size of data that can be sent via IPC. In
Android, only classes that can be marshalled into the basic Java types (int,
float, byte, ...), Strings, Lists and Maps of these types, or classes that
again are marshallable into the mentioned types, can be sent via IPC. The reason
is, if they can be marshalled into primitives, they can also be reconstructed
(unmarshalled) back to the complex objects they were before. Taking on these
restrictions mainly influenced the implementation strategy that we used in the
end.

IThis image is reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution
License.

2.3. ANDROID PERMISSIONS)

2.3 Android Permissions

Dealing with Android permissions, one needs to know about how they are im-
plemented and enforced, internally. As Android is based on an embedded Linux
kernel [7], it inherits and uses many of its security measures to provide security
on a preferable low level.

The first thing to know is that Linux was designed to be used in a multi-user
environment, while still preserving security and privacy among all users. No
user may be allowed to access the processes or memory of one of the others,
so the system uses a security architecture to distinguish them by assigning ev-
ery user a unique identifier and guard critical access by checking this ID. If
there are resources that more than one user should have access to, those users
are considered members of a Linux group, identified by a Linux group ID (GID).

Android builds its permission model on top of that isolation techniqe by assign-
ing every installed application a unique identification number, the so-called user
ID (UID).

The idea of permissions is to assign every resource a unique String identifier,
the so-called Permission Label. A resource can be hardware like the camera,
Bluetooth or WiFi module, or user data like contacts or phone numbers. In ad-
dition, access to an application interface can also be seen as a resource, but those
correspond to user-defined permissions that we do not cover in this approach.
The privilege, to be granted access to a resource, is called a permisson.

So, in order to use resources, applications need to declare that they plan on

using the corresponding permissions, which involves adding Permission Labels
to their manifest files. [9]

Internally, there are different types of resources. On the one hand, there are low
level resources, like networking hardware, internal logs, file system access, and
so on. As they can be accessed directly by application processes without the
need to call another dedicated application that manages those resources, their
permissions map to Linux group IDs [10]. So, in order to grant applications
access to such a resource, their UID needs to be a member of the resource’s
Linux group.

On the other hand, most permission requests can be handled directly at the
middleware layer. So for location based services, contact data, or access to third
party application’s interfaces which may be guarded by self-defined permissions,
the communication to the application that provides the service or data takes
place entirely on the application layer. For this reason, those permissions are
only mappings from UIDs to Permission Labels in the PackageManager [11][12].

Another important property of the this security architecture is, that the de-
scribed permission framework restricts all kinds of components in the same way,
no matter what programming language was used. Native code, as well as Java
code in the Dalvik [13] virtual machine, run in a single process. So from the
system’s perspective, the components appear as the same user with the same
UID, resulting in the same assigned permission set.

6 CHAPTER 2. BACKGROUND

2.4 A Sample API Call In Android

Because our work modifies the way, applications access resources located outside
of the sandbox, we first need to have a look at Android’s standard mechanisms
for this kind of inter process communication. As we learned in Section 2.3, there
are different types of resources that applications can request access to. But we
also need to differentiate between the access from native code and from Java.
As this approach does not cover native code, we take a look at a standard call
to a permission protected resource, initiated by Java code.

Consider the Contacts and Bluetooth APIs. The first call that is placed in or-
der to make use of the Bluetooth capabilities of an Android powered device, is
always BluetoothAdapter.getDefaultAdapter (), to obtain a manager object
to invoke further methods on. But let us assume, we already have the desired
object and want to place a call that actually makes use of the Bluetooth func-
tionality. So we invoke startDiscovery() to start searching for compatible
Bluetooth devices nearby. For the contacts API, we use the query method
on the responsible ContentResolver. As there is no need for us to handle
ContentResolvers in detail, we omitt the exact code for simplicity. As de-
noted in Figure 2.2, the first part of the sequence is identical for both IPC calls.
The method calls access functionality located in the Application Framework, the
layer that provides the Java APIs for applications. The first difference is the
permission check, triggered by the PackageManager introduced in Section 2.3.
As the Bluetooth permission is based on a low level group id, a system call to the
Linux kernel layer is is placed to check whether the calling application’s UID is
part of the bluetoot Linux group. In contrast, the contacts API is implemented
as a service provided by another application, so the PackageManager only needs
to check if there is a matching from the caller’s UID to the contacts permission.
We assume that the permission checks are passed in both cases. The call to
start the discovery process now again triggers a call to a lower layer, to control
the Bluetooth module built into the device. Again, to resolve the method call
of the contacts API, there is no need to query deeper layers. The Application
Framework now forwards the call to the contacts application that provides the
service. The returned result is passed through the Application Framework layer
back to the caller, using inter process communication.

2.4. A SAMPLE API CALL IN ANDROID 7

Application Layer

@® Contacts API
@ Bluetooth API

Figure 2.2: The sequence of API calls on stock Android to access the Blue-
tooth Module through the system itself and the Contact Data provided by an
application

Chapter 3

Related Work

3.1 Inline Reference Monitoring Using Rewrit-
ing

The current state of the art of subsequent extensions to stock Android con-
cerning permission-based security measures are inline reference monitoring [14]
systems (IRMs).

The well known papers Dr. Android and Mr Hide [4], AppGuard [3], as well
as I-arm-droid [5], introduce easy to use tools for end users to enforce dynamic
permission revocation and granting at runtime.

But all subsequent solutions suffer from the same problems, arising from the
usage of code rewriting:

e Revoked permissions can lead to undefined behaviour and random crashes,
since the developer never created his app with the possibility of dynami-
cally revoked permissions in mind.

e While acting on the application layer without any access to system re-
sources, the monitoring adds overhead to every single call to an API
guarded by a permission.

e An open problem for current IRM systems is the handling and monitoring
of native code working with low level access to system resources [3][4][5].

e Since restricted to the application layer, the IRM applications themselves
are an easier target for malicious third party applications than system-
centric monitors. The problem is, that the inlined monitor runs within
the application layer and has only the same privileges as the developer’s
code, while having no protection against native code or Java reflection.

Altogether, these approaches fight symptoms rather than causes. Their legiti-
mation is their advantage to run out of the box on stock Android. There is no
need for any modifications to the Android operating system. Every user can
take action and install them directly to the device to improve his privacy, with-
out burdening with a system update. So, basing IRM solutions on rewriting to
modify third party applications is currently a necessity.

10 CHAPTER 3. RELATED WORK

3.2 System-Centric Solutions

There have also been attempts to overcome the disadvantages of rewriting based
solutions with system-centric implementations. While on the one hand, a mod-
ified Android system is a necessity, on the other hand, there are many opportu-
nities resulting from implementing the solution as a part of the system itself.

e Being a part of the operating system, those solutions are far more robust
and secure against attacks and exploitations by third party applications,
because system software operates isolated from the application layer and
with more privileges.

e Having access to system-reserved resources highly improves the perfor-
mance.

e While running as privileged system code, there is no need to circuitous
rewrite third party components. There is already a working mechanism
for the permission check and enforcement that only needs to be modified,
instead of being intercepted. A system-centric implementation is thus
easier and more straightforward, because it does not need to worry about
untrusted third party application code.

However, as subsequent extensions decrease the problems of the current system,
at the end of the line, there is a clear demand for a system-centric implemen-
tation to solve the problem itself by getting down to the roots of the problem,
instead of fighting symptoms.

There have been various attempts to implement such an approach system-
centric.

The popular community-based Android fork CyanogenMod provided until re-
cently the spoofing of data, but also complete denial of permissions, in order
to provide a solution for end users to revoke permissions dynamically. After
the feature was removed in version 8, some users requested to port this fea-
ture to actual versions [1]. The result was a discussion [1][15] between Steve
Kondik, one of the core developers and founders of CyanogenMod, and commu-
nity members. The reasons was, that CyanogenMod did not want to discourage
developers to write applications compatible to their distribution [15], because
this feature would introduce a very unstable environment for third party appli-
cations.

This statement appears exactly to similar approaches, like the hidden Jelly Bean
4.3 permission manager feature [2].

Although part of the official code base, this feature is hidden and currently
not used in stock Android, but it gives a hint on what Google is planning to
implement in the future. But the problem again is the same that Steve Kondik
complained about and that the IRM solutions suffer from:

Simple revocation of application’s permissions results in crashes and undefined
behaviour. If there is no catch block that handles security exceptions by chance,
the application cannot react in any way to this revocation and will most likely
stop working properly.

3.2. SYSTEM-CENTRIC SOLUTIONS 11

AppFence[16] and TISSA [17] follow a different approach to increases the end
users privacy by offering the opportunity to return empty or modified versions
of privacy-critical data to third party applications. Furthermore, AppFence em-
ploys a framework to detect exfiltration of this data and provides means to block
it. While these solutions do not modify the permission system to enhance the
end users privacy like the approaches discussed before, they use the same thread
model that considers the developer to be generally malicious.

The authors of Apex [18] went a step further and did not only modify the An-
droid code, but stayed backwards compatible by keeping the standard security
exception. Additionally, they provided a sample app to indicate how a developer
could react to such an exception as a result of permission revokation. But this
one step towards the developer by telling him that there might be a problem
with the permissions, is still not enough.

At this point, this thesis tries to supplement the way towards the developer
that became gradually visible in the previously mentioned papers. While there
are only first indications of a harmonisation towards the developers, this work
is completely designed to be not only developer-aware, but rather developer-
centric.

Chapter 4

Design

4.1 The Overall Design Principle

One of the most important underlying principles of thesis is the idea, that we
do not want to assume all developers to be generally malicious. In fact, most se-
curity systems take the assumption of a harmful developer, in order to prepare
for the worst possible scenario. Normally, this seems legitimate in this area,
but we consider a different point of view. It is hard to believe that there are
no developers that would appreciate the opportunity to give their users more
possibilities to protect their privacy. There are whole companies that prosper
while only working with open source and even providing many services for free,
for non-commercial use for example. But as stated in Chapter 3, there is no way
to provide the user dynamic permissions or a fine-grained control mechanism
for them. This is the point where this approach comes in. No enforcement is
done, no rewriting, no withdrawal of confidence or trust. The developers need
to decide to use this system.

