SAARLAND UNIVERSITY
Faculty of Natural Sciences and Technology 1
Department of Computer Science

BACHELORS’S THESIS

Developing a RiskScore for
Android Applications

submitted by

Marc Schweig

submitted October 01, 2013

Supervisor
Prof. Dr. Michael Backes
Dr. Matteo Malffei

Reviewer
Prof. Dr. Michael Backes
Dr. Matteo Maffei

Advisor
Philipp von Styp-Rekowsky, M.Sc.

Eidesstattliche Erklarung

Ich erklire hiermit an Eides Statt, dass ich die vorliegende Arbeit selb-
ststandig verfasst und keine anderen als die angegebenen Quellen und Hilf-
smittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit vertffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbriicken,

Datum/Date Unterschrift /Signature

Abstract

The success of the Android operating system and the increasing capabilities
of mobile devices made the Android OS a prominent target for malware
developers. Since the security systems provided by Google have turned out
to be insufficient to protect the users against security and privacy threats,
the security of a user’s private information is endangered and solely depends
on which applications he decides to install. As this thesis shows, all risk
signals available to the user, like permissions or community ratings, either
are proven to be futile for the determination of an applications risk or are
ignored by the users. Therefore, a risk scoring algorithm is created that
enables users to identify the threads an application poses for the security
of their private data . The developed tool, called RiskScore, is based on
the compiled dex bytecode and the requested permissions of an application
and provides a more accurate measure than comparable risk assessment
techniques.

Contents

2.2.1 Thedx compiler|]
[2.2.2 The Zygotel
[2.2.3 Register-based Virtual Machine|
[2.2.4 The Bytecode Structure of the DVM|.
[2.3 The Android Application Framework|

I3 RiskScore - A high-level overview|
3.1 System Overview|
[3.2 Design Choices|,

I F Ris] REKS l
4.1 Code Based Risk Signals|.
[4.2 Permission Based Risk Signals|
4.3 Other Risk Signalg]

[Bayesian Risk Assessment]
[>.1 Naive Bayes with Informative Priors (PNB)|

[5.2 Enhancing the PNB (ePNB)|.

|6 Implementation|
6.1 Application Package Parsing|.
[6.1.1 Manifest File Parsing|
[6.1.2 Dex File Parsing|
6.2 The Application Data Container|

6.4 The Algorithml|
[6.4.1 Risk Assessment using The BayesianAlgorithm|

15
16
16

19
19
21
23

25
25
28

31
32
32
32
34
34
35
35

II

[7__Evaluation| 37
7.1 Detailed Experimental Results 37
7.2 Comparison to Other Tools| 38

I8 Conclusion| 41

Chapter 1

Introduction

In 2007, Google founded the Open Handsent Alliance (OHA) [3], a consor-
tium of mobile operators, hard - and software companies and phone manu-
facturers, with the goal to advance open standards for mobile devices. In the
same year the OHA unveiled Android, their open source software flagship,
which is distributed under the Apache license [1]. As an operating system
(OS) for mobile devices Android has directly competed with other operating
systems like Appel’s i0OS, Nokia’s Symbian or Microsoft’s Windows Mobile.
However, due to the cost-saving licensing model of Android it became fast
very popular among manufacturers.

Over the last few years Android has become more and more prevalent and
its market share has reached 74,4% in the first quarter of 2013 [26]. With
about 900 million activations, this makes Android by far the most common
mobile device OS available [27].

But not only the Apache license made Android that popular. Shortly after
the release of Android, Google integrated the Android Market into OHA’s
operating system. As an easy and uncomplicated distribution platform,
the Android Market has become the favored store among all the software
stores for mobile devices. In 2012, Google combined Google Music, Google
Movies, Google Books and the Android Market to create a joined service
called Google Play [24]. Google stated in July 2013 that the number of
available applications was about 700.000 but recent market statistics esti-
mate this number to be higher and to be located at about 810.000 [23], |6].
In May 2013, the number of application downloads from Google Play ex-
ceeded 48 billion applications [43].

Besides Google Play, a wide range of third-party marketplaces like Amazon
AppStore or Samsung Apps are available. This diversity redounds to the
customers’ as well as to the developers’ advantage. Developers can choose

2 CHAPTER 1. INTRODUCTION

the markets with the best conditions and customers can benefit from promo-
tions. However, the system’s popularity and diversity have some downsides.
In addition to honest developers, attackers and malware developers have
focused on the Android operating system and its users.

1.1 Motivation & Thesis Objective

Over the last years, smartphones have become more and more popular.
Smartphones now account for 49.3% of overall sales of mobile devices, up
from 44% in 4Q12 [5]. Due to increasing hardware capabilities, users have
started to use their smartphones for tasks which formerly were exclusive to
computers, like social networking, shopping and even online banking.

Therefore it is inevitable for users to recognize dangerous applications in
order to avoid the theft of sensible information, especially if one considers
Google’s application vetting mechanism, called Bouncer. The Bouncer is
an automated malware detection system, with the goal to prevent malware
uploads and to remove malware from Google Play. It analyzes newly up-
loaded applications as well as already distributed applications and developer
accounts. To do so the Bouncer does not only scan for known malware, spy-
ware or trojan signatures, it also performs a behavioral analysis to detect
malicious behavior [29]. However, the Bouncer is bypassable and easily de-
ceivable and therefore insufficient if one wants to ensure end user security.

One of the first successful attacks on the Bouncer was performed by Jon
Oberheide and Charlie Miller. They uploaded a malicious apk - file which
handed them a connect-back shell. This shell enabled them to explore and
fingerprint the Bouncer’s environment [32], [33]. Another successful attack
was launched by researchers from the Trustwave SpiderLabs [40]. They used
a hybrid approach for application development by programming their ap-
plication in html and javascript distributing it in a native wrapper. This
approach allowed them to dynamically reload malicious functionality and to
bypass updates via Google Play. The Bouncer regularly analyzed this appli-
cation but was not successful classifying it as malware until the developers
wanted it [31].

Besides its Bouncer, Google uses a system called mandatory access con-
trol securing the access of Android applications to resources. Applications
have to request certain permissions to get access to security critical function-
alities and user data. Despite the fact that this system gives information
about potentially suspicious applications, research[] has shown that most

' This paper addresses the Windows AUC notifications, however the results can easily
be transferred to the Android environment

1.1. MOTIVATION & THESIS OBJECTIVE 3

users simply ignore such requests and blindly grant all the rights an appli-
cation requires [30].

Another mechanism Google based Android’s security upon is a reporting
system. Users can inform Google about malicious applications and in case
Google is able to confirm the maliciousness, the concerning applications are
removed from Google Play. Additionally, Google is able delete those appli-
cations from the users smartphones by triggering a kill switch [9]. But this
only attenuates the effects instead of preventing the occurrence of zero-day
malware.

Google omits a manual review process, in contrast to Apple and Microsoft,
and this system has undeniable advantages, like a faster deployment of new
applications and a more dynamic Google Play content. However, it is the
dynamic application landscape in addition to the vast distribution and the
insufficient security procedures that have made Android a remunerative tar-
get for malware developers, with the tendency to rise. Among all Android
application markets, Google Play is still one of the most secure stores com-
pared to other distribution platforms which nearly consist solely of mal-
ware [42].

In the beginning of 2013, BadNews became a significant development in the
evolution of mobile malware, it achieved an enormous distribution within
Google Play and remained undiscovered until it had been downloaded more
than 2 million times [37]. But in consideration of the fact that none of the
leading mobile anti-virus systems is able to detect malware that is unknown
up to this day, this number could be much higher [28]. Statistics show that
the amount of found malware samples has risen to 100.000 within the last
year, most of them have been programmed with the goal to collect sensitive
and private information [11].

Due to this radical development, users need a simple and comprehensible
guideline to choose trustworthy applications and to reject potentially dan-
gerous ones. A lot of solutions have been presented in the past, but previous
work mainly focused on either permissions [21], [35], code [18], [45], [25], [44],
[22] or runtime behavior [17] but rarely on combinations of them. This and
other facts make them infeasible for the standard end user, since a permis-
sion focused approach will surely miss malicious applications specialised in
root exploits and runtime monitoring as well as a heavy weight static anal-
ysis are too demanding to be practical.

