
Computational Soundness of Passively Secure Encryption

in Presence of Active Adversaries
Master Thesis

Sebastian Meiser

Supervisor: Dr. Dominique Unruh
Additional reviewer: Prof. Michael Backes

December 2010

Abstract

The goal of this thesis is to modify the CoSP framework [1] in a way that allows the
usage of encryption schemes that are not necessarily secure under IND-CCA, but under
IND-CPA. To ensure the soundness, however, we show how to slightly modify some con-
structions in order to distinguish between messages sent by the adversary and messages
constructed by the protocol. We add a new protocol condition which ensures that the
protocol members do not decrypt messages sent by the adversary. Basically, we design a
computational soundness proof for IND-CPA secure encryption schemes based on CoSP.
It turns out that to achieve this, we only need one additional assumption that can be
checked easily for a given protocol. Following the example of [1] we embed the applied
π-calculus into the modified CoSP, extend the given implementation of public-key cryp-
tography and digital signatures and prove it sound in our setting. Finally we present how
to check the additional assumption automatically using automated tools like ProVerif.

1

I hereby declare that I have written this thesis myself
and that I did not use sources and aids other than those listed.

I hereby give the Saarland University the authorization to
publish the thesis in networks and/or data bases.

2

Contents

1 Introduction 5
1.1 Motivation . 5

1.1.1 The computational world and the symbolic world 5
1.1.2 CoSP . 5

1.2 Our contribution . 6

2 CoSP framework 6
2.1 Notation . 7
2.2 Symbolic protocols . 8
2.3 Computational model . 9
2.4 Computational Soundness . 11
2.5 The hybrid execution . 11

3 Symbolic Model 14

4 Simulator Types 16
4.1 The Simulator . 16
4.2 The simulator with an oracle (Simo) . 16
4.3 The faking simulator (Simf) . 17

5 The original proof 17
5.1 Computational implementation . 17
5.2 Key-safe protocols . 18
5.3 Lemma: Indistinguishability of Sim and Simf 18
5.4 Lemma: Indistinguishability of Sim (and the computational execution) . 18
5.5 Lemma: A bad subterm . 19
5.6 Lemma: β does not leak information . 19
5.7 Lemma: Simf is DY . 20
5.8 Theorem (computational soundness) . 20

6 Constructing the proof 20
6.1 Security notions of public key encryption schemes 21
6.2 Approach . 22
6.3 Developing the proof structure . 24

7 Our proof 26
7.1 Overview . 26
7.2 Definitions . 27
7.3 Proving the DY property of the faking simulator 28
7.4 Garbage Free Simulator . 34
7.5 Sim and Simf indistinguishable . 34
7.6 Properties of Sim . 35
7.7 Computational Soundness Theorem . 40

3

8 Computational soundness of the applied π-calculus 41
8.1 Syntax and Semantics of the applied π-calculus 41
8.2 A computational π-execution . 44
8.3 Towards Computational Soundness . 45
8.4 A related protocol . 49
8.5 Transfering GFD-ness . 50

9 Case Study 54
9.1 ProVerif . 54
9.2 Some words about m4 . 55
9.3 The example protocol . 56

10 Conclusion and Future Work 59

11 Appendix 60
11.1 Implementation Conditions . 60
11.2 Protocol Conditions . 61
11.3 Translation Functions . 62
11.4 Case Study Files . 63

11.4.1 file “replay.pv” . 63
11.4.2 file “replay gfd.pv” . 64
11.4.3 ProVerif output for “replay GFD.pv” 66
11.4.4 file “replay norm.pv” . 67
11.4.5 ProVerif output for “replay norm.pv” 69

4

1 Introduction

1.1 Motivation

1.1.1 The computational world and the symbolic world

When proving them secure, cryptographic protocols are usually expressed using prob-
abilistic Turing machines. The messages floating around over different channels are
considered to be bitstrings. To prove the security of a protocol, one often defines a game
between the protocol and an adversary. When there is an adversary that is able to win
the game (i.e. reaches its goal) with some noticeable probability, the protocol is consid-
ered to be insecure, otherwise it is considered to be secure. The adversaries typically
are only restricted in terms of running time and channel access. There may be secure
channels that the adversary cannot see, mildly insecure ones where the adversary can
read messages but not change them and completely insecure chanels where the adversary
even can exchange messages.