The system proposed in this work tries to give the developer exactly those
facilities, needed to write applications in such a way that end users have more
trust in them. We take a step towards a system where there is no need for
the user to install third party applications to protect his privacy, because the
applications are built in a way that enables and appreciates user decisions on
privacy topics.

4.2 Architecture Components

Our system consists of two parts. On the one hand, the GuardApp that adopts
the system’s role to perform permission checks, and on the other hand, the
GuardLib on the developer side that offers developers simple tools to write
applications fitting into this new ecosystem.

13

14 CHAPTER 4. DESIGN

o O = # 4:40

-
I&! BAGuard

BAServiceClient S
ervicerien BAServiceClient .w"

BLUETOOTH: ASK
NFC: REVOKED
INTERNET: GRANTED

Figure 4.1: A screenshot of the GuardApp’s details screen

4.2.1 The GuardApp

This part of the system carries two responsibilities.

The first and most important one is its function to provide and enforce a re-
placement for the current Android permissions, the so-called Guard permissions.
Those newly created permissions are meant to be dynamically revocable by de-
sign and depict an opportunity for users and developers to use them instead of
the original Android permissions. In contrast to the current permission frame-
work, applications can request access to and make statements about their use
of Guard permissions at runtime. In general, these special permissions closely
correspond to the original ones that the Android system offers. The names and
semantics are closely related to their Android complements to make them easier
to understand for developers, as well as for users. There is no need to design
them similar to the original one, but we decided to do so to encourage a faster
acceptance by developers new to the system. For example, there are again per-
missions to guard access to the Internet and Bluetooth APIs. The enforcement
of the Guard permissions happens by simply checking each API access request
by an application, if the user has granted the corresponding permission. If the
permission is not present, the GuardApp declines the request. In the remainder
of this thesis, when referring to the Guard permissions we simply use the term
permission and when referring to the stock Android permissions we will explic-
itly refer to them as Android permissions.

Second, in order to realize a dynamic access control for permissions, the GuardApp
offers the end user the opportunity to decide on the granting or revocation of
every single permission that an application requests access to. To achieve user
interaction, the Guard App provides an intuitive graphical user interface, a GUI,
to provide easy tools for the end user to control the behaviour of applications
by deciding on the granting state of their permissions. Figure 4.1 shows the
GuardApp’s details screen that displays the permissions of an application and
offers tools to adjust the permission state.

4.2. ARCHITECTURE COMPONENTS 15

Application
Framework Layer

Application Layer

@ Contacts API
@ Bluetooth API

Figure 4.2: The Contacts and Bluetooth example from Section 2.4, extended to
use the Guard System

Combining these two parts, the new system provides a way for developers to
completely avoid and replace the default Android permission system implemen-
tation. However, as the GuardApp only replaces the original APIs, the devel-
oper needs to use the new ones in order to participate in our system. Figure 4.2
describes the usage of the Guard system with the example from Section 2.4.

4.2.2 The GuardLib

The library is meant to support developers who decided to use this dynamic
permission system. It needs to be included in applications that plan on request-
ing access to Guard permissions. Its duties are to abstract from the internal
communication with the GuardApp and to handle requests, as well as to offer
tools, for a simpler use of the permissions and to support easy ways to react to
permission revocation.

The internal communication mechanism between the GuardLib and the GuardApp
is not meant to be used directly by the developer. But as all the permission re-
quests and usage rely on this communication, we need to provide the developer
a well-designed interface. For this reason, as depicted in Figure 4.3, we intro-

16 CHAPTER 4. DESIGN

GuardLib GuardApp
Proxy API original API
Class Proxy_A

Proxy_B member_b

Proxy_C firstMethod(Proxy_B param_b)

Class Proxy_B Class Proxy_C
Proxy_A member_a Proxy_b member_b H
Proxy_C secondMethod(Proxy_A param_a) void thirdMethod(Proxy_B param_b)

Figure 4.3: A proxy hierarchy that mimicks the structure of the original Android
API

duce a proxy class hierarchy that almost behaves and looks like the one from
the original Android API. But behind the scenes, the functionality hides in the
GuardApp and the GuardLib is just a remote control. This fact is strongly hid-
den from the developer, who just needs to use the API classes that the library
provides as they were the original ones.

A further benefit of the GuardLib is the chance for the developer to dynami-
cally react to user decisions related to permission granting and revocation. As
an application can lose the permission it currently needs for its computation,
on the one hand, we need a mechanism to immediately stop the computation
as a reaction to the user decision. However, it has to be prevented that appli-
cations show undefined behaviour or crash as a result of unexpected permission
revocation. To handle this, we introduce a new exception that is thrown if the
application does not have the permission related to the API, that it tries to use
at that moment, just like the original security exception.

The difference is that in stock Android, you can catch this exception, but in
most cases it does not give you anything because system permissions are given
or absent for the full lifetime period of an application. There is no need to react
dynamically to permission revocation, because this will never happen.

In contrast, in our design this behaviour is possible and even desired. So the
developer can employ the standard Java try-catch mechanism to dynamically
react to revocations as a result of user decisions. Furthermore, the developer
is given a tool to check at every point in time whether a single permission is
present at the moment.

Following is a selected example how a revocation could change the application’s
behaviour, which would not be possible without this dynamic approach:
An email application is synchronizing with a remote mail server. While this

4.2. ARCHITECTURE COMPONENTS 17

work is still in progress, the user decides to revoke the Internet permission.
The application switches focus to the catch block of the permission revocation
exception executing its code: A Toast, a short on-screen text message in An-
droid, tells about the fact that this app no longer uses the network capabilities
and will remain in offline mode, as long as there is no possibility to reach the
mail server. The consequence is, that the user can still read stored mails, write
drafts, changes his settings, and so on. Using an inline reference monitoring
system instead to revoke the Internet permission from a standard mail app,
the application would most likely crash or show unexpected behaviour, which
is definitly not the intention one has in mind while revoking the permission.

4.2.3 Prerequisites and Assumptions

There are a few assumptions and prerequisites on the usage on this system.
First, an application using this library and thus using this dynamic permission
system, should not have regular Android permissions. By using stock Android
permissions, the application effectively bypasses all control mechanisms of the
GuardApp. There is no need to use the API provided by the GuardLib, if the
Android API is accessible without the risk of triggering a SecurityException.

Using this approach means abstaining from using the original permissions and
solely using the Guard permissions. Developers consenting in using our system
are assured to follow this design guideline. By omitting the Android permis-
sions and choosing to use the Guard permissions, the developer, the user and
the system itself take part in a newly designed contract. The system guarantees
the developer, that while his app is given a specific permission, the application
can use the guarded API in every possible way. The end user is guaranteed to
have the power to stop every usage of a specific permission protected API for
an application at all times. This contract allows for more trust and confidence
towards applications and their developers, in contrast to the actual one.

A second requirement is the existence of an installed version of the GuardApp.
This is an assumption towards the end user, who needs to understand that the
system relies on this app to allow third party applications to use the Guard
permissions and that the GuardApp needs to have all Android permissions in
order to forward API access requests. Without it, no application designed with
the GuardLib and programmed against those proxy APIs can work properly.
Similar to the developer, the user also needs to actively decide to use this ap-
proach, to empower himself to decide on permission granting and revocation
at runtime. In addition, the user also needs to be aware of the fact, that the
GuardApplication needs to have all all Android permissions to work properly.

18 CHAPTER 4. DESIGN

GuardLib

String class1_method(String object11D, String arglD)

Third Party Application

object1.method(argument)

Calling Application Guard App

Figure 4.4: Sequence of an API call from the GuardLib API to the invokation
on the original Android API

4.3. THE COMMUNICATION BETWEEN THE GUARDLIB AND THE GUARDAPP19

4.3 The Communication between the GuardLib
and the GuardApp

The communication between the GuardLib and the GuardApp completely relies
on IPC, thus we need to make sure to match its restrictions, listed in Section 2.2.

The connection itself is established using remote service binding [19]. The idea
is, that the GuardApp provides public Services that the GuardLib can con-
nect to. At this point, the library can send requests by simply using remote
procedure calls (RPCs) with parameters that fit the IPC restrictions. These
connections are used implicitly by the proxy objects that are returned to the
developer by the library.

Figure 4.4 illustrates the invocation of a proxy object’s method. On the GuardLib
side, when object.method (argument) of the provided proxy API is called, the
library calls a remote method classl method and provides it with the IDs for
the object to call the method on and for the argument. On the GuardApp
side, the implementation of class1 method identifies the intended object, the
method and the argument to invoke object.method (argument) on the original
Android API. Finally, the result is returned back to the GuardLib side.

4.4 Maintaining Two Mirrored Hierarchies

In order to correctly identify the methods to be called on the GuardApp side,
we need to establish a matching method between the class hierarchy of the
original Android API and the mirroring proxy API. The similarity of the
hierarchies is indicated by their shared structure and the almost identical class
names. So for the developer, there seems to be nearly nothing different in
using the GuardLib API instead of stock Android’s, because the naming and
signatures are very similar.

To make sure that every object that the developer creates on the GuardLib
side and every method on these objects has exactly one counterpart, we need
to create a bijection between the objects of the GuardLib side and those on the
GuardApp side. The first thing to do, in order to ensure this property, is to
stick closely to the original class hierarchy while creating the proxy hierarchy.
This means that even between the classes, there is a bijection. While this is
a necessary condition, it is not sufficient. The objects also need to build this
projection in order to make sure the methods are called at the right place.
Imagine the following example which makes use of the Bluetooth API:

The first thing to do is to obtain the BluetoothAdapter by invoking
BluetoothAdapter.getDefaultAdapter(). While working with Bluetooth
connections, one gets an instance of the class BluetoothDevice [20] for every
device (smartphone, tablet, laptop, ...) that is bundled with the current device
through a call to getBondedDevices on the BluetoothAdapter. Each of
these returned objects represents a remote device. If the system is not able to
distinguish among them, it could be the case that private data like photos or
messages are sent to the wrong recipient, resulting in a critical privacy leak.