The goal of this thesis is to develop a method to assess the risk of applica-
tions using more than one type of input, like e.g. function calls, permissions
or metainformation. To be expedient by endusers, this method shall not

4 CHAPTER 1. INTRODUCTION

require root privileges or drastically affect the runtime of rated applications
and it should be capable of being integrated into security focused applica-
tions. Those challenges cause some limitations for this thesis. Therefore,
the first task is to identify and to define meaningful and suitable risk sig-
nals, in other words risk signals which are easily approachable and still have
significance. In a second step, those risk signals have to be extracted. For
permissions this requires a manifest file parser and for function calls a dalvic
bytecode assembler / disassembler like dexlib [4]. Another task is to develop
a risk scoring function out of those risk signals. Therefore, it is necessary
to classify risk signals such that the powers e.g. which are obtained by
requesting a permission are incorporated within the representation of the
risk signal. Those classified signals can then be used to assess the risk of
an application requesting or possessing the corresponding risk signals. The
generated score has to satisfy conditions, to be developed during this the-
sis, which enable users to conclude why an application scored the way it did.

Another thesis objective is the implementation of this risk scoring tech-
nique and the development of a tool, called RiskScore, to perform the risk
estimation of Android applications. Therefore, RiskScore has to generate
comprehensible output which constitutes a guideline for users utilizing this
tool. Based on the results generated by this tool, the user then can decide
whether or not he wants to monitor installed applications to let them per-
form unsupervised or to uninstall applications too risky to remain on the
system.

1.2 Outline

The remaining thesis describes in detail the development of the approach
used within the risk estimation framework as well as the framework itself.
It is structured as follows:

Chapter [9 provides the necessary background information about Android
to fully understand this thesis. It roughly describes the core system and im-
portant features. Furthermore, it gives a short overview of the runtime envi-
ronment including the DVM, Android’s virtual machine, before the bytecode
- and application structure are described in detail, as they are fundamental
for the understanding of the risk evaluation framework.

A high level overview of the risk scoring framework is given in Chapter
[3 of this thesis. This chapter also briefly describes the functionality and the

task of the components used within the RiskScore.

The risk signal selection is depicted in Chapter [Before the design and

1.2. OUTLINE 5

development of the actual risk score are described in detail, this chapter
outlines the evaluation and selection of the risk signals used in the risk eval-
uation framework. In addition, it gives a short overview of some exploits
and attacks on the Android operating system.

As mentioned before, Chapter [5 explains in detail the design and devel-
opment of the risk assessment framework and represents besides Chapter
[4 the core part of this thesis. To generate comprehensive output for the
user this chapter introduces the required desiderata for the risk score and
depicts a method to initialize and categorize the risk signal data so that all
needed information is incorporated within the risk signal representation. Af-
terwards, the risk scoring function is developed based on these fundamentals.

One of the goals of this thesis is to implement the theory described in the
last chapter into a concrete tool. Chapter [6] provides details about the im-
plementation of the RiskScore. This comprises the use of all algorithms and
third-party tools that are included in the RiskScore to implement certain
tasks.

Chapter[7describes the effectiveness of the risk evaluation framework. There-
fore, the output of the RiskScore is analyzed in detail and afterwards com-

pared to common risk assessment techniques.

The results and contributions of this thesis are described in Chapter [§

CHAPTER 1. INTRODUCTION

Chapter 2

The Android Operating
System

The Android operating system for mobile devices has originally been devel-
oped by Android, Inc., which has later been bought by Google in 2005. Two
years later, Google founded the Open Handset Alliance [3] to continue the
development of Android as a open mobile platform. At present, the OHA
is a consortium of 84 companies from different areas, members are among
others mobile operators, hard - and software companies as well as phone
manufacturers. In the year of the foundation of the OHA, Google published
in cooperation with the alliance the first version of the Android SDK.

About one year later, the first official Android software version 1.0 was
published. In the same year, HTC presented the first smartphone running
Android, the HTC Dream and most of the Android source code was made
available, with the exception of some applications developed by Google. For
the last five years, the OHA has constantly developed Android further and
therefore, a multitude of updates has been released that have targeted ei-
ther the operating system or applications shipped as part of Android. Those
updates include bugfixes, integrate new features into the system or refine
already integrated ones. Since version 1.5, the new Android versions have
received a new codename based on the name of a dessert with every major
update. Some of them are KitKat (since version 4.4), Jelly Bean (since ver-
sion 4.1), Ice Cream Sandwich (since version 4.0), Honeycomb (since version
3.0) and Gingerbread (since version 2.3).

The Android software stack consists of several layers, namely a Linux ker-
nel, a middleware which includes native libraries, the reference monitor and
the runtime environment, and an application framework for the execution
of applications. Figure 2.1 displays a high-level overview of the Android
architecture.

8 CHAPTER 2. THE ANDROID OPERATING SYSTEM

Application Framework

Native Libraries Android Runtime

Reference Monitor -

Policies

Figure 2.1: High-level overview of the Android architecture

2.1 Android Kernel & Middleware

Since the introduction of Ice Cream Sandwich, the customized Android ker-
nel is based on the open source Linux kernel version 3.x. Therefore, Android
itself does not have to provide or implement any core functionality, like pro-
cess and thread management or memory management.

The security model of Android applications has been based upon a sand-
boxing mechanism implemented in the underlying Linux. Therefore, each
application is executed with an own user ID (UID) within its own Dalvik
virtual machine (DVM) which itself is again running in its own process.
Thereby, only the Linux kernel can directly access the phone’s hardware
and applications can only access a very limited set of system features and
their own data.

But to allow more functionality and more complex systems, it is neces-
sary for an application to be able to interact with other applications or
the hardware. For this reason, Android integrates the Binder, a customized
implementation of the OpenBinder, into its kernel to enable controlled inter-
process communication (IPC).

Figure 2.2 depicts the communication between applications via the Binder.
To ensure that only authorized applications access protected data or func-
tionalities, a reference monitor enforces a mandatory access control mecha-
nism based on permission, which applications can request in their manifest
file.

2.2. ANDROID RUNTIME & DALVIK VIRTUAL MACHINE 9

Application 1 Application 2

Figure 2.2: Inter process communication via the Binder

2.2 Android Runtime & Dalvik Virtual Machine

Considering the design choices made while developing the Android operating
system, it becomes obvious why a custom VM has been implemented into
the operating system and why the well proven Java VM is disadvantageous.

First of all, the ecosystem provides only limited resources, since Android has
been developed as an OS for mobile devices. Therefore, the memory require-
ments of VM instances have to be kept minimal. Furthermore, smartphone
users frequently switch from one application to another, causing applica-
tions to be opened and closed in a short period of time and lastly Android
has to keep high-performance even if several Virtual Machine instances are
running simultaneously. Therefore, Android implements its own virtual ma-
chine, called Dalvik or short DVM, which implements several optimizations
matching the requirements of a mobile device.

As a result of these optimizations the DVM does not support Java bytecode
anymore, but the Android SDK provides a tool, called dx, which translates
Java class files into dalvic executable bytecode (dex bytecode).

In addition to the optimizations of the VM implemented in Android, it is
possible to implement especially time-critical applications in C/C++ using
the Native Development Kit provided by Google , since native code runs
up to ten times faster than Java bytecode executed in a virtual machine.
However, the DVM indeed spawns native code running in the same thread
inheriting the UID and the permissions of the parent application, but the
kernel’s call interface is exposed to native code and that enables those ap-
plications to exploit kernel vulnerabilities and privileged daemons to "root”

10 CHAPTER 2. THE ANDROID OPERATING SYSTEM

the system [44].

2.2.1 The dx compiler

The dx compiler is used to convert multiple Java class files containing Java
bytecode into a single dex file, named classes.dex, containing the dex
bytecode. This compiling consits of several steps, namely the translation,
reconstruction and interpretation of the constant pools, the class definitions
and the data segment.

The constant pool contains all the constants used by a class, like references to
other classes, method names or numerical constants. Java applications du-
plicate those constants, since the Java bytecode is distributed among many
class files. The dx compiler eliminates those replications, as the DVM uses
a single pool that all classes simultaneously utilize. Furthermore, integers,
long integers and single and double floating point elements are inlined di-
rectly into the dex bytecode [1§].

The class definitions as well as the data segments are taken from the Java
class files during the compilation and are rearranged within the dex file.

The concept of a shared constant pool and a single dex file has one ma-
jor advantage for the application to mobile devices compared to the concept
of multiple classes files. The final bytecode size is drastically reduced. Ta-
ble 2.1 displays a comparison of different bytecode sizes of common system
libraries and applications integrated into the Android system [§].