The resulting proofs are long, complicated, hard to write, and even harder to verify.
For many years now, there have been ongoing attempts to reduce the complexity of

these proofs by abstracting away probabilities, bitstring operations, and computational
power. So called Dolev-Yao models [5] follow this approach. Here, the adversaries follow
simple rules that allow them to deduce new information out of the messages they have
seen so far. Instead of the bitstring representation that allows for lots of unintended
manipulation, the messages are represented as symbolic terms.

While proofs in a Dolev-Yao model are easier to make and can even be automatised
quite well, in the beginning it was not clear, whether the abstractions are sound. If a
symbolic model is not sound, proving properties by using it might not be enough to
show that the corresponding computational protocol also fulfills the properties. Thus,
proving the computational soundness of a symbolic model is an important task.

Naturally, doing such proofs is not a new thing and thus there are lots of proofs for
computational soundness. One of the problems is, it seems to be that for every proof,
there is also a new formalism, suiting just this situation perfectly, but failing or being
more complicated in other situations.

1.1.2 CoSP

The CoSP paper from M.Backes, D.Hofheinz and D. Unruh [1] provides a framework for
constructing computational soundness proofs for arbitrary symbolic models. A simple
but powerful way for describing the protocols is included. To prove a symbolic model
computationally sound, it is embedded into the CoSP model: A mapping between the
original symbolic protocols and symbolic CoSP protocols is defined. Then the power of
the CoSP model in combination with its already established results can be used to prove
the symbolic model to be computationally sound. While it is necessary to prove the
connection between the (symbolic) CoSP protocol and the original (symbolic) protocol
to be secure, the considerably more ugly step of establishing the connection from the
symbolic to the computational world is provided by CoSP.

5

In order to obtain computational soundness results using the CoSP framework, sev-
eral requirements for symbolic protocols and for their computational implementation
must be met. The “flaw” that we want to adress with this thesis is the following one:
CoSP requires the (computational) implementation to use an encryption scheme which
is secure under IND-CCA2.1 While this may seem reasonable for some protocols, de-
pending on their structure and possible attacks, it is less reasonable when highly secure
encryptions are not even relevant for a given protocol. Our idea is to change the proof
in such a way that the (weaker) IND-CPA property suffices.

1.2 Our contribution

Our contribution is to improve the CoSP proof for public key encryption schemes and
signatures in such a way that it suffices for the computational implementation to use an
IND-CPA secure encryption scheme. We show that by adding an additional assumption
called garbage free decryption this goal can be reached. Every encryption scheme
that can be used for the implementation of protocols with the original result still remains
an option. Additionally, all the schemes that are only secure against IND-CPA but not
against IND-CCA2 can be used. Among others, this includes every stream cipher that
uses the quite popular CBC mode. Even on the level of research it brings some benefits.
When investigating protocols containing zero knowledge proofs, using simple encryption
schemes like ElGamal [6] make proving certain properties easier, compared to complex
IND-CCA2 secure schemes that may contain hashes.

We also embed the applied π-calculus into our new version of CoSP and prove it to
have computational soundness. This has been done for the original CoSP framework
with IND-CCA2 security as a necessary implementation condition. We show, that out
new condition can easily be assured in the world of the applied π-calculus and transferred
to the corresponding (symbolic) CoSP protocol. Finally, we show how to automatically
prove that a protocol has garbage free decryption by using ProVerif.

2 CoSP framework

The CoSP paper [1] provides a general framework for computational soundness proofs.
Since our work is an extension of their result, we will describe the notation and the main
structure of the CoSP proof framework in this section. For more details we recommend
having a look at the original paper.

The notation and the basic definitions in this section are taken from [1]. Additional
comments from me are marked.

1For an overview over some commonly used security notions, have a look at Section 6.1

6

2.1 Notation

• Substitutions:
For a term t and a substitution ϕ we write tϕ to denote that ϕ is applied to t.