20 CHAPTER 4. DESIGN

So, to not confuse instances of the same class, we need to identify them with
a unique identifier. Every class can follow its own advance to do so. In some
cases, there already are identifiers to be used, for example hash functions. In
other cases, they need to be assembled from the data or semantics an object
holds.

Note that, as soon as we have our injective and surjective projection, we can
uniquely identify which call was intended by the developer and translate it
to the original Android API, which then returns the results back through the
communication line between the GuardApp and the GuardLib, described in
Section 4.3.

4.5 Designing the Guard Permissions

Our new permissions are designed to be more dynamic than the current ones.
Basically, the Guard permissions are geared to the original permissions by simply
guarding the same APIs and resources. Hence, there are again permissions for
network usage, camera, Bluetooth, phone data, user data, location and so on.
We could also have used more fine-grained permissions, like the ones proposed
in AppGuard [3] and Dr. Android and Mr. Hide [4] for example, but because
of time constraints, this is left for future work.

However, these new permissions differ from the default permissions in one point.
There are four available states for a permission towards a single application:
Granted, revoked, timed and ask. The fact that a permission is granted or re-
voked is straightforward and needs no further explanation. More interesting are
the other two states.

Basically, a timed state denotes that a permission is granted for a specific times-
pan. It is based on the idea, that users may want to grant a permission just
for a specific time period, for security or privacy reasons. A permission can be
granted this way for an arbitrary combination of amounts of seconds, minutes,
hours and also days. Right after the counter’s expiration, the permission is
treated as revoked as long as its state is not changed again.

Also mentionable is the ask option for permissions, which in its core obtains
the decision on a single API usage from the user, every time a call to this API
is made. The ask permissions show a single dialog that prompts the user to
accept or decline the access request of an application, just like the permission
dialog introduced in iOS 6 [21]. However, in contrast to the iOS feature that
is restricted to only a few critical resources like contact data or location, every
permission can have the ask status.

One example for a usage of the ask option:

An application administrates the short text messages (SMS) on the phone to
back them up, store, archive and import them. In most of the cases, it would be
an appreciated behaviour to load incoming messages into the application. But
what if the user is using his mobile in the private sector and for his business,
too. Then he may want to distinguish which SMS belong to his company and

4.5. DESIGNING THE GUARD PERMISSIONS 21

which ones are private. So, if the company dictates the usage of this app for
backup reasons, we do not want our private SMS to be loaded and backed up on
corporate servers. The solution is to set the read SMS permission to ask. This
results in a dialog, showing up every time a broadcast for a new SMS is received.
Now, the user can decide if the application can read the full message, the sender,
and load it to the collection, or if it may not and thus just ignores it. This is
an example where the user can expand new ’features’ in third party apps where
they are not provided by default or simply not even thought of by the developer.

Naturally, there are also cases where ask is infeasible. If an application down-
loads a large image, the user would be asked for his approval every time an array
of bytes is read from the socket, which can be very annoying, and furthermore,
the download is extremely impaired.

Chapter 5

Realization

5.1 Communication Through Remote Service Bind-
ing: AIDL

As seen before, the communication between the GuardLib and the GuardApp
fully relies on remote service binding. The idea is that on the GuardLib side,
there exists an object which represents a Service running in the process of the
GuardApp. Every action that is taken on this object will be right forwarded to
the original Service, a capability provided by the Android system through the
Binder module. But to use this feature, we have to declare an interface that
helps the two applications to agree on a common set of provided operations.
The original Service is not accessible by the third party app, so it is necessary
to share this special interface between the applications.

Android supports this type of communication through the AIDL, the Android
Interface Definition Language [22]. The basic idea is to describe the methods
of an interface in a .aidl file, which is shared between the communicating ap-
plications. The Android SDK automatically generates the interfaces from the
file. This is possible because the definition of parameters in an .aidl file only
allows types and classes that are unmarshallable and again marshallable. These
types are called Parcelables. To make a complex class parcelable, it needs to
implement the Parcelable interface to provide a way to unmarshal an object
to its primitives, and to provide a way to rebuild the object again, using a static
builder. Because all parameters are guaranteed to be parcellable or primitives,
each side can work with the interface without the risk of not knowing a class
that needs to be used.

So having the interface available, the binding procedure delivers an object that
needs to be cast to the shared interface and can be used to remotely control the
real Service implementation on the other side of the communication line.

23

24 CHAPTER 5. REALIZATION

The First Naive Approach

At an early stage of the implementation, it became clear that the whole class
hierarchy of a permission protected API needs to be rebuilt in order to use it
with the system presented here. The most forward way to do that would be to
implement the GuardApp’s Services in such a way that the Service methods are
simple wrappers for the original Android API methods. These wrapper meth-
ods would take the same arguments and nearly have the same method name as
the original ones.

Listing 5.1 shows the structure of such a wrapper method of the Service to
be called by the GuardLib side, created in order to make the Android API call
type method(argument) available.

type method_(argument)
{
return method (argument);

}

Listing 5.1: A wrapper for method

With this wrapper call, we can request the result of method (argument) without
failing a permission check, because the call is made by the Guard App, not by the
third party application that uses the GuardLib. We can also return the result
of the Android API call method (argument) back to the GuardLib side, because
as this object was sent from the Android system to the GuardApp via IPC, it
is a Parcelable and thus can be sent again via IPC to the GuardLib. But the
GuardLib side cannot use this object, because each method of this object needs
a permission. On invocation of such a method, the UID of the caller would be
the one of the third party application, which is not a member of the Bluetooth
Linux group, and the permission check would fail. So these methods also have
to be invoked on the GuardApp side to prevent a SecurityException. In gen-
eral, all objects that provide API methods need to stay on the GuardApp’s side.

A Better Approach: Remote Control

After noticing that there is no way to send wrapped API class objects to the
third party app in a way that they can be used without failing a security check,
we abandoned the idea to send full complex objects. The new approach builds
on the idea that the GuardApp stores all the objects. While the GuardApp
has access rights to all API calls and manage the objects, the GuardLib side
only needs to tell the GuardApp which methods to be called on which objects
with which parameters. So, we introduce a communication protocol over IPC
between the GuardApp and the third party application that uses the library. In
order to abstract from this internal communication mechanism, the GuardLib
offers proxy classes to the developer. They look like the original one from the
Android API, but the implementation of their methods are just stubs that use
our protocol to tell the GuardApp which method to call. So, without notic-
ing, the developer only uses objects of proxy classes that forward his method
invocations.

5.2. IMPLEMENTATION OF THE HIERARCHIES 25

5.2 Implementation of the Hierarchies

We already talked about mirroring and rebuilding the original class hierarchy
on the GuardLib side to provide proxy classes, but there are some problems
that are not immediately so obvious.

One thing that we need to make sure is to establish the bijectivity. Every proxy
class instance belongs to exactly one class instance of the original API and vice
versa. The challenge here is to connect two hierarchies in a way that fits the
strong constraints of Android IPC. The solution to this problem is rather simple:
For the intermediate step, the communication, the hierarchy gets flattened down
in the following way:

To make a method of the original API accessible, a flattened version of this
method needs to be created for the interface shared between the GuardApp
and the GuardLib. Let us assume we want to provide the method described in
Listing 5.2 to the GuardLib. With the attribute data-only, we denote types
that can be safely transmitted directly via IPC because the only carry data and
have no methods that could trigger Android API calls. Those are primitive data
types, Strings and objects of classes that only wrap data. We distinguish sev-
eral cases of how the GuardLib and the GuardApp have to abstract the original
Android API:

type method(argtype argument)

Listing 5.2: Typed sample method

1. type and argtype are data-only

This is the easiest considerable case. The shared interface would look
almost like the original one, with just an addition to the method name
to not confuse them. Listing 5.3 describes the implementation on the
GuardApp side.

type method_(argtype argument)
{
return method (argument);

}

Listing 5.3: Only considering data-only types

On the GuardLib side, one only needs to call method_on the casted binder
object, which was provided during the service binding to the GuardApp’s
Service, to trigger the RPC to the implementation above. As the argu-
ments are data-only, they can easily be transferred from the GuardLib
to the GuardApp and the other way round. So the result is, that at the
GuardApp side, method_ is invoked with the argument passed through
IPC, resulting in a call to the original method of the Android API with
that parameter.

2. argtype is data-only and type is complex

This is the type of method to get API objects from. A call returns a new
instance of an Android API class. But as noted before, there is no way

26

CHAPTER 5. REALIZATION

to send this object, that does not only store data, but have methods that
trigger Android API calls, directly to the GuardLib side, because its usage
would result in a security exception. So a unique ID needs to be created
to identify that object among other instances of the same class. After the
creation of this ID, the object is stored in a Map on the GuardApp side,
with the ID as the key. What we return to the library is just the key, in
our case a String.

The shared interface method, corresponding to the implementation in List-
ing 5.4, would be String method_(argtype argument)

String method_(argtype argument)

{
type newobject = method(argument);
String ID = type.computelID(newobject);
typeStorageMap.put (ID, newobject);
return ID;

}

Listing 5.4: Complex return type

This time, the GuardLib side also need some logic. As the only received
return value is an ID |, the library creates a new proxy object to mimick
the instance of the class type that is stored on the GuardApp side. This
proxy object stores the ID of its counterpart and sends this identifier to the
other side, every time the instance is used in the third party application’
code. The type of the proxy that mimicks an instance of the class type
will be called proxy_type.