Input Jar file Compressed jar file Dex file
Common system libraries 100% 50% 48%
Web browser app 100% 49% 44%
Alarm clock app 100% 50% 44%

Table 2.1: Bytecode size comparison

2.2.2 The Zygote

Besides the significant size reduction of dex bytecode by the dx compiler,
the Zygote is another optimization concept that targets the memory usage
and reaction times of the virtual machine implemented in Android. Since
there is no memory sharing between traditional Java VM instances, each
instance loads a copy of core library classes and associated heap objects.
Because of the additional workload, the cold startup, a startup with the
additional workload to initialize core libraries, of those VMs takes a tremen-
dous amount of time. But for mobile devices, where users frequently open
and close applications this is not acceptable.

2.2. ANDROID RUNTIME & DALVIK VIRTUAL MACHINE 11

To speed up cold startups and to keep the memory footprint of virtual
machine instances minimal Android applies a concept called Zygote. Un-
der the assumption that core library classes and their corresponding heap
objects are used frequently within different instances of the DVM, Zygote
keeps them in a for read-only shared memory. In case an application needs
to write to the shared memory, the concerning area is copied to the corre-
sponding application’s VM process.

Zygote is a VM process started at boot time, that itself spawns a DVM
which pre-loads and pre-initializes common core library classes. Afterwards,
it awaits requests from the runtime process to create child VMs for applica-
tions via an open socket.

2.2.3 Register-based Virtual Machine

The Dalvik Virtual Machine is register-based instead of stack-based, like
traditional Java VMs. Java bytecode is able to assign local variables to a
local variable table before they get pushed onto the operand stack. However,
it is also possible to work directly on the stack without storing the variables
in the local variable table. On this operand stack, the variables then can be
manipulated by opcodes.

The DVM bytecode assigns its local variables to one of 26 available reg-
isters instead. These registers can directly be manipulated by the opcodes.

Since the stack has to be kept in memory, stack-based virtual machines have
a larger memory overhead and perform significantly weaker than register-
based virtual machines, but they have the advantage of being easier to im-
plement.

According to Shi et al. [39], register-based bytecode needs on average 47%
fewer instructions than stack-based bytecode but has about 25% larger code
size [8]. Benchmarks have shown that the average execution time of register-
based bytecode is 32.3% faster than the execution time of the same program
in stack-based code.

Keeping the significant code size reduction through the dex file format and
the concept of a shared constant pool in mind, the gain of 25% code size be-
cause of the register-based instruction set is more than compensated, so that
the Dalvik virtual machine still has a more efficient memory usage than a
traditional stack-based virtual machine. Furthermore, the DVM can benefit
from a faster bytecode execution which redounds to the users’ and the devel-
opers’ advantage, since mobile devices typically provide little computational

12 CHAPTER 2. THE ANDROID OPERATING SYSTEM

power.

2.2.4 The Bytecode Structure of the DVM

The register-based architecture of the Dalvik VM makes the instruction set
substantially different from the one of stack-based Java VMs. The dex byte-
code currently consists of 218 different opcodes, whereas the Java bytecode
only has 200. However, the purpose of these opcodes differs considerably.
While Java implements tens of opcodes for the purpose of pushing elements
between the stack and the local variable table, Dalvic opcodes have no need
to provide such functionality, instead, they are dedicated to move content
from one register to another, to invoke e.g. methods or to perform unary or
binary operations directly on the stored values.

Dex bytecode includes instructions that not necessarily preserve the data
type of their arguments, e.g. the instruction ’const vAA, #+BBBBBBBB’
does not specify the type of the 32-bit constant.

Furthermore, the instruction set has been optimized to reduce the num-
ber of needed instructions and registers and to further minimize the size of
the dex file. Therefore, 2-address instructions for binary operations have
been established. These operations are labeled with a trailing 2addr. Here,
the first specified register also determines the destination register, since the
instruction format follows a strict argument ordering. Another optimization
of the dex bytecode is the introduction of instructions that work with regis-
ter/literal pairs as arguments. These instructions can be performed on 8-bit
or 16-bit integer values and are marked with 1it8 and 1it16 respectively.

2.3 The Android Application Framework

Android applications typically consist of multiple components to facilitate
reusability and to provide modularity. Components of an application have
to be declared within the applications manifest file, like e.g. Activities,
Content Providers, Intents or Services.

Although, all modules an application consists of have the commonality that
they have to be declared in the AndroidManifest.xml, their actual func-
tionalities may differ. Activities are one screen of the graphical user interface
of an application, therefore an application usually consists of several differ-
ent activities. On the other hand, a service is a background process running
without user interaction and an application can be composed of multiple
services or solely consist of one service [14].

At the application level, Android also enforces several security features, like

2.3. THE ANDROID APPLICATION FRAMEWORK 13

application signing or its mandatory access control. Application signing en-
sures that only developers who have signed the application with a self-signed
certificate ship updates for their applications. Besides the verification of the
code origin, this feature enables data sharing between applications signed
with the same key, since they are executed with the same UID.

The mandatory access control system that protects the sensitive user data
and risky or potential dangerous functionality from misuse, is based on per-
missions. These permissions have to be defined in the applications’ manifest
file, similar to the components an application consists of. Although there
exists a predefined permission set, developers have the ability to define their
own permissions.

Each permission can be categorized based on the level of protection the
rights have that this permission grants. There are four different protec-
tion levels, in ascending order of their level they are: normal, dangerous,
signature and signatureOrSystem |15]. A permission label is assigned to a
permission matching corresponding description:

normal: This permission type is automatically granted during the instal-
lation, since the contained permissions only grant access to isolated
application-level features, with minimal risk. An example for a nor-
mal permission is the VIBRATE permission.

dangerous: A permission tagged dangerous gives the requesting applica-
tion access to private user data or the ability to perform potentially
dangerous activities. Therefore, these permissions have to be granted
by a user before the application can be installed. An example for a
dangerous permission is the SEND_SMS permission.

signature: Signed permissions are automatically granted by the system to
requesting applications signed with the same certificate as the appli-
cation that created that permission.

signatureOrSystem: Permissions that are granted by the system to ap-
plications that are part of the Android system image or that are signed
with the same certificate as the declaring application. In general, this
security level is only used by Google or vendors.

After the permissions are set at installation time, the Reference Moni-
tor enforces the abidance during runtime. At the moment, there exists no
convenient system feature that allows the user to dynamically revoke per-
mission or to grant additional permission after the installation. However, in
the Android version 4.3 a new activity has been introduced called App Ops.
Due to the fact that this feature is still in development, this activity is not
fully functional, but it enables the user to manage the permissions used by

14 CHAPTER 2. THE ANDROID OPERATING SYSTEM

some applications. Furthermore, it is speculated that App Ops will become
an inherent part of Android’s system applications after the development is
finished.

There are other possibilities for users to integrate a dynamic permission
management into their Android running mobile device, however, almost ev-
ery system requires root privileges to do so.

Chapter 3

RiskScore - A high-level
overview

In general, it should be assumable by the user that applications, especially
those obtained from a trusted source like Google Play, neither leak privacy
sensitive information nor perform other malicious activities. But, in reality,
this assumption turns out to be wrong, since even non-malicious applica-
tions transmit private information. In fact most freeware applications that
include advertisement or analytic libraries tend to have privacy sinks im-
plemented. This thesis endows users with the ability to protect their data
by indicating the riskiness of applications. In addition to the development
of an theoretical model, a concrete implementation of the risk evaluation
framework is provided as part of this thesis. This chapter presents an high
level abstraction of the evaluation framework, to be implemented.

Since the source code of Android applications is not available in general,
the analysis of code based risk signals has to be performed on the applica-
tions bytecode. Android applications are programmed in Java and compiled
to dex bytecode which gets executed in the Dalvik virtual machine. The
bytecode, together with other resources like the manifest file, is distributed
as an ".apk’ - file which is also simply referred to as application by users. As
the applications package contains the bytecode, it can easily be extracted.
The same holds for the manifest file which contains the permission informa-
tion needed for the analysis of the permission based risk signals.

The analysis performed by the RiskScore consists of multiple steps. First,
the corresponding files, as there are the manifest and the classes.dex, get ex-
tracted and preprocessed and RiskScore parses the needed information from
these files. Only if the application contains risk signals at all, the analysis
continues with the execution of the actual risk ranking algorithm.