• Functions:
For a function f we write f(x := y) when we want to use the function f , but
overwrite the resulting value for x by y. Formally, f(x := y) equals a function g
defined by:

– g(x) = y

– g(z) = f(z) for z 6= x

We call a non-negative function f negligible, iff for every c and sufficiently large n,
f(n) < n−c.
We call a function f overwhelming iff 1− f is negligible.

We call an n-ary function f length regular iff |mi| = |m′i| for i = 1, . . . , n implies
|f(m)| = |f(m′)|.

• Families of variables:
When n is clear from the context, we write x instead of x1, . . . , xn.

• Sets:
For a function f and a set M we denote the preimage of f as f−1(M) := {x :
f(x) ∈M}.
When there is a deterministic polynomial-time algorithm that decides membership
for a set M , we call this set efficiently decidable.
We call M prefix-closed iff x ∈M implies x′ ∈M for all prefixes x′ of x.

Definition 1 (Constructors, destructors, nonces, and messages types). A constructor
C is a symbol with a (possibly zero) arity. A nonce N is a symbol with zero arity. We
write C/n ∈ C to denote that C contains a constructor C with arity n. A message type
T over C and N is a set of terms over constructors C and nonces N. A destructor D of
arity n, written D/n, over a message type T is a partial map Tn → T. If D is undefined
on t, we write D(t) = ⊥.

For evaluation, we define a partial function evalF : Tn → T for every constructor or
nonce F/n as: evalF (t1, . . . , tn) := F (t) if F (t) ∈ T and evalF (t) := ⊥ otherwise. For
every destructor F/n we also define a partial function evalF : Tn → T as: evalF (t) :=
F (t) if F (t) 6= ⊥ and evalF (t) := ⊥ otherwise. We name the functions in the same way
to unify the notation.

We also need to define, which terms can be deduced from a set of other terms. Thus,
we define a deduction relation ` over such a set of terms T here. Intuitively, writing
S ` m for some set S ⊆ T and a term m ∈ T means that m can be deduced from S by
anyone, including the adversary.

7

Definition 2 (Deduction relation). A deduction relation ` over a message type T is a
relation between 2T and T.

The deduction relation ` models the knowledge and the possibilities of the adversary.
Usually the adversary can apply all constructors and destructors. We define S ` t ⇒
S ` C(t) for every constructor C and S ` t∧D(t) 6= ⊥ ⇒ S ` D(t) for every destructor
D, respectively.

Definition 3 (Symbolic model). A symbolic model M = (C,N,T,D,`) consists of a
set of constructors C, a set of nonces N, a message type T over C and N with N ⊆ T,
a set of destructors D over T, and a deduction relation ` over T.

2.2 Symbolic protocols

Definition 4 (CoSP protocol). A CoSP protocol Πs is a tree with a distinguished root
and labels on both edges and nodes. Each node has a unique identifier N and one of the
following types:

• Computation nodes are annotated with a constructor, nonce, or destructor F/n
together with the identifiers of n (not necessarily distinct) nodes. Computation
nodes have exactly two successors; the corresponding edges are labeled with yes
and no, respectively.

• Output nodes are annotated with the identifier of one node. An output node has
exactly one successor.

• Input nodes have no further annotation. An input node has exactly one successor.

• Control nodes are annotated with a bitstring l. A control node has at least one and
up to countably many successors annotated with distinct bitstrings l′ ∈ {0, 1}∗.
(We call l the out-metadata and l′ the in-metadata.)

• Nondeterministic nodes have no further annotation. Nondetermininistic nodes
have at least one and at most finitely many successors; the corresponding edges
are labeled with distinct bitstrings.

We can define a probabilistic CoSP protocol by assigning the nondeterministic nodes
a probability distribution over its successors. Probabilistic protocols are an important
step between the symbolic world and the computational world. While they still work on
symbolic terms, their behaviour can be analysed more closely and it is possible to talk
about the probability for certain events to take place.

Definition 5 (Probabilistic CoSP protocol). A probabilistic CoSP protocol Πp is a CoSP
protocol, where each nondeterministic node is additionally annotated with a probability
distribution over the labels of the outgoing edges.