. type is data-only and argtype is complex

This time, the methods need complex objects as their arguments.

The GuardLib is the entrance point, this time. In order for the devel-
oper to make a call to method_, he needs to pass a complex object as the
argument. But what the developer passes as a ’complex’ object is essen-
tially just a proxy instance. Remember the previous case: If the developer
wants to obtain an instance from the Android API, the GuardApp stores
the original one and returns the ID. Then the GuardLib wraps this ID
with a proxy and returns this proxy back to the developer’s code. So the
method signature that the library provides to the developer to hide its
internals is in fact type method_(proxy_argtype argument).

Behind the scenes, the GuardLib extracts the ID from the proxy object
and passes it as the argument to the remote method. Listing 5.5 corre-
sponds to the shared interface method type method_(String id).

type method_(String ID)

argtype argument = argtypeStorageMap.get(ID);
return method (argument) ;

Listing 5.5: Complex argument type

5.2. IMPLEMENTATION OF THE HIERARCHIES 27

Here we see the opposite of the storage operation explained in the second
case above: An instance that was stored on the GuardApp side before is
now retrieved using its unique identifier.

4. type and argtype are both complex

This case is a combination of the second and the third case. The argtype
parameter is essentially a String ID which will be used to retrieve the
original instance, which is meant to be the real argument. The newly
obtained instance from an Android API class needs to be stored in a Map
corresponding to its class, with its also newly created ID as the key. Al-
together, the shared interface entry is String method_(String id), with
the corresponding implementation in Listing 5.6

String method_(String ID)

{
argtype argument = argtypeStorageMap.get (ID);
type newobject = method(argument);
String newID = type.computeID(newobject);
typeStorageMap.put (newID, newobject);
return newlD;

}

Listing 5.6: Complex types only

To place this call, the GuardLib logic also needs to do some conversion.
From the given proxy_argtype, the ID gets extracted and used as a
parameter, and for the new ID returned from the GuardApp side, the
GuardLib creates a new proxy_type instance to store that ID and return
it to the developers code.

The Flattening Process

We discussed several types of methods, but this is not already the whole flat-
tening process. There are not many cases in reality where there is one big class
that contains all methods. In more realistic code examples, methods of object1
return instances of class2, which maybe return instances of class 3, and so on.
This is the hierarchy that is implicitly build in the Android APIs and which
we need to rebuild. To cover those, a little addition to our flattening concepts
discussed before needs to be made:

The example signature is still type method(argtype argument), but this time,
the invocation on a specific object object.method(argument) is considered.
The full implementation, including the additions to identify the object to call
the method on, is depicted in Listing 5.7. Assume object is an instance of
the class basetype. The whole solution breaks down to simply adding another
argument to the method signature in the shared interface. This argument of
type String helps the GuardApp to identify the object to invoke the method
on. This results in an improved version of the method signature in the shared
interface:

type basetype method (String baseid, String argid)

28 CHAPTER 5. REALIZATION

type basetype_method_(String baseID, String arglD)

{
basetype baseobject = basetypeStorageMap.get(baseID);
argtype argument = argtypeStorageMap.get(argID);
return baseobject.method(argument);

3

Listing 5.7: Invocation on complex object with complex parameter

The cases where the return type is not data-only do not need a seperate expla-
nation, because we only need to add the already seen code to store the obtained
instance and return the ID.

Of course, multiple parameters and wild mixtures of data-only and complex
arguments are also allowed and work the same way.

The flattening itself is reflected in the name convention of the shared interface’s
method signatures. A methodname classl_class2_class3 method_(id1l, id2,
id3, further_args) indicates, that method should be invoked on the instance
of class3 specified by id3, which corresponds in a way to the instance of class
2 identified by id2, which again belongs to the instance of class1 indentified
by id1 in some way.

Appendix A shows an example .aidl file from the project code.

5.3 Realization of the Guard Permissions

In its core, the implementation of the Guard Permissions is nothing more than
an enum that implements the Parcelable interface. The enum values are the
identifiers for the different permissions, like Bluetooth, Internet, NFC, ReadSMS
and so on. The reason to make it parcelable is to make the permissions also avail-
able for the GuardLib, even though they are originally part of the GuardApp.
It gives us the opportunity to send them across the process borders via IPC,
which is very useful in the process of implementing the developer tools.

What makes up a big part of the GuardApp’s code is the realization of its duty
to manage and check the permission state of third party applications. All deci-
sions taken by the user are stored and accessible in the GuardApp. So, for every
request by an arbitrary application, the permission state can be checked and
the GuardApp can determine if the call is privileged. This check is embedded in
every method that is provided to the GuardLib side for RPCs. If the request is
legal, the code goes on without further checks, but if the requesting application
does not have the permission to use the method, the check fails and a specific
exception is thrown back across the process borders to the developer’s code,
where it can be caught.

In case of the easier permission status values, granted and revoked, the checking
procedure only needs to read the stored data and accept or decline the request.
But further computation is needed if the permission status is timed or ask. We
will have a look at this.

5.4. IDENTIFICATION OF DIFFERENT APPLICATIONS 29

The data corresponding to a UID-permission-pair is stored in a so-called per-
mission status bundle. For granted, revoked and ask, objects of this class only
stores the current permission state and the time of the last change. But timed
requires a bit more data to be stored. Intuitively, the deadline, the time when
the timed granting of the permission runs out, also needs to be available. This
gives us the opportunity to check if a timed permission should be interpreted as
granted or not, at every point in time. The only thing to do is to check if the
current timestamp is before or after the stored one.

The last and also the most complicated permission status is the ask value. We
recall its idea as asking the user for an accept or decline decision, every time the
application code places a call to an API method that is protected by a Guard
permission with the ask status. As usual, the Guard system checks every API
call if it is privileged or not. If the permission status is ask, a graphical pop-up
Activity is displayed.

While the execution of the code halts, the user can make his decision and from
this point on, the system reacts as if the user decision was a stored permission
status value which it now needs to interpret. The result is, as usual, an excep-
tion or a continued code execution.

Although the graphical pop-up is currently the only way to ask for case decisions,
the code is written more flexibly in a way that also allows for more complex
solutions. One example how such a solution could look like is listed in Chapter
7, Future Prospects.

5.4 Identification of Different Applications

In the previous section, it was already assumed that our solution is able to
definitly distinguish between all third party applications that pose requests to
the system. It is crucial to always know who requested which permission guarded
API access, in order to decide if it is a legitimate query. If this would not be the
case, the system would be in danger of breaching the contract concluded with
the end user. Imagine a scenario where the end user revokes permission p from
the application appl. Let us assume there is also app2, which has been granted
the permission p before. Now, appl uses an API call protected by p. The focus
moves on to the permission check of the Guard system. But what happens if
the system confuses app! and app?2, is that the permission check determines,
that app2 has the permission p and thus the call is legitimate. The result is
that appl carries on with its API call, but in fact, the user did not allow this.
To prevent such mistakes, there is a demand for a dependable tool to distinguish
third party applications that use the Guard system.

To this end, we identify the caller right at the place where the request comes
in. If we do not use information provided by third parties, we are less likely to
be fooled by an attacker. So the solution is to use a mechanism that is built-in
in the Android Binder module. In the Android Java code, the Binder class
provides a static method called Binder.getCallingUid () [23], which provides
the UID of the remote caller that initiated the RPC.

One peculiarity that a developer needs to know about this method is, that if the

30 CHAPTER 5. REALIZATION

call to the method where Binder.getCallingUid () is used was not triggered by
an RPC but originated from a local call, the returned UID is the own identifier
of the application itself. This is the case when we bind to a local Service. We do
not care about this property because this call is only revoked in RPC triggered
methods.

5.5 Data Management

The GuardApp’s responsibility to manage the user decisions and to decide on
legal or illegal use of protected APIs requires a storage and management solution
for all the data.

5.5.1 Data Management at Runtime

Any decision that the user makes concerning an application-permission-pair is
stored for frequent use in different Maps. It is cascaded in such a way that for
any given Guard permission (key), there is an inner map (value), which assigns
an application’s UID (inner key) to the permission status chosen by the user
(inner value). If the system is about to check the permission p for some UID
and p is no element of the keyset, the check is considered to be failed, in order
to minimize the amount of data to be stored. An implementation that considers
non-existing triples as a granted permission would technically be no problem,
but we decided to revoke permissions by default because we consider the end
users privacy more important than the full-fledged app functionality. To save
time and space, we only ensure few properties of the projections defined by the
Maps:

Guard Permission — UID (Outer Map)

The Map only contains user decisions that were already made. So, a missing
entry indicates that the user has not decided on that permission ever before,
which justifies our reaction and makes the projection non-total. It is also not
injective, because there may be a UID u and permissions p! and p2, so that
pl — u and p2 — wu holds.

To talk about the surjectivity, there is no need to put a mapping from a per-
mission to all UIDs into the Map, because there may be applications that do not
use this permission at all. This is the reason why establishing surjectivity on
the set of UIDs is not reasonable in our case.

Finally, the projection is functional. This is ensured because it is one of the
fundamental principles underlying the concept of Maps that are used in pro-
gramming. For every key, there should be at most one corresponding value, so
there is exactly one value or none, which is the definition of the functionality

property.

5.5. DATA MANAGEMENT 31
UID — Permission State (Inner Map)

The argument against totality here is the same as the one against the surjec-
tivity in the outer projection. Some permission-UID pairs will never occur, so
we do not need entries for every UID. Injectivity does also not hold, because
there may be more than one permission-UID-pair that has the state granted, for
example. The projection does not need to be surjective, because there may be
cases where there is currently no permission set to the state ask, for example.
Functionality again is given through the usage of a Map. These are exactly the
semantics that fits to the projection, because for every permission-UID pair,
there may only be one permission status or none. A permission that is granted
and revoked at the same time does not make any sense.