15

16 CHAPTER 3. RISKSCORE - A HIGH-LEVEL OVERVIEW

3.1 System Overview

Figure 3.1 shows a high-level abstraction of the risk evaluation framework.
The framework actually consists of several interchangeable modules to in-
crease flexibility and to ease the evaluation of different components. To
estimate the risk of an application, the corresponding risk signals have to
be parsed and preprocessed. This functionality is provided by the parser
package.

Manifest
Parser

Interface Algorithm |-1» %Output

-apk - file DEXFile
Parser

Figure 3.1: High-level view of the risk assessment framework.

Since the analysis of dex bytecode is impracticable and inconvenient, risk
assessment tool bases the code analysis upon a more convenient assembly
language. Therefore, the DexFileParser first preprocesses a given ’.apk’ -
file and translates it before the set of risk signals gets extracted. However,
the implementation of the disassembler is not part of this thesis, as there
are some open-source disassemblers available which provide extensive func-
tionality and generate a high quality assembly language.

Given that the manifest file is part of the ’.apk’ - file , the first prepro-
cessing step of the ManifestParser is the extraction of the manifest. To
solve this task, it again was possible to use a preimplemented open - source
solution that processes the whole ".apk’ - file and that outputs the permis-
sion set of an application as stated within the manifest - file.

After the preprocessing is finished, all data is handed to the Interface
which passes it on to a data container called Application. Here, the risk
signals and meta information of all previously described analysis steps are
stored. In a subsequent step, the data container is processed by an instance
of Algorithm whether as part of the initialization of the algorithm or in the
course of the evaluation of the application.

3.2 Design Choices

The current design provides benefit beyond the objective of this thesis. It
does not only provide a method to identify the threat an application poses

3.2. DESIGN CHOICES 17

that is based upon requested permissions, dex bytecode and meta informa-
tion, it in fact provides a cyclopaedic framework for the risk assessment of
all kinds of software.

The RiskScore implements three different parsers to collect the data needed
for the application analysis. However, due to the modularity of the RiskScore,
it is easily possible to interchange or to extend those components to augment
the current algorithm or to reuse the provided algorithms for the analysis
of other programs, e.g. the risk evaluation of chrome extensions.

Furthermore, it is easily possible to implement new algorithms for eval-
uation purposes and to integrate them into the system. The only thing
necessary is to inherit from the base class Algorithm and to initialize the
interface using the new instance of Algorithm.

18 CHAPTER 3. RISKSCORE - A HIGH-LEVEL OVERVIEW

Chapter 4

From Risk to a Risk Score

As an addition for security applications running on mobile devices the
RiskScore should perform well even with the limited resources of smart-
phones. Therefore, the evaluation cannot be based on demanding and time
consuming analyses like control flow graphs. On the other hand, the frame-
work cannot require root privileges, since most users use unrooted Android
versions. Because of those limitations the RiskScore will be based on a per-
mission based approach [38].

The biggest drawback is that this system only considers an application’s
permission set as risk signals. However, the permission set is a very pow-
erful indicator for the ability of an application to leak private information
such as the contacts. Even though permission configurations can be used to
fingerprint malware they do not suffice. There exists malware that cannot
be detected using only an application’s permission set. Root exploits, which
clearly should be considered a risk, only require the ability to execute code
and therefore no permission is needed.

To resolve this issue, the RiskScore will additionally consider other risk
signals than permission sets of applications. Furthermore, the existing per-
mission based indicators will be enhanced.

4.1 Code Based Risk Signals

To resolve the previously mentioned disadvantage of the model RiskScore
is based upon, another set of risk signals is introduced. The ability to load
and execute code. In [44] the occurrence probability of dynamically loaded
code and java native code execution in applications is described as very low
(about 0.58% for dynamic code loading and 4.52% for native code execu-
tion). This thesis is no able confirm those results. A in-depth analysis of the
standard and the malware repository detected an integration rate of 2.9%

19

20 CHAPTER 4. FROM RISK TO A RISK SCORE

among benign applications and 19.6% among the malware samples.

Typically all Dalvic bytecode is contained within the calsses.dex file. But,
using the DexClassLoader it is possible for applications to load classes from
other files, e.g. .jar or .apk, even if they are stored on remote servers. This
gives developers the power to radically change an applications behavior and
to conditionally become malicious, e.g. after the approval of Google’s ap-
plication vetting system, the Bouncer. For this reason, applications which
perform dynamic code loading expose users to greater risk than other ap-
plications without this ability.

Native code execution is more common than dynamic code loading but
should not be considered less dangerous. Using JNI an Android application
is able to execute code programmed in another language than Java. This ex-
poses the kernel’s call interface to those applications and enables them to ex-
ploit kernel vulnerabilities and privileged daemons to "root” the system [44].
To implement JNI it is necessary to either call System.loadLibrary(),
Runtime.getRuntime () .loadLibrary() or System.load() [41]. There-
fore, it is easy to detect and can be penalized. The analysis of 20303 appli-
cations from the standard repository revealed that about 21% integrate JNI
the same analysis applied on 1260 malware applications showed an integra-
tion rate of 54.12% for the malware repository.

At Black Hat USA 2012 [40] the Trustwave Spiderlabs presented ”SMS
Bloxor”, an application which was able to circumvent Google’s Bouncer by
using native code execution of JavaScript code and dynamic code loading of
Javascript code out of the JavaScript code.

Besides JNI, Runtime.exec () can be used to gain root priviliges on a mobile
device running Android. DroidDream tries to achieve root priviliges using
among other vulnerabilities the rageagainstthecage exploit which is based
on the creation of many processes via Runtime.exec() [7], [44].

An analysis conducted as part of this thesis has revealed that about 50% of
all malware applications use Runtime.exec () in comparison to about 21% of
applications within the standard repository. An in-depth analysis has shown
that about 52% of the malware applications containing Runtime.exec() in-
cluded Runtime.exec() only because of ad - or analytic libraries. The same
analysis depicted that about 67% of the including applications out of the
standard repository included Runtime.exec() only because of ad - or ana-
lytic libraries. Therefore about 7% of the standard applications and about
24% of the malware samples included Runtime.exec() as part of their own
functionality.

4.2. PERMISSION BASED RISK SIGNALS 21

Therefore, dynamic code loading, native code execution and Runtime . exec()
calls are established as risk signals within the proposed risk evaluation frame-
work, because of their heightened occurrence within malware samples. The
detailed results of this analysis can be learned from Table 4.1.

Risk signal %benign Y%malware
DC 2.90% 19.60%
JNI 21.57% 54.12%
Runtime.exec() 7.06% 24.04%

Table 4.1: JNI, dynamic code loading (DC) and Runtime.exec() rates

In course of this lightweight static analysis, it is possible to speculate about
the misuse of sensitive and private information and therefore to enhance
the permission based risk signals. As Enck et al. discovered in ’A Study
of Android Application Security’ ad - and analytic libraries are widespread
within Android applications. About 51% of all applications include one or
several ad - or analytic libraries and several of those libraries access sensitive
information [1§]. An analysis implemented affirmed the results of Enck et al.
and extended them with more libraries. Table 4.2 shows the implementation
rate and the number of different permission guarded API calls for the five
most common advertisement and analytic libraries.

Library package Integration rate Different API calls
com.google.ads.* 46.46% 5
Fanalytics.* 14.36% 15
com.flurry.* 11.14% 5
com.millennialmedia.* 9.62% 6
com.bugsense.* 8.45% 9

Table 4.2: Ad- and analytic library statistics

Since the purpose of those libraries is well known, it is easy to speculate that
permission protected API calls are data flow sources. For this reason, the use
of such libraries will be a risk signal on its own if the application possesses
one or more of the permissions requested by the integrated libraries.

4.2 Permission Based Risk Signals

Android’s mandatory access control system and the resulting permissions
are a good detection instrument of riskiness if one is concerned e.g. with in-
formation theft. Besides the possession of a specific permission which guards
a security asset, the possession of certain permission configurations which
are particularly dangerous will be considered by the RiskScore.

22 CHAPTER 4. FROM RISK TO A RISK SCORE

Enck et al. have developed a set of security rules which are basically com-
binations of permissions and which should not be possessed by an applica-
tion [19]. Although, some of the security rules are outdated, since Google
has updated the permission system, most of those rules still apply. Table
4.8 shows the sanitized set of Kirin security rules.