5.5.2 Persistent Storage

Another responsibility of the GuardApp is the long-time storage of the data
between several sessions. The data needs to be saved, no matter how many
times the GuardApp or a third party application using it gets closed or the sys-
tem shuts down. There should also be no need for the GuardApp to be active,
while using the Guard system. The app part that is visible to the user (the user
interface) is only responsible for providing the end user a control mechanism for
his decisions, so if the user only wants to use a third party app relying on the
Guard system, we do not want the Guard App to always be actively running, too.

The solution is to store all the data in a serialized form. Enums as well as
Integers can easily be serialized to be stored in the memory, so we can put all
the Map cascades to the file system. Using the private storage of the GuardApp,
Android makes sure that no other application can access or alter the data [7][24].
But that is still not enough. All GuardLib users are binding to Remote Services
provided by the GuardApp, meaning there are potentially many apps, that try
to access the data simultaneously. Furthermore, the GUI part of the Guard App
also loads and alters permission data while the user inspects and manages his
application’s permission states.

For this reason, we created the so-called PermissionDataGateway class as a
central data access point. Every data query needs to go through this single
point that encapsulates the data. To avoid data loss or corruption, the initial-
ization mechanisms of the gateway are completely thread safe. The class itself is
static, so no multiple instances can raise concurrency problems. The singleton
pattern [6] would have also been an alternative. We did not use the Android
standard data isolation pattern of ContentProviders introduced in Section 2.1,
to prevent being forced to use a design inspired by relational databases. The
usage of Maps reflects our intuition of permission-UID matchings and Maps are
completely serializable, so we decided to use the serialization approach.

With these provisions, it does not matter in which order which applications try
to access the data. There are no concurrent modifications possible.

32 CHAPTER 5. REALIZATION

[App Permission Chooser
grant

grant for a fixed amount of time
choose duration
0-59 Seconds

0-59 Minutes
0-23 Hours

0 Days

ask every time

revoke

Cancel Accept

Figure 5.1: A screenshot of the permission chooser dialog

5.6 The Graphical User Interface

The part of the system, that end users perceives as the 'GuardApp’, is the
graphical user interface, that the system provides to allow for intuitive permis-
sion management.

The landing screen shows a list of all applications that use our system to choose
from. Right after choosing one, details like the full name, the icon, and the
requested permissions, are displayed (cf figure 4.1).

By tapping on a permission, a pop-up screen shows up to change the permission
status, if desired. It provides the possibility to choose grant, revoke and ask as
single radio buttons, but also the option timed with the possibility to enter the
amount of seconds, minutes, hours and days, that the timed permission should
be seen as being granted. The full screen is shown in Figure 5.1.

The whole layout is fragment based, to be as flexible as possible. The concept
of fragments was officially introduced in code level 11 (3.0, Honeycomb) and
only supports devices that run a system with at least that version. But there is
an official support library, based on Activities to provide the same functionality
for applications that choose to support lower Android versions too.

One very important part of the GUI is the ask dialog, as depicted in Figure 5.2.
This is the screen that shows up, every time an application makes a call to a
permission protected API whose status is ask. At this point, the code execution
becomes frozen and the user is prompted to accept or decline this single API
usage.

The first attempt to implement this feature would be to place this code on the
third party app side, as a part of the GuardLib. Because this app is currently
running, it would be reasonable to start the dialog as a part of this app’s user
interface. But two problems arise with this approach:

5.6. THE GRAPHICAL USER INTERFACE 33

User approval needed.

the application BAServiceClient wants to access the
BLUETOOTH API

grant deny

Figure 5.2: A screenshot of the ask dialog

1. The permission check on which the system notices that the permission
status is ask takes place on the GuardApp side. So, right in the middle
of an RPC execution, how should the message, that the third party app
needs to display the dialog and make the decision, being returned to the
GuardLib, and how to continue with the call if the user chooses to ac-
cept. It would require a complicated messaging system across the process
borders using IPC.

2. From a security perspective, it is never a good idea to place such code on
the untrusted side of the communication line. By altering the GuardLib,
an attacker could show a fake dialog or always tell the message, that the
user has chosen to allow it, to the Guard side. To prevent such attacking
scenarios, the code needs to be located on the trusted GuardApp side.

These two cases show the necessity to have the ask dialog as a part of the
GuardApp’s code base. But there is also one problem with this version. The
RPC changes the execution focus to the GuardApp’s Service implementation,
but the displayed GUT is still the one of third party app. So we need a mechanism
to start an Activity on the Guard side to display the dialog and return the GUI
focus to the third party app where the request came from, right after the user
decision.

The standard way on Android is to create an Intent, a small IPC message
which triggers special behaviour in the system or another application, with a
flag to create a new Activity, and invoke startActivity on the Service object
itself. This is possible because the startActivity method is declared in the
ContextWrapper class, a helper class for Context, which passes on this func-
tionality to its derived classes like Activity, Service and so on.

This approach ensures, that the dialog is displayed as a part of the GuardApp’s
GUI, but also that the focus is returned to the Service code execution afterwards,
because the Activity hosting the dialog closes autonomously.

34 CHAPTER 5. REALIZATION

5.7 Remote Exception Handling

At the time of this writing, stock Android does not fully support exception
handling across the process borders, so exceptions that are raised within the
execution of an RPC yield problems[25].

On the emergence of an uncaught exception in the remote process, the Binder
module generally raises a RemoteException to be thrown back to the initiator of
the RPC. The consequence is, that whatever type of exception is thrown in the
Service’s code, the only thing that the other end learns about the failure is, that
something went wrong. This fact makes it hard to propagate back exceptions,
that are regularily thrown by API methods, like IO related functionality for
example. The RemoteException(String) constructor seems to be a solution if
we catch the original exceptions and throw the new remote exception by hand.
The String argument could potentially carry a message back to the origin of
the call, but unfortunately, this constructor was not introduced before API level
15 (Ice Cream Sandwich Major Release 1, 4.0.3) [26], which means we cannot
use it if we plan on continuing support for older releases.

Fortunately, there are exceptions to the rule [25]. The SecurityException is
one of the few exceptions that are not generated by the Binder module but
propagated back correctly to the calling process if raised in the Remote Service.
We make use of this insight by throwing a SecurityException only if an An-
droid API access request is unprivileged, or in other words, if the required
permission is currently revoked. This approach offers the opportunity to dis-
tinguish, on the GuardLib side, between all kinds of general exceptions that
are reduced to RemoteExceptions, and SecurityExceptions which indicate
revoked permissions.

Every time a RemoteException is raised as a consequence of an RPC call,
the debug log prints ”Remote exceptions across processes are currently not
supported.”, which indicates that this feature might be supported in future
releases. But until then, we have to resort to alternative approaches or simply
ignore Honeycomb, Gingerbread and lower releases and wait for the remnants
to update, so we can use the constructor with the String argument.

5.8 Developer Tools

Our system is designed in a way that allows for and even appreciates dynamic
permission revocation and granting while still maintaining a developer-centric
approach. So there is a demand for easy and stable tools and solutions to pro-
vide enough facilities for the developer to write reasonable applications for this
new ecosystem.

5.8.1 An Exception for Revoked Permissions

The most important facility to support dynamic reaction to revocation is to pro-
vide a mechanism to automatically stop the code execution and return an error
message back to the application code. This is exactly what exceptions are for in

5.8. DEVELOPER TOOLS 35

Java. The permission check itself is located on the GuardApp side of the com-
munication channel. If failed, the check procedure throws a SecurityException
which, as we explained in the previous section, can be propagated across the
process boundaries back to the originator of the call. But in order to acco-
modate the developer, we also introduce a new unchecked exeption on the
GuardLib side, the PermissionRevokedException. Potentially, every call to
a method that triggers a permission guarded Android API call can result in a
PermissionRevokedException.

5.8.2 The Permission Libraries

Section 4.3 explained that the Guard App offers several Services that the GuardLib
binds to. In fact, there is one Service for each permission that the system offers.
For this reason, those are called permission services. To abstract from the com-
munication protocol, the GuardLib provides interfaces to use these connections
implicitly with each API call. Those interfaces called permission libraries do
not only hide the IPC details, but they also convert the different exception types
and provide means to wrap IDs into proxy objects and vice versa. Again, this
is a service towards the developer. To use an API, the developer initiates the
corresponding permission library offered by the GuardLib. From that point,
the permission library manages the Service Connection to the corresponding
Permission Service of the GuardApp, converts exceptions and proxies to IDs,
and forwards the developer’s API call by initiating remote procedure calls. For
the developer, the usage of the library is nearly the same as if he were using
the original Android API. While using Android APIs, in some cases there is a
system service or static class that provides the first instance of an API class,
which is often a manager object carrying further API methods. In the Bluetooth
API, for example, the very first thing to do is to obtain the default instance of
the BluetoothAdapter by invoking
BluetoothAdapter.getDefaultAdapter (). In our system, the permission li-
braries get initiated during the onStart lifecycle callback. So, for third party
applications using our solution, the functionality of the BluetoothAdapter is
governed by the BluetoothLibrary which offers the same methods with almost
the same signatures.

5.8.3 The Control Service

But there are more accomodations towards the developer. Beside the Per-
mission Services that the GuardApp offers, there is also a Control Service for
permission independent services. On the GuardLib side, the communication
through this interface is encapsulated in the PermissionLibrary class. The
implemented method signatures are depicted in Listing 5.8.

36 CHAPTER 5. REALIZATION

boolean permissionGranted(GuardPermission p)
throws PermissionStatusAskException;

void announcePermissions(List<GuardPermission> permissions);

Listing 5.8: The fraction of the PermissionLibrary’s signature that encapsu-
lates the calls to the Control Service

The first method, permissionGranted, allows the opportunity to place a re-
quest to ask for the granting state of a specific permission. If the return value
is true, the permission state is granted or timed while the time limit is not
reached yet. false is returned if the state is revoked or timed with an exceeded
deadline. In addition, a PermissionStatusAskException is thrown if the sta-
tus is ask, because the system cannot make a reliable statement in this case.
The developer can use this as an approximation, because it may be the case
that right after the access and reading of the current permission state, the user
changes it. So it is not perfectly reliable, but it is also very improbable that
this happens right after the method call was initiated.

The Control Service also provides another feature that offers the developer the
opportunity to increase the usability of his applications drastically.

Recalling the storage mechanisms within the Guard App described in Subsection
5.5.1, there are not all possible UID-permission combinations stored from the
very beginning on. The permissions that the application uses do not appear
in the data stock, until the user reaches a part of the application that requests
this permission. In consequence, the user needs to run an application, and every
time a part of the app that uses a not already known permission, the permission
check fails. In consequence, the user needs to switch to the GuardApp’s user
interface to make his decision and then, on the second run, the feature is ready
to work. Users would need to repeat this step for each new permission that is
used at runtime. Because this behaviour does not allow for seamless usage of
new applications, we introduce a feature to overcome this handicap. With the
announcePermissions method, the PermissionLibrary class, which encapsu-
lates the Control Service Connection, provides the possibility to tell the system
about all permissions that the app as a whole is able to use. Again, there is
no necessity for the developer, he can freely decide if he wants to use this offer
to improve the user experience for his application’s end users. The only thing,
that needs to be done in order to use this feature, is to fill out a list with all the
enum values of permissions that might be used and use this list as a parameter
for the method. Internally, the library uses the Control Service to send this set
of permissions to the GuardApp side, where it is stored and managed next to
the other permission related data in the PermissionDataGateway.

The result is, that after the first start of the application, all permissions that
the application can use (if the developer decided to tell all) are available in the
GUI for the user to make a decision on the status to pick. So after this single
interruption, the user will be able to use the application without further incon-
venience. This mechanism replaces the static permission acquiring process in
stock Android, which parses the manifest file [9] in order to read an application’s
permission requests.

5.9. EXTENDING THE MAIN COMPONENT’S LIFECYCLES 37

5.9 Extending the Main Component’s Lifecycles

In order to connect to the GuardApp and make its API available for the de-
veloper as soon as possible, the Guard system extends the main component’s
lifecycles and introduces the permission libraries to abstract from the initializa-
tion process. The ways the permission libraries are obtained and used are more
standardized than the process of requesting the several ‘'manager objects’ in the
original Android APIs. The idea is to unify the procedure of obtaining those
and thus to make the whole procedure more simple and consistent. In order to
achieve this, we introduce a new mechanism to take care of all the permission
library initializations, usage and tear downs.

This section will describe the extensions to the lifecycle of Activities, while only
depicting differences to the described modifications for Services and Content
Providers. Broadcast Receivers are only covered implicitly because they are
only considered valid by the system as long as onReceive is executed, meaning
the system can decide to kill the Broadcast Receiver’s process while waiting
for an asynchronous callback [27]. To avoid this disadvantage, one of the other
three components has to make the libraries available for the Broadcast Receivers
and take care of their initialization and tear down.

5.9.1 onCreate

Before any library instance can be obtained, the overall PermissionLibrary
needs to be initiated via PermissionlLibrary.init. The PermissionLibrary
class has three distinct duties.

1. Tt is the only class that the developer can use to create the actual permis-
sion libraries, introduced in Subsection 5.8.2.

2. It provides the method signatures to access the features in the Control
Service, described in Subsection 5.8.3.

3. As all actual permission libraries inherit from this class, it sets up some
common functionalities that all subclasses use, like binding to a Service
and managing the corresponding connection.

The initialization ensures the connection to the Control Service to be estab-
lished.

The next step is to fill up a list with constants corresponding to permissions for
which a library should be prepared. This list is given as an argument to the
PermissionLibrary.requestPermissionLibraries method, which triggers the
creation and preparation of the libraries.

The call serves as a factory method [6] and returns a Map with the requested
library objects stored as values for their corresponding permissions as keys.

To obtain the correctly typed library, one only needs to use the Map with the
proper permission as the key and cast the result to the desired subclass of
PermissionLibrary.

It is encouraged to store these instances centrally to be accessible by every part
of the application.

38 CHAPTER 5. REALIZATION

5.9.2 onStart and onStop

In the onStart callback, we initialize the libraries that we obtained in the
previous step. Of course, the Activity should only initialize the ones that it really
uses. In a scenario where there are multiple Activities, there may be several such
libraries, but not every one needs to be initialized by every component.

The initialization process is started by a call to the the method reconnect () on
the permission library object. It is important to not use the libraries before they
are initialized, because without an established connection to the GuardApp’s
Remote Service, no single method works.

Content Providers do not have an onStart callback, so they move the initializa-
tion to onCreate right after obtaining the instances. While Services do also not
have an onStart method, explicitly started Services have the onStartCommand
method to place the initialization in and bound Services move the initialization
code to onCreate.

If we connect to Remote Services, we also need to close the connection even-
tually. This happens in the onStop callback, which is invoked every time the
Activity loses focus or gets closed. Services use the onDestroy method. As Con-
tent Providers are created with their hosting process and are never destroyed
while the process is still running, there is no need to care about unbinding a
Service. If the system closes the host process, all the remaining resources of a
Content Provider are cleared automatically [28]. To start the tearing down of
a library, one calls disconnect () on the specific PermissionLibrary instances
and the static tearDown() on the PermissionLibrary class.

This is the unified way to handle all the permission libraries in the application’s
code. All other usage of permission protected APIs nearly behaves the same as
the original one from the Android system.

5.9.3 The New allLibrariesReady Callback

We already stated that there is no point in using uninitialized libraries, and
because a Service Connection is built on a callback technique, we again prop-
agate this information back and make a callback to the application as soon as
all libraries are ready. For this reason, the Activity needs to implement an
interface to have the allLibrariesReady callback. Figure 5.3 describes how
this method, which will be called by the GuardLib if all permission libraries
are ready and safe to use, fits into the Application’s lifecycle. For the devel-
oper, this simply means that he should move the main code of the Activity from
onStart to allLibrariesReady, besides implementing the interface.

2This image is based on work created and shared by the Android Open Source Project and
used according to terms described in the Creative Commons 2.5 Attribution License.

5.10. A SAMPLE APPLICATION 39

< .

e) »(1
-___ ¥ |(visible)
R | 4) onResume() nPause!
5 3 | allLibrariesReady() d 0,.%1“[] onFause
7 Started D /" Paused
/ ' (partially vi /
_ isible) (partially visible)
':/2.:} onStart() onStop()
- onStart()

2_':1 onCreate() b

@I

Figure 5.3: The Android Activity Lifecycle, expanded with the allLibraries-
Ready callback.?

5.10 A Sample Application

To better illustrate the feasibility of this developer-centric approach to dynamic
Android permissions, we provide at this point an example application. The ex-
ample shows the usage of the Guard system by means of the Internet and Blue-
tooth permissions, which already have their implemented PermissionLibraries
available at this point of time. As a concept work, not all permission APIs are
implemented yet, only those needed to show the feasibility of the approach. Be-
cause most of the APIs can be implemented the same way, the rest is left out
to future work.

The application shows two different patterns on how to react to permission
revocation in the middle of an application’s execution. For the first one, the
sample application uses the Internet permission to download the source code
of the Google starting page to prove the feasibility of the approach, but if the
permission is revoked, the invokation of this functionality is simply skipped.
A brief Toast tells the user about the fact that there was nothing done as a
consequence of the lack of legitimation through the permission revocation.
This easy pattern is meant for additional features that are not part of the
core functionality. The idea is to simply disable them and if the user could
be interestedin knowing about this, display a short explanation for the sake of
completeness.

The second pattern describes a scenario with features that need explicit in-
vokation by the user. In our example, the initiation happens by clicking on a
button. All the code in the onClick callback for this button needs the Bluetooth
permission, so it is wrapped by a try and followed by a catch block to react
to a PermissionRevokedException. So if the permission is not available, the
focus jumps to the catch block where the execution is abandoned, the button
becomes disabled and a short Toast tells the user, that this feature is currently
not available, because it needs a permission that the user revoked.

]
onDestroy()

‘ Destroyed

40 CHAPTER 5. REALIZATION

Lw

-
I BAServiceClient

Hello world!

reload

Permission not available.

Figure 5.4: The sample application’s home screen after the Bluetooth permission
has been revoked

Now, the user finds himself back on the first screen of the application, depicted
in Figure 5.4, but this time the feature button is disabled. The only way to use
the feature is to start the GuardApp and to change the permission status so
that the application can access the Bluetooth API. In general, the user needs
a mechanism to recheck if the permission is still not available and to re-enable
the button if the permission was granted meanwhile. An apropriate solution is
the 'reload” button, located right under the feature button. But we do not like
to put the burden on the user to always hit the button after a permission status
change to have the feature button enabled. Furthermore, if the application is
started for the first time, the button would be enabled although the permission
might already have been revoked. But the button does not get disabled before
the first hit on it.

To prevent this and to further improve the usability, there is an addition to
this pattern. The code executed as a result of the 'refresh’ button click is a
conventional Java method, so it can also be invoked it in the code itself. In the
allLibrariesReady callback, a call to this button handler method is simply
made to ensure, that every time the user switches focus to the application,
the re-check takes place and the button’s enabling status is correct. Recall
that we placed this callback right after onStart in the starting sequence of an
application, so it is invoked right after onStart finished, and because at this
point it is guaranteed by the GuardLib that all permission libraries are correctly
initialized and ready to use, we do not risk to use the PermissionLibrary call
to permissionGranted on an unititialized Service Connection.

The result is that when the user starts the Activity the first time and the permis-
sion is revoked, the button is disabled. Then, after switching to the GuardApp,
granting the permission in some way and switching back to the application, the
callback sequence is traversed again and the button is enabled.