Kirin Rule

SET_DEBUG_APP

READ_PHONE_STATE, RECORD_AUDIO, INTERNET
PROCESS_-OUTGOING_CALLS, RECORD_AUDIO, INTERNET
ACCESS_FINE_LOCATION, INTERNET, RECEIVE_ BOOT_COMPLETED
ACCESS_COARSE_LOCATION , INTERNET, RECEIVE_.BOOT_-COMPLETED
RECEIVE_SMS, WRITE_SMS

SEND_SMS, WRITE_SMS

Table 4.3: The set of the sanitized Kirin rules

Only 3.76% of all benign applications and 2.53 % of malware applica-
tions fulfilled the first rule. The corresponding rates for RECEIVE_SMS,
WRITE_SMS and SEND_SMS, WRITE_SMS are 0.21% and 0.18% in the
standard repository and 28.80% and 30.79% for the malware samples. All
the other rules do not apply at all. In spite of the fact that the Kirin rules
only infrequently correspond to a subset of the permissions of benign ap-
plications or malicious applications, those configurations are nevertheless a
good indicator of riskiness. Matching applications still have the ability to
cause harm despite their repository affiliation.

Another enhancement made is the analysis of malware configurations. Dur-
ing the analysis of 1260 different malware samples of 49 different malware
families, it was possible to identify permission and code-based fingerprints
for malware applications. Those fingerprints correlate in some parts with
the Kirin rules and in other parts they complement it. The only identi-
fiable fingerprint that is not already a Kirin rules and has significance is
the combination of READ_SMS and WRITE_SMS. 50.31% of all malware sam-
ples implement this rule in contrast to only 0.21% of all applications in the
standard repository.

4.3. OTHER RISK SIGNALS 23

4.3 Other Risk Signals

To augment the effectiveness and to compensate weaknesses of the model
which underlies the RiskScore, a variety of risk signals have been considered
besides permission-based and code-based risk signals. Other risk signals
are mainly community-based and have been extracted from the PlayStore.
However, this community-based information, which has been examined as
potential risk signals in previous studies, have been determined to be inef-

fective .

Since the number of permissions is a basic risk score, it is possible to judge
the usability of community-based meta information as a risk signal by ob-
serving the correlation of the potential signal with the number of requested
permissions. Meta information is disqualified as a risk signal iff inputs with
positive meaning, like the average star rating of an application, correlate
positively with the number of permissions and vice versa. Figure 4.1 and
Figure 4.2 depict the described correlations.

-
®

- AN A 2 A .
=] =
NN AN AN
V4 LI VAN
.\ / £,/ N\ /N N .
£ =l ¢ L—-—.—-" \/
2, \/ N

&0 h 15 T T T T T T T T

0 ' 2 ! 4 ' B ! 8 ! 10 ' 12 ! 12 ' 16 ' o 2 N ¢ & 1 = " ®
number of permissions number of permissions

N
e
tings
N
LT

ﬁ&

~

num I::'er
be
L

/

>

=

numbker of ratings

number of permissions number of permissions

o

N\ /AVA\/A‘/'\VN j v
AV y \/

"
wo

number of ratings
P S R T
.
//
~L_
rating
VI I

0 2 4 [B 10 12 14 18 i 2 3 3 S 10 12 14 18

number of permissions number of permissions

Figure 4.1: Correlation of the amount of five star, four star, three star, two
star one star rating and the average rating with the number of permissions.
(From top left to bottom right)

24 CHAPTER 4. FROM RISK TO A RISK SCORE

1,20E+06

w LOOE+06 Iy
H l

6,00E+05 /
4,008k M/’AW

2,00E+05 _-/

0,00E+00

T
s
il

number of downloa

0 1 2 3 4 5 6 F 8 9 10 11 12 13 14 15 16

number of permissions

Figure 4.2: Correlation of the number of downloads with the number of

permissions.

This thesis confirms the findings of which describes the applications
popularity and the community rating as unqualified because both are signals
with positive meaning and both positively correlate with the number of re-
quested permissions. The other community based signals as there are among
else the number of downloads and the single star ratings are disqualified for

the same reason.

Chapter 5

Bayesian Risk Assessment

As mentioned in the previous chapters, the implementation of the RiskScore
is based upon the work of Peng et al.. The following section will introduce
the work conducted in [35] and lays the foundation for the extension and
the further development of this approach, which will be described in the
subsequent section.

5.1 Naive Bayes with Informative Priors (PNB)

This thesis aims at advancing the work of Peng et al. such that two of
their desiderata are fulfilled. The fulfillment the third desideratum, namely
that the risk scoring function shall be easy to explain, does not improve
the risk evaluation framework, therefore it has been decided not to insist
on simplicity if it is not beneficial for the RisScore. The two remaining
constraints are:

1. A risk function is monotonic.
2. Malicious applications generally have a high risk score.

In general, the ¢’th application in the dataset can be represented by the set
of its applications or more formally a; = x; = [2;1,...,2; M|, where M is
the number of permissions. Now, the fist desideratum can be formalized by
the following definition.

Definition 1. A risk scoring function rscore : {0,1}™ — R is monotonic
if and only if for all x;,xz; € {0,1} holds that

k(i =0Azj=1AYVMM #Ek = Tim = Tjm))
= [fzi) < f(zj)

The most promising probabilistic generative model for risk scoring is the
naive Bayes with informative priors, since all other introduced models either
are less accurate or lose the monotonicity constraint [35].

25

26 CHAPTER 5. BAYESIAN RISK ASSESSMENT

The PNB defines the risk scoring function as a monotonically decreasing
function with respect to probability of an application being generated, so
that a lower probability means a higher risk score. For example, using
rscore(a;) = —In(p(a;|0)) satisfies the condition.

The risk scoring function can be defined as rscore : {0,1} — R. The
concrete rscore(x;) of an application z; can now be computed by M as-
sumed to be independent Bernoulli random variables

p(:) P(%im) O™ (1 —) (1= %im)

I
=t
I
=t

where 6, = p(zim = 1) is the Bernoulli parameter. Using a Beta prior
Beta(0p|am, by) over each Parameter 6,,, to avoid overfitting within the
estimation and to fit the model to noise, it is possible to determine the
Maximum a posteriori (MAP) estimation

A Zz]\il a%',m"‘am
N + a,, + by,

where N is the total number of applications for this model estimation. Since
the informative priors differentiate permission categories one assigns, de-
pending on the risk level of an permission, different values a,, and b,,. A
possible differentiation of risk signals is described in [3§], this selection can
still be subclassified in risky and high risk permission with the high risk
category consisting of a manually selected subset of the described selection.
For most risky permissions a,, = 1, b,, = 2N, for risky permissions a,, = 1,
b, = N and for all the other permissions a,, = 1 and b,, = 1. But, the
categorization can easily be extended to more categories. This approach
is widely used in Naive Bayes models to implement knowledge which is not
part of the data set. Table 5.1 shows the permissions classified as dangerous
and most dangerous.

5.1. NAIVE BAYES WITH INFORMATIVE PRIORS (PNB) 27

Permission Category

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATTON
PROCESS_OUTGOING_CALLS

CALL_PHONE

READ_CONTACTS Most Dangerous
WRITE_CONTACTS

READ_SMS

SEND_SMS

INSTALL_PACKAGES
READ_CALENDAR
READ_HISTORY_BOOKMARKS
READ_PHONE_STATE
RECEIVE_MMS

RECEIVE_SMS
RECORD_AUDIO)
RECEIVE_WAP_PUSH
READ_LOGS

INTERNET
MOUNT_UNMOUNT_FILESYSTEM
WRITE_CALENDAR
WRITE_HISTORY_BOOKMARKS
WRITE_SMS
WRITE_EXTERNAL_STORAGE
NFC

GET_ACCOUNTS

BLUETOOTH
BLUETOOTH_ADMIN

Table 5.1: Classification of Android permissions

Dangerous

However, the priors are not limited to the passing of additional infor-
mation, it can also be used to ensure the fulfillment of the monotonicity
property. It is obvious that every risk scoring function achieves this condi-
tion if Vm € {1,..., M} 6,, < 0.5 holds, since changing any x; ,, from 0 to
1 changes the probability by a factor of 1frgm, which is less than 1 if and
only if 6,, < 0.5. Therefore, the monotonicity property will always hold if
one chooses the right prior.