Note that there are of course also plenty more of these general design patterns for
a developer-centric environment with dynamic permission revocation facilities
and we are looking forward to some new ones that potential testers may develop.

Chapter 6

Discussion

In this chapter, we briefly evaluate our solution in terms of security and usability.
Although we cover a major part of the current Android APIs with our approach
to mirror their class hierarchies, there are also permission protected APIs that
rely on other mechanisms and thus cannot be covered by this approach. The
SMS API for example completely relies on broadcasts, for which we illustrate a
possible solution in the Future Prospects Chapter, Section 7.1.

6.1 Security

The Guard system was designed in a way that prevents or impedes known
attacks on similar systems.

The Confused Deputy Attack [29] to Achieve Privilege Escalation

Every system that handles anything similar to ’privileges’ needs safety arrange-
ments to assure, that no actor can exploit another one to use its 'privileges’.
In Android, the ’privileges’ are the permissions that applications hold. And
in our special case, the only part that holds original Android permissions is
the GuardApp. We already touched on the subject that an application that
is fully privileged (recall the GuardApp has all Android permissions) must not
be turned into a confused deputy. To prevent this kind of attack by a ma-
licious third party application that uses the GuardLib to communicate to the
GuardApp, the whole code that can be controlled remotely is encapsulated in the
shared interface implementation inside the public Services that the Guard App
provides. Because the GuardApp can distinguish requesting applications in a
reliable way, explained in Section 5.4, and there is a bijection between the orig-
inal API hierarchy and the GuardLib’s proxy hierarchy, described in Section
4.4, there is no way for an attacker to use the GuardLib in order to turn the
GuardApp side into a confused deputy.

Malicious GuardApp Clones

The risk, that someone takes the bytecode of an application, includes some
malicious code, and publishes this poisoned version as if it were the original

41

42 CHAPTER 6. DISCUSSION

one, is always present. The only way to weaken the attack surface for such ap-
proaches is to provide authentification mechanisms and, talking about Android,
this would be the fact that an application can be downloaded from a trusted
app market and a known developer. But Android allows for the installation of
arbitrary untrusted .apk files (packaged applications). So the only real defense
is a watchful user. The user needs to install the GuardApp only once and from
a trusted source, so the expense of assuring to download and install the correct
one, should be moderate.

Fake Dialogs and UI Redressing Techniques

UT redressing techniques and Touchjacking [30] (Clickjacking on a touch screen
powered device) are methods to overlap or substitute trusted areas of the GUI
in such a way, that a touch stroke triggers the execution of arbitrary content
different than the original one. An example would be to replace a button that
does harmless computation with one that triggers a privileged action, like wiping
the hard disc or calling high cost phone numbers. This scheme, often used to
obtain money or access rights by fraud, is a subcategory that again belongs to
the confused deputy problem. But in this case, the confused deputy tricked into
executing a malicious order, is the user. In the Guard ecosystem, the 'privileges’
to be obtained by fraud are the permissions, so the attack scenario would be to
trick the user into granting additional permissions, or to hijack the ask dialog.
The system design provides two precautions to prevent this kind of fraud. We
already touched on the first one in section 5.6, the realization of the GUI.
To prevent subsequent modification of the ask dialog, the responsible code is
intentionally located on the trusted GuardApp side. The consequence is, that a
malicious application cannot alter the original dialog, as it is not a part of the
GuardLib. So, another attack scenario could be an application that provides
an alternative ask dialog to trick the user into granting additional permissions.
This would require a mechanism to change a permission state from a third party
app, for example the possibility of sending an intent to the GuardApplication
to do so. But as a second measure of precaution, we abstain from providing
such a mechanism to prevent exactly such vulnerabilities. One could argue that
it would be a nice feature to have for situations, where the third party app can
ask the user to change the permission state because a revoked permission is
necessary for core functionality, but the risk that malicious applications would
abuse it is too high. As a result, there is only one way for the end user to change
permission states, which is to open the GuardApp itself and change the status
by hand.

Third Party Applications Using Guard and Android Permissions

Subsection 4.2.3 introduced the new contract that our solution provides for
developers and users. One part of this ageement is to completely abstain from
the default permission system stock Android provides. The reason is, that
developers that do not stick to this rule and request stock permissions while
also taking part in the Guard system can simply bypass every security check
that the GuardApp employs. Having a permission on stock Android, there is

6.2. USABILITY 43

no need to use the GuardLib’s API to access critical resources.

In order to prevent applications from masquerading as being privacy-aware by
using the Guard system but also use Android permissions to ignore the user
decision, the GuardApp has to decline the application’s request or mark it in a
way that tells the end user, that this app is not trustworthy. In Section 7, Future
Prospects, we illustrate how such a security measure can be implemented.

6.2 Usability

Today, no system that adresses a userbase that is as large as the one of Google’s
Android operating system, can afford to ignore usability. So there are not only
security features elaborated in our system, but also some, which only adress
the improvement of the usability of the overall system. In order to achieve
the convenience of the user, we offer well structured and well designed tools to
provide the options and abilities that a dynamic permission system offers, in a
preferably comprehensive way.

The convenience of the user, while using an application, partly relies on the
skills of the developer, but also heavily relies on the design of the whole system,
that the application is built on.

One of our contributions is the graphical user interface of the GuardApp in
general. Its duty is on the one hand to display the current permission states
of third party applications, and on the other hand to provide a comprehensive
tool to decide on them.

Another one is to provide the opportunity for applications to advertise the per-
missions they want to use at the very beginning. The result is, that the user
can decide on the permission states without the need to try out all features of
an app to disclose all needed permissions. Right after the first start of the third
party application, the GuardApp’s graphical user interface is able to display all
the needed permissions for the user to investigate and to decide on.

The main goal of this usability improvement is to ensure, that the user does
not have a significantly decreased user expercience, while using Guard system
applications compared to the usage of standard Android apps. The possibility
to decide on permissions before running the core features of the application, in
contrast to interrupting the app usage to change the permission state, yields a
non-negligible gain in the end user’s convenience factor.

The ultimate goal is that the user perceives no difference in the usage of stock
Android apps and Guard system apps while implementing a dynamic permission
system.

Chapter 7

Future Prospects

This thesis assumes the role of a proof of concept work. So, in the design and
implementation phase, many ideas for additional features arise, but cannot be
implemented because the time limit demands a concentrated work on the core
functionality.

7.1 Improvements for the Current Application
Based System

Broadcast Based APIs

The biggest part of Android’s permission protected APIs can be seen as sim-
ple class hierarchies which this approach can mirror. But there are also others
that need to be considered, if the goal is to implement all permissions, ac-
quirable for application developers. The SMS API, for example, is fully based
on Broadcast Receivers, which are currently not covered by this work. The
straightforward way to implement this functionality is to receive the broadcasts
on the GuardApp side and forward them as explicit intents to the third party
application.

Announce Permissions at Install Time

We put a lot of effort in improving the usability of the whole system, but
there is still more to be done on this issue. The announcePermissions feature
ensures that there is no need for the user to inspect each functionality of the
app before being able to decide on the status of the correlated permission.
But the application needs to be started once in order to use this feature. This
can be avoided by implementing a mechanism that reacts to the new application
installed broadcast on the GuardApp side and explicitly asks the newly installed
application for the permissions it is able to use. The responding counterpart
would be implemented as a part of the GuardLib.

45

46 CHAPTER 7. FUTURE PROSPECTS
Further Patterns For Developers

With our sample application, we presented some useful patterns which help
developers to make their applications aware of the chances and risks of a dynamic
permission system. There are of course lots of additional patterns that could
help developers as well, so there is also a demand for even more illustrative
example code.

Discovering Breaches of Our Contract

One feature that would significantly increase trust in the overall system, would
be to check applications that communicate with the GuardApp the first time,
if they have requested access to Android permissions, and block them if so.
The reason for this is, that the security properties of the system demand a
cooperating developer in order to hold, so by additionally using the Android
permissions, the developer is able to bypass all control of the user, that this
system desires to grant.

More Fine-Grained Permissions

As already mentioned, some approaches [3][4] suggest to replace the current
Android permissions by more fine-grained ones to give the end user even more
facilities to control the application’s use of critical resources. For simplicity,
we did not implement this in our approach from the very beginning, but it
yields a further improvement of the privacy situation of the user. Furthermore,
this could also improve the understanding of the developer towards the exact
responsibility of specific permissions, which currently not seems to be given, as
stated by [31] and [32].

Using this approach to more fine-grained permission on the Internet permission,
to only permit access to adresses from a whitelist of servers, could easily be
implemented in our approach, too. All that is needed is a new permission state
that carries the whitelisted servers and that can only be assigned to the Internet
permission, plus a GUI element to manage the whitelist.

Arbitrary Complex Automated Decision Making

We briefly mentioned that the ask option is not restricted to obtaining user de-
cisions from. The code is programmed against an interface InteractionAgent
to keep the code base open for extensions, without the need for modifications.
For example, there could be a learning agent that observes the behaviour of ei-
ther the user, or the applications, to be in a position to answer the ask requests
autonomously. In combination with the server URL based fine-grained Inter-
net permission proposed before, the agent could observe the accept and decline
behaviour of the user to learn which servers are to be considered trustworthy.

7.2. TOWARDS A SYSTEM-CENTRIC IMPLEMENTATION 47

7.2 Towards A System-Centric Implementation

While the improvements above only apply to the proof of concept prototype, the
ultimate goal is still a proper implementation of a dynamic, developer-centric
permission system, like the one proposed here, in the Android operating system
and as a part of the software development kit (SDK) itself.

To realize such a system based on the idea of this work, one would need to
move the GuardLib’s code and parts of the code from the GuardApp to system
components, like the PackageManager, which currently takes care of permission
checks as an entry point to the Android middleware.