An analysis conducted as part of this thesis indicates, most malware sam-
ples request more permissions than most applications out of the standard
repository, these findings confirm the findings of Peng et al.. On average,
applications from the malware repository requested 9.91 permissions and
standard repository applications requested 6.53 permissions. This implies

28 CHAPTER 5. BAYESIAN RISK ASSESSMENT

that the ranking of malware applications will be higher than the ranking
of standard repository applications. Therefore, the second desideratum is
fulfilled, too.

5.2 Enhancing the PNB (ePNB)

To augment the PNB it is inevitable to penalize applications if a subset of
their permission sets matches at least one of the sanitized Kirin rules or mal-
ware fingerprints. To implement this, a penalty factor % is added where r is
the number of matching rules and fingerprints. An extensive search revealed
that v = N provides the best results.

Furthermore, the detection of native code execution, dynamic code load-
ing and Runtime.exec() is an important part of this thesis, because those
functionalities are among the most dangerous ones and can be used to ex-
ecute root exploits or to conceal malicious activities. It is reasonable to
constitute them as own permissions, as they permit those applications that
implement them to perform possibly dangerous activities which would not
have been possible before.

Since the integration of ad - or analytic libraries that request a permission
into applications that possesses the corresponding permission enables to de-
duce that most likely the guarded information will be leaked, it is necessary
to penalize such configurations appropriately. The best way to realize this
is to incorporate the semantic information into the prior distributions and
to add a new level of riskiness above most risky. If now guarded API calls
exist within ad - or analytic libraries which are integrated into applications
that possess the needed permission to perform this call, the corresponding
permission will be raised to the next level.

The ePNB still fulfills the monotonicity property.

Proof. Changing a permission x;,, from 0 to 1 has more extensive effects
now and to prove monotonicity it is necessary to distinct four different cases.
The added risk signal could cause an application to fulfill a Kirin rule or a
malware fingerprint (1), the risk signal could affect another risk signal(2),
none of the cases mentioned before could apply (3) or both of them could

apply (3).

(1) If this is the case, then the risk score changes by a factor of #.
% < 1 obviously holds for all N > 1 and the value of 1€'gm is discussed
in part (3) of the proof.

(2) This can only occur if the application integrates an ad- or analytic

5.2. ENHANCING THE PNB (EPNB) 29

library or if the changed signal ’integrates’ such an library into the
application. Either way the score changes by a factor less or equal to
one. If the application possesses a permission that can be exploited by
the newly added library signal or if the application already possesses
the library signal and the application gains the permission that cor-
responds to a already possessed library signal the score changes by a
factor a < 1. If the application does not own the permission associated
with the added library signal, then the score does not change.

(3) As section 5.1 shows, every newly introduced risk signal is associated

with a value 6, < 0.5 and therefore, the possession of any x; ,,, changes

Orm
the score by a factor of . <1l

(4) Concluding from (1), (2) and (3) it holds that if both cases co-occur,
the resulting risk score decreases too.

Since for all cases the risk score either decreases or remains the same, the
ePNB still fulfills the monotonicity property. O

The second desideratum can be proven by arguing that the occurrence
probability of all risk signals is significantly higher if one considers malware
applications. This has been shown in the sections 4 and 5.

30

CHAPTER 5. BAYESIAN RISK ASSESSMENT

Chapter 6

Implementation

After the theoretical development of the risk evaluation framework has been
conducted during the last chapter, the following sections are devoted to the
description of the implementation of the concrete tool called RiskScore. The
tool itself is programmed in Java and can, due to its modular design, either
be used as a standalone application or be integrated into security focused
applications. Figure 6.1 depicts a high-level overview of the RiskScore.

Manifest
Parser

Interface Algorithm |-1» %Output

-apk - file DEXFile
Parser

Figure 6.1: High-level view of the risk assessment framework.

As the abstraction shows, the RiskScores components can roughly be
divided into three groups of different functionality. Each group will be ex-
plained in detail in the following sections.

Before the actual techniques responsible for data parsing can be explained,
it is essential to at least sketchily understand the structure of the application
repository used in this thesis, since the design choices of the implementation
are affected by it. The application repository consists of the data of 20302
different applications. Thereby, each application packed as an ’.apk’ file is
stored in a directory matching the applications name. The malware samples
are contains in a different repository that contains 1260 different *.apk’ files.

31

32 CHAPTER 6. IMPLEMENTATION

6.1 Application Package Parsing

To extract the needed permission information as well as the desired code-
based risk signals, it is necessary to process the apk package of an applica-
tion, since it contains the ’classes.dex’ as well as the ’AndroidMaifest.xml’.
Therefore both, the ManifestParser instance and the DEXFileParser in-
stance work on the apk package after their creation.

6.1.1 Manifest File Parsing

The ManifestParser uses a JarFile to extract the AndroidMaifest.xml
from the application package. After that, the manifest file gets decom-
pressed and the relevant information gets stored into a Set.

Within an application’s manifest file several elements can appear, however
only the <manifest> and the <appliaction> element are required. Among
elements of the same level no particular ordering is needed, except for the
<activity-alias> element that always has to follow the <activity> ele-
ment it is an alias for. Furthermore, formally, it is not necessary to assign
attributes to elements, but in order to be adequately usable, some of them
are nevertheless required, e.g. to declare the permissions used. Most of the
assignable attributes start with an ’android:’ prefix, the only exceptions
are some attributes of the root element [13].

It is obvious that the only relevant information are the <permission> el-
ements and their associated ’android:name’ attributes. Since all permis-
sions, even those declared by developers, are contained, it is still inevitable
to sanitize the extracted permission set. However, this can be easily accom-
plished by composing the intersection between the extracted risk signal set
and the set of predefined Android permissions. Therefore, each permission
is identified by its stated ’android:name’.

6.1.2 Dex File Parsing

The DEXFileParser integrates a disassembler to translate the ’classes.dex’
file into an more convenient assembly language. The RiskScore itself in-
cludes the dexlib, that is part of the baksmali tool, to read all needed code
based information of an application [4]. However, there exist alternatives,
like dexdump, the default disassembler integrated in the Android SDK [16]
or the dedexer [34].

But in comparison, Baksmali offers a better and more structured code base
than the dedexer which simplified the integration into the DEXFileParser
and dexdump was disqualified for this task, since its output is harder to

6.1. APPLICATION PACKAGE PARSING 33

process.

After the creation of a DexFile instance, the whole classes.dex file is read
and stored in different objects containing the data. The relevant data con-
tainers for this thesis are:

Codeltem: A CodeItem contains several Instrcutions and can be explic-
itly matched to one method containing it. The method’s ID is also
stored in a field of the CodeItem.

Instruction: An Instruction resembles a human readable mnemonic of
an opcode in the dex bytecode.

Invokelnstruction: Some Instructions can also be represented as an
InvokeInstruction, but only if it is an instruction that actually calls
a method.

Figure 6.2 shows a code example of a simple HelloWorld program [4].
To understand it, it is necessary to get to know the used representation of
primitive types, reference types, methods and fields.

.class public LHelloWorld;

.super Ljava/lang/Object;

.method public static main([Ljava/lang/String;)V .registers 2

sget-object v0, Ljava/lang/System;->out:Ljava/io/PrintStream;
const-string v1, ”"Hello World!”

invoke-virtual v0, v1, Ljava/io/PrintStream;->println(Ljava/lang/String;)V
return-void

.end method

Figure 6.2: A simple smali code example.

Primitive types are either void (’V’), boolean (’Z’), bate ('B’), short (’S’),
vhar ("C’), int ('T’), long (’J’), float (’F’) or double ('D’). Objects take the
form of ’Lpackage/ObjectName;” where the 'L’ indicates that this is an ob-
ject type. Arrays can be identified because of a ’[” in front of the type of the
array, for more dimensional arrays the [’ has to be repeated.

"Lpackage/ObjectName;->MethodName(III)Z’ is the representation of a Java
method. Lpackage/ObjectName identifies the class that contains the method

and MethodName refers to the name of the method. Furthermore, (III)Z

is the method’s signature with the unseperated parameters III (here, three

ints) and Z is the return type (here, boolean).

Lastly, fields are diplayed similar to methods, first of all the containing
class is identified and then the field itself by ’FieldName:Type’.

34 CHAPTER 6. IMPLEMENTATION

The DEXFileParser extracts two different information out of the applica-
tions bytecode. Therefore, the implemented algorithms search the bytecode
for information about function calls out of ad- or analytic libraries that are
accessing private information and potentially dangerous function calls that
allow the execution of native code, enable to dynamically load code and calls
to Runtime.exec().