Critical resource APIs would mostly stay the same, because all the change hap-
pens behind the scenes and the developer only needs to know, how to use the
newly given tools. Furthermore, in addition to the prototype introduced in this
work, a system-centric implementation could also cover user-defined permissions
the same way as system permissions and could also handle native code. The
implementation of the tools proposed in this work would be straightforward,
because there is already a mechanism in the Android system to check whether a
permission is present, located in the PackageManager class. Probably the most
delicate issue would be modifying the lower levels to grant and revoke member-
ship in the Linux groups, corresponding to the permissions that are based on
group membership.

However, as these are major changes to the environment that third party ap-
plications run in, this approach suffers from legacy compliance with all current
applications and requires a gradual roll-out or a double-tracked transition strat-
egy.

Maybe this is exactly the reason for hiding the new permission manager ex-
tensions [2] in Jelly Bean 4.3, which in its current design does not really seem
to be developer-aware and causes application crashes due to uncaught security
exceptions for dynamically revoked permissions at the moment.

Chapter 8

Conclusion

We have presented a feasible prototype for a developer-centric dynamic An-
droid permission framework. As a supplement to current research in this area
that we discussed in section 3, this approach substitutes Androids permission-
based access control mechanism by our new approach that allows for dynamic
permission granting and revocation at runtime. In order to prevent undefined
behaviour and crashes of third party applications, the proposed system follows
a developer-centric approach by providing facilities to react to decisions of the
end user at runtime. This work bridges the gap between proposed permission
framework improvements or substitutions, and the developers that need a sta-
ble environment to programm their applications in. In conclusion, we see many
opportunities to further enhance this work. On the one hand, on the introduced
prototype, but also on the other hand by initiating a proper system-centric re-
alization without losing the developer-centricity. However, we hope that there
will be a dynamic permission framework in stock Android one day, and as it
was demonstrated in several papers and theses, including this one, this does not
seem to be far-fetched.

49

50

CHAPTER 8. CONCLUSION

Appendix A

The Shared AIDL Interface
of the Internet Service

package de.uds.infsec.os.baguard.controller;

interface IInternetService

{

/ /URL

String createURL(String spec);
String URLgetAuthority (String urlID);
int URLgetDefaultPort(String urllD);
String URLgetFile(String urllD);
String URLgetHost(String urllD);
String URLgetPath(String urllD);

int URLgetPort(String urllD);

String URLgetQuery(String urlID);
String URLgetRef(String urllD);
String URLgetUserInfo(String urlID);
void openConnection(String urllD);

// HttpURLConnection

void URLCONsetConnectTimeout (String urlID , int timeoutMillis);
void URLCONsetDolnput(String urlID, boolean newValue);

void URLCONsetReadTimeout (String urlID, int timeoutMillis);
void URLCONsetRequestMethod (String urlID, String method);

void URLCONgetInputStream (String urllD);

void URLCONconnect(String urllD);

//HttpInputStream

int URLInStreamReadBuffer (String urlID, inout byte[] buffer);

int URLInStreamReadSingle(String urlID);

int URLInStreamReadBytes(String urlID, inout byte[] buffer,
int offset ,int length);

int URLInStreamAvailableBytes(String urlID);

void URLInStreamClose(String urllD);

Bibliography

Cyanogenmod issue tracker. request to again include the removed ’Revoke
App Permissions’ feature. May 2013. URL: https://jira.cyanogenmod.
org/browse/CYAN-28.

Ron Amadeo (androidpolice.com). App Ops: Android 4.3’s Hidden App
Permission Manager, Control Permissions For Individual Apps! [Update].
2013. URL: http ://www . androidpolice . com /2013 /07 /25 / app -
ops - android-4- 3s-hidden- app - permission - manager - control -
permissions-for-individual-apps/.

Michael Backes, Sebastian Gerling, and Christian Hammer. “Appguard-
real-time policy enforcement for third-party applications”. In: (2012). URL:
http://scidok.sulb.uni-saarland.de/volltexte/2012/4902/.

Jinseong Jeon et al. “Dr. Android and Mr. Hide: Fine-grained security
policies on unmodified Android”. In: (2011). URL: http://drum.1lib.
umd . edu/handle/1903/12852.

Benjamin Davis and Ben Sanders. “I-arm-droid: A rewriting framework
for in-app reference monitors for android applications”. In: Mobile Security
... Dvm (2012). URL: http://mostconf.org/2012/papers/28.pdf.

Erich Gamma et al. Design patterns: elements of reusable object-oriented
software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1995. 1SBN: 0-201-63361-2.

The Android Open Source Project (source.android.com). Android Secu-
rity Overview. URL: http://source . android . com/devices/tech/
security/.

Thorsten Schreiber. “Android binder”. In: (2011). URL: http://www.nds.
rub.de/media/attachments/files/2012/03/binder.pdf.

The Android Open Source Project (developer.android.com). "Manifest.permission’
API reference. URL: https : //developer . android . com/reference/
android/Manifest.permission.html.

Google (android.googlesource.com/). Android source code frameworks/base/-

data/etc/platform.xml’. URL: https ://android . googlesource . com/
platform/frameworks/base/+/master/data/etc/platform.xml.

W Enck, M Ongtang, and P McDaniel. “Understanding android security”.
In: Security & Privacy, IEEE (2009). URL: http://ieeexplore.ieee.
org/xpls/abs_all. jsp?arnumber=4768655.

ol

[17]

[19]

[20]

BIBLIOGRAPHY

The Android Open Source Project (developer.android.com). 'PackageM-
anager’ API reference. URL: http://developer.android.com/reference/
android/content/pm/PackageManager.html.

Dan Bornstein. “Dalvik v internals”. In: Google I/O Developer Confer-
ence. Vol. 23. 2008, pp. 17-30.

U Erlingsson. “The inlined reference monitor approach to security pol-
icy enforcement”. In: January (2003). URL: http://dspace. library.
cornell.edu/handle/1813/5628.

Cyanogen (Steve Kondik). Statement against the 'Revoke App Permis-
sions’ feature. May 2013. URL: https://jira.cyanogenmod.org/browse/
CYAN-28.

Peter Hornyack et al. “These aren’t the droids you're looking for”. In:
Proceedings of the 18th ACM conference on Computer and communica-
tions security - CCS ’11 (2011), p. 639. DOI: 10.1145/2046707 .2046780.
URL: http://dl.acm.org/citation.cfm?doid=2046707.2046780.

Yajin Zhou et al. “Taming information-stealing smartphone applications
(on android)”. In: Trust and Trustworthy Computing November 2009 (2011).
URL: http://1link. springer . com/chapter/10.1007/978-3-642-
21599-5_7.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. “Apex: extend-
ing Android permission model and enforcement with user-defined run-
time constraints”. In: Proceedings of the 5th ACM Symposium on Infor-
mation, Computer and Communications Security. ASTACCS ’10. Beijing,
China: ACM, 2010, pp. 328-332. 1SBN: 978-1-60558-936-7. DOT: 10.1145/
1755688 . 1755732. URL: http://doi.acm.org/10.1145/1755688 .
1755732.

The Android Open Source Project (developer.android.com). 'Bound Ser-

vices’ API guide. URL: http://developer.android.com/guide/components/

bound-services.html.

The Android Open Source Project (developer.android.com). ’BluetoothDe-
vice” API reference. URL: http://developer.android.com/reference/
android/bluetooth/BluetoothDevice.html.

Apple (developer.apple.com). 108 6.0 new developer-related features. URL:
https://developer.apple.com/library/ios/releasenotes/General/
WhatsNewIniOS/Articles/i0S6.html.

The Android Open Source Project (developer.android.com). Android In-
terface Definition Language (AIDL). URL: http://developer.android.
com/guide/components/aidl.html.

The Android Open Source Project (developer.android.com). ‘Binder’ API
reference. URL: http://developer.android.com/reference/android/
os/Binder.html.

The Android Open Source Project (developer.android.com). “Internal Stor-
age’ API guide. URL: http://developer.android.com/guide/topics/
data/data-storage.html#filesInternal.

BIBLIOGRAPHY 53

[25]

[26]

[27]

[28]

Aleksandar Gargenta. Deep Dive into Android IPC/Binder Framework
(html version of AnDevCon IV talk on Dec 5th, 2012). URL: https://
thenewcircle.com/s/post/1340/Deep_Dive_Into_Binder_Presentation.
htm#slide-121.

The Android Open Source Project (developer.android.com). ’RemoteFEz-
ception’ API reference. URL: http://developer.android.com/reference/
android/os/RemoteException . html #RemoteException(java . lang.
String).

The Android Open Source Project (developer.android.com). ’Broadcas-
tReceiver’ API reference. URL: http://developer.android.com/reference/
android/content/BroadcastReceiver.html#ReceiverLifecycle.

Dianne Hackborn on the ’Android Developers’ Google group. Post: Cre-
ation and termination of Content Providers. URL: https :// groups .
google.com/forum/#!msg/android-developers/NwDRpHUXtOU/ jIam4Q8-
cqQJ.

Norm Hardy. “The Confused Deputy”. In: ACM SIGOPS Operating Sys-
tems Review 22.4 (Oct. 1988), pp. 36-38. 1sSN: 01635980. DOI: 10.1145/
54289 .871709. URL: http://portal.acm.org/citation.cfm?doid=
54289.871709.

Tongbo Luo et al. “Touchjacking attacks on web in android, ios, and
windows phone”. In: Foundations and Practice of Security 1017771 (2013).
URL: http://link. springer . com/chapter/10.1007/978-3-642-
37119-6_15.

Timothy Vidas, Nicolas Christin, and Lorrie Faith Cranor. “Curbing An-
droid Permission Creep”. In: W2SP. 2011.

Adrienne Porter Felt et al. “Android Permissions Demystified”. In: Intents
22 (2011), pp. 627-637. 1SSN: 09581669. DOI: 10.1145/2046707 .2046779.