The first step of the extraction is to identify interesting code sections, namely
those belonging to ad- or analytics libraries, since it is possible to speculate
about their functionality and for that reason to infer if an accessed permis-
sion guarded API-call is legitimate. It is not legitimate if any data is accessed
that reveals private information. Hence, all the CodeItems are checked if
they are part of a method that is part of an ad- or analytic library and if
they belong to such a library it is verified if they contained instructions that
are associated with an illegitimate function call. Function calls that match
these criteria are added to the set of found risk signals.

To filter these libraries a package blacklist is used similar to the one created
by Enck et al. but the here integrated blacklist is more extensive [18], [36].
Furthermore, the association of instructions with permission calls is based
upon work of Felt et al. [20].

The second part of the dex file parsing aims at identifying potentially dan-
gerous function calls implemented by the scanned application. To do so,
the parser verifies for all Instructions if they are InvokeInstructions
and if they are, it is checked whether or not they correspond to blacklisted
instruction. If they do they are added to the set of risk signals.

6.2 The Application Data Container

Applications are a data container for the extracted risk signals. Therefore,
an Application object only contains the set of risk signals, besides a unique
ID that matches the absolute path of the associated application.

6.3 The Interface

The Interface is responsible for the communication between the Algorithm
and the parsers. It is used for the initialization of the algorithms as well as
for the risk assessment of applications.

To instance an interface object, the algorithm used for the risk evaluation
has to be assigned to the constructor, after that it is possible to initialize

6.4. THE ALGORITHM 35

the algorithm object by handing it a set of Application instances or if the
possibility is provided that the algorithm instance is able to discretely access
a data set the corresponding method can be set off.

The application object is created by joining the information provided by
the two used parsers. Therefore, each parser gets initialized with the cor-
responding path of an application. After that, the ManifestParser gener-
ates a set containing all permissions demanded by the application and the
DEXFileParser provides all the code-based risk signal data in a set. Since
every parser outputs a set of Strings, this information can easiliy be merged
into a new set comprising all the risk signals.

If an Algorithm object shall be initialized with a set of Applications this
procedure has to be repeated and the generated Application instances have
to be stored into a set. But, if only this risk of the parsed application has
to be computed, solely the Application is handed to the algorithm.

In case, it is necessary to adapt the RiskScore to the evaluation of e.g.
Chrome extensions, this is the Class that needs to be changed. The parsers
generating the new risk signals have to be inserted here replacing the old
ones. It is also possible to integrate a new evaluation algorithm, but since
the new algorithm can be handed at initialization time of the Interface
object, the class does not need to be changed at all.

6.4 The Algorithm

Algorithm is only the abstract base class of an risk assessment algorithm.
Every algorithm used in this tool has to inherit from Algorithm to be usable
by an Interface instance, since the abstract class declares the methods an
Interface object addresses.

6.4.1 Risk Assessment using The BayesianAlgorithm

The BayesianAlgorithm class is a concrete implementation of the theoret-
ical technique developed in Chapter [4 It uses a data set that has been
generated beforehand to speed up the instancing of this class. This pre-
computation is beneficial for the whole framework, since the assembling of a
data base large enough to be significant is not feasible on mobile devices, the
required amount of data and computational power would simply be too high.

The data base uses a JSON-like representation and consists of colon (’:%)
separated name/value pairs which themselves are separated by a newline
character. The slightly different structure has been chosen to make use
of the built-in feature of the used BufferedReader, it reads files linewise.

36 CHAPTER 6. IMPLEMENTATION

Therefore, the choice of the BufferedReader is also advantageous for the
overall running time of the risk evaluation framework.

The risk prediction of an application consists of two consecutive steps. First,
the needed database gets imported.

After that, the risk signal set is matched against the malware fingerprints
and Kirin rules, and an integer counter is incremented each time the risk
signal set corresponds to one of the rules or fingerprints. At the same time,
for each permission, its penalty class is determined. Therefore, the risk sig-
nal set contains the penalized permissions a second time with a prepended
"L’ if ad- or analytic libraries have made use of them. For every permission
that is identified as a higher risk permission that way, the penalty level is
raised.

The risk assessment gets finished by multiplying all risk values of the signals
together.

Chapter 7

Evaluation

To evaluate the RiskScore it is necessary to specify a sign of quality that the
tool has to fulfill. Here, the measure of efficiency is based upon the second
desideratum, namely that malicious applications generally have a high risk
score, so that the generated score can be used to classify applications. Al-
though, this measure does not fully correspond to all the qualities demanded
from a risk score, like the presentation of a risk value in contrast to malware
identification, it is the most common measure used to evaluate risk assess-
ment tools and therefore it allows to compare the results of this analysis to
those of other tools developed, e.g. [38], [35].

Besides a high risk score for malware applications, it is required that benign
applications result in a significantly smaller score. Together, both require-
ments make it possible to differentiate benign and malicious applications.

7.1 Detailed Experimental Results

The RiskScore evaluation uses a 10-fold cross validation. Therefore, 10 sub-
sets of the standard repository have been created. One subset was used as
the training set of the risk evaluation tool and the other 9 datasets were
tested by the framework. In a second step, the malware repository was an-
alyzed by the RiskScore using each generated training set.

Figure 7.1 shows the experimental results that were generated by the evalu-
ation of the PNB and the ePNB algorithm. At the first sight, the diagrams
display similar results for both risk score functions. However, if the corre-
sponding right-positive and false-positive rates are analyzed in detail, the
ePNB algorithm performs better than the PNB algorithm.

37

38 CHAPTER 7. EVALUATION

=== PNBright positive

~= = PNB false negative

e PN right positive

e GPINB false negative

0 — v v v v v v v — y
0 5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 85 90 95 100105110115120125130135140145150155160165
threshold

Figure 7.1: Comparison of the risk scoring algorithms

The ePNB more precisely differentiates between malicious applications
and benign applications. If a malware detection rate of 81.22% is desired, the
PNB falsely classifies about 29.22% of the benign applications as malware.
However, the ePNB algorithm achieves at a detection rate of 80.32% a lower
false-negative rate of about 24.01%.

7.2 Comparison to Other Tools

As pointed out before, the ePNB clearly outperforms the PNB. However,
over the time a variety of tools for risk assessment have been created. This
section discusses the results of the ePNB algorithm compared to Kirin [19]
and a SVM classifier [38] which are among the most famous techniques for
risk detection.

Since Kirin is only based on the fulfillment of its rules, it is not feasible
to generate to depict the results of the Kirin rules in a figure. The Kirin
rules applied on the malware dataset and PlayStore repository result in a
detection rate of about 52.61% and a false-negative rate of about 4.02%.
This is better than the result achieved by the ePNB, if a false-negative rate
of less than 4% is demanded. However, the detection rate of only about
52.61% is to low and since the Kirin rule based detection is not adaptable,
the ePNB is far more suitable as a risk scoring algorithm.

The risk scoring technique described in [38] uses a weighted SVM classi-
fier with RBF Kernel to detect malicious applications. The detection rate
of this approach is settled at about 80.99% whereas the false-negative rate
only is about 8.12% at the same time. This ratio clearly outperforms the
ePNB approach which at best achieves a right-negative/false-negative ratio
of 79.32%/24.01%. But, the SVM classifier is only able to generate binary

7.2. COMPARISON TO OTHER TOOLS 39

(1 for benign applications and -1 for malicious applications) results. This,
however, is not a desired output of a risk score, since it does not present
a measure of the ability of an application to perform malicious activities.
However, this thesis aims at creating a score that also presents minor risks
to the user, instead of simply categorizing applications.

40

CHAPTER 7. EVALUATION

Chapter 8

Conclusion

This thesis provides a fast and reliable framework for risk assessment of
Android application. However, the implementation of the risk scoring al-
gorithm is not limited to this function, it is easily adaptable to the task
of analyzing other software, e.g. Chrome extensions. In contrast to other
approaches in this area, the RiskScore uses multiple risk signal sources to
enhance its accuracy and still remains efficient considering its running time.

Therefore the selection of suitable risk signals was an essential part of this
thesis. Chapter [displayed the variety of risk signals and evaluated their
convenience. Besides the requested permissions of an application, code based
risk signals and community based risk signals have been considered. How-
ever, this thesis was able to prove the impracticality of community based
signals. But, since the riskiness of an application is a measure of an appli-
cation’s ability to perform dangerous activities, it is necessary for the risk
signal set to additionally comprise code based information, because there
exist dangerous functionalities, like e.g. root exploits, do not necessarily
require permissions.

The RiskScore itself benefits from the diversity of risk signals. The im-
plemented framework outperforms other comparable risk assessment tools,
since it is the only tool that generates a simple and comprehensible output
and that is not restricted to malware detection. On the contrary, RiskScore
generates output that enables to subclassify the riskiness of an application
at will. Especially users benefit from this property of the risk score, since it
enables them to define their own threshold value that an application’s score
is not allowed to exceed. Therefore the risk score helps users to secure their
mobile device at a rate that suits them best.

41

42

CHAPTER 8. CONCLUSION

Bibliography

1]

Android overview. http://www.openhandsetalliance.com /android_
overview.html.

Bytecode for the dalvik vm. http://source.android.com/devices/tech/
dalvik/dalvik-bytecode.html.

Open handset alliance. http://www.openhandsetalliance.com/index.
html.

smali. an assembler/disassembler for android’s dex format.
https://code.google.com/p/smali/source/browse/dexlib/src/main/
java/org/jf/dexlib/?7r=a43de2411e7d8df902819554b21a273b58828d0a.

Roberta Cozza Carolina Milanesi Annette Zimmermann CK Lu Tuong
Huy Nguyen Sandy Shen Hugues J. De La Vergne Atsuro Sato An-
shul Gupta, David Glenn. Market share: Mobile phones by region and
country. http://www.gartner.com/id=2482417.

AppBrain. Number of available android applications.
http://www.appbrain.com/stats/number-of-android-apps.

Axelle Apvrille. Android droiddream wuses two vulnerabil-
ities. http://blog.fortinet.com/android-droiddream-uses-two-
vulnerabilities/.

Dan Bornstein. Dalvik virtual machine internals. Google I/O 2008,
2008.

Tim Bray. Exercising our remote application removal fea-
ture. http://android-developers.blogspot.de/2010/06/exercising-our-
remote-application.html.

Pern Hui Chia, Yusuke Yamamoto, and N. Asokan. Is this app safe?:
a large scale study on application permissions and risk signals. In Pro-
ceedings of the 21st international conference on World Wide Web, pages
311-320. ACM, 2012.

43

44

[11]

[20]

BIBLIOGRAPHY

Denis Maslennikov Christian Funk. Obad -
the most sophisticated android trojan ever.
https://www.securelist.com/en/analysis/204792299/IT Threat_ Evo-
lution_Q2_2013#16.

Android developers. Android ndk.
http://developer.android.com/tools/sdk /ndk/index.html.

Android developers. The androidmanifest.xml file.
http://developer.android.com/guide/ topics/manifest /manifest-
intro.html.

Android developers. Package index.

http://developer.android.com/reference/.

Android developers. permission. http://developer.android.com/guide/
topics/manifest /permission-element.html.

Android developers. Tools help. http://developer.android.com/tools/
help/index.html.

William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX conference on Oper-
ating systems design and implementation, pages 1-6. USENIX Associ-
ation, 2010.

William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaud-
huri. A study of android application security. In Proceedings of the
20th USENIX conference on Security, pages 21-21. USENIX Associa-
tion, 2011.

William Enck, Machigar Ongtang, and Patrick McDaniel. On
lightweight mobile phone application certification. In Proceedings of

the 16th ACM conference on Computer and communications security,
pages 235-245. ACM, 2009.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In Proceedings of the 18th

ACM conference on Computer and communications security, pages
627-638. ACM, 2011.

Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and
David Wagner. A survey of mobile malware in the wild. In Proceedings

of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, pages 3—14. ACM, 2011.

BIBLIOGRAPHY 45

[22]

Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. An-
droidleaks: automatically detecting potential privacy leaks in android
applications on a large scale. In Proceedings of the 5th international con-
ference on Trust and Trustworthy Computing, pages 291-307. Springer-
Verlag, 2012.

Google. Apps - google play. https://play.google.com/about/apps/.
Google. Google play. https://play.google.com/store.

Michael C. Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian
Jiang. Riskranker: scalable and accurate zero-day android malware
detection. In MobiSys, pages 281-294. ACM, 2012.

Rob van der Meulen Janessa Rivera. Gartner says asia/pacific led
worldwide mobile phone sales to growth in first quarter of 2013.
http://www.gartner.com/newsroom/id/2482816.

Rachel King. Google i/o by the numbers: 900 million android acti-
vations. http://www.zdnet.com/google-io-by-the-numbers-900-million-
android-activations-7000015432/.

Shen Lin and Brian W. Kernighan. An effective heuristic algorithm for
the travelling-salesman problem. Operations Research.

Hiroshi Lockheimer. Android and security.
http://googlemobile.blogspot.de/2012 /02 /android-and-security.html.

Sara Motiee, Kirstie Hawkey, and Konstantin Beznosov. Do windows
users follow the principle of least privilege?: investigating user account
control practices. In SOUPS. ACM, 2010.

Sean Schulte Nicholas J. Percoco. Failures of au-
tomated malware detection within mobile applica-
tion markets. https://media.blackhat.com/bh-us-

12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland
“WP.pdf.

Jon Oberheide. Dissecting android’s bouncer.
https://blog.duosecurity.com/2012/06/dissecting-androids-bouncer/.

Jon Oberheide. Dissecting the android bouncer.
http://jon.oberheide.org/blog/2012/06/21 /dissecting-the-android-
bouncer/.

Gabor Paller. Understanding the dalvik bytecode with the dedexer tool.
http://pallergabor.uw.hu/common /understandingdalvikbytecode.pdf.

46

[35]

[39]

[40]

[41]

[42]

BIBLIOGRAPHY

Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul
Potharaju, Cristina Nita-Rotaru, and Ian Molloy. Using probabilistic
generative models for ranking risks of android apps. In Proceedings of
the 2012 ACM conference on Computer and communications security,
pages 241-252. ACM, 2012.

Artém Perlov. Saarland University, Department of Computer Science,
2013.

Marc Rogers. The bearer of badnews.
https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-
malware-google-play /.

Bhaskar Pratim Sarma, Ninghui Li, Christopher S. Gates, Rahul
Potharaju, Cristina Nita-Rotaru, and Ian Molloy. Android permissions:
a perspective combining risks and benefits. In SACMAT, pages 13-22.
ACM, 2012.

Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. Virtual
machine showdown: stack versus registers. In Proceedings of the 1st
ACM/USENIX international conference on Virtual execution environ-
ments, pages 153-163. ACM, 2005.

Trustwave. Pinpoint your vulnerabilities. protect your business.
https://www.trustwave.com/spiderlabs/.

Christian Ullenboom. Eine c-funktion in ein java-programm einbinden.
http://openbook.galileocomputing.de/java7,/1507_21_002.html#dodtp
8235387¢c-0f4e-45bf-9856-d4a0082e4a2c.

Timothy Vidas and Nicolas Christin. Sweetening android lemon mar-
kets: measuring and combating malware in application marketplaces.
In CODASPY, pages 197-208. ACM, 2013.

Brad Ward. Google: 900 million android activations, 48 bil-
lion app installs. http://www.androidauthority.com/google-io-android-
activations-210036/.

Wu Zhou Xuxian Jiang Yajin Zhou, Zhi Wang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In NDSS, 2012.

Yajin Zhou and Xuxian Jiang. Dissecting android malware: Charac-
terization and evolution. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, pages 95-109. IEEE Computer Society, 2012.

	Introduction
	Motivation & Thesis Objective
	Outline

	The Android Operating System
	Android Kernel & Middleware
	Android Runtime & Dalvik Virtual Machine
	The dx compiler
	The Zygote
	Register-based Virtual Machine
	The Bytecode Structure of the DVM

	The Android Application Framework

	RiskScore - A high-level overview
	System Overview
	Design Choices

	From Risk to a Risk Score
	Code Based Risk Signals
	Permission Based Risk Signals
	Other Risk Signals

	Bayesian Risk Assessment
	Naive Bayes with Informative Priors (PNB)
	Enhancing the PNB (ePNB)

	Implementation
	Application Package Parsing
	Manifest File Parsing
	Dex File Parsing

	The Application Data Container
	The Interface
	The Algorithm
	Risk Assessment using The BayesianAlgorithm

	Evaluation
	Detailed Experimental Results
	Comparison to Other Tools

	Conclusion