Transforming a probabilistic CoSP protocol Πp back into to a CoSP protocol Πs

can easily be done by just removing the probability distributions again. We call Πs the
symbolic protocol that corresponds to Πp.

8

Definition 6 (Efficient protocol). We call a probabilistic CoSP protocol efficient if:

• There is a polynomial p such that for any node N , the length of the identifier of
N is bounded by p(m) where m is the length (including the total length of the
edge-labels) of the path from the root to N .

• There is a deterministic polynomial-time algorithm that, given the identifiers of
all nodes and the edge labels on the path to a node N , computes the label of N .

In the following definition of the symbolic execution, we specify a full trace as a
list of triples (S, ν, f). Here S contains all messages, the adversary has seen during the
execution and thus represents his “knowledge”, ν represents the current node identifier
in the protocol and f represents a mapping from previous node identifiers to messages.
For a node N , intuitively f(N) stands for the term that was computed or received at
node N .

Definition 7 (Symbolic execution). Let a symbolic model (C,N,T,D,`) and a CoSP
protocol Πs be given. A full trace is a (finite) list of tuples (Si, νi, fi) such that the
following conditions hold:

• Correct start : S1 = ∅, ν1 is the root of Πs, f1 is a totally undefined partial function
mapping node identifiers to terms.

• Valid transition: For every two consecutive tuples (S, ν, f) and (S′, ν ′, f ′) in the
list, let ν̃ be the node identifiers in the annotation of ν and define t̃ through
t̃j := f(ν̃j). We have:

– If ν is a computation node with constructor, destructor or nonce F , then
S′ = S. If m := evalF (t̃) 6= ⊥, ν ′ is the yes-successor of ν in Πs, and
f ′ = f(ν := m). If m = ⊥, then ν ′ is the no-successor of ν and f ′ = f .

– If ν is an input node, then S′ = S and ν ′ is the successor of ν in Πs and there
exists an m with S ` m and f ′ = f(ν := m).

– If ν is an output node, then S′ = S ∪ {t̃1}, ν ′ is the successor of ν in Πs and
f ′ = f .

– If ν is a control or a nondeterministic node, then ν ′ is a successor of ν and
f ′ = f and S′ = S.

A list of node identifiers (νi) is a node trace if there is a full trace with these node
identifiers.

2.3 Computational model

After defining symbolic protocols and their (symbolic) behaviour, we now define their
computational counterpart. It consists of a computational implementation that is mod-
eled as a family of functions, one for every constructor, destructor, and nonce.

9

Definition 8 (Computational implementation). Let a symbolic model M = (C,N,T,D,`)
be given. A computational implementation of M is a family of functionsA = (Ax)x∈C∪D∪N
such that AF for F/n ∈ C∪D is a partial deterministic function N×({0, 1}∗)n → {0, 1}∗,
and AN for N ∈ N is a total probabilistic function with domain N and range {0, 1}∗
(i.e., it specifies a probability distribution on bitstrings that depends on its argument).
The first argument of AF and AN represents the security parameter.

All functions AF have to be computable in deterministic polynomial-time, and all
AN have to be computable in probabilistic polynomial-time.2

The requirement that AC and AD are deterministic is without loss of generality.
When they have to behave randomly we can “outsource” the randomness by adding an
explicit randomness argument, taking a nonce as input.

The representation of bitstrings will be assumed to be a canonical representation
of symbols. The exact requirements that we will need later on can be seen in the
implementation conditions in Appendix 11.1. In this section we will not require the
bitstring representation itself to ensure any secrecy property like, e.g., hiding the message
inside of a ciphertext.

Definition 9 (Computational execution). Let a symbolic model M = (C,N,T,D,`),
a computational implementation A of M, and a probabilistic CoSP protocol Πp be
given. Let a probabilistic polynomial-time interactive machine E (the adversary) be
given (polynomial-time in the sense that the number of steps in all activations are
bounded in the length of the first input of E), and let p be a polynomial. We define
a probability distribution NodespM,A,Πp,E

(k), the computational node trace, on (finite)

lists of node identifiers (νi) according to the following probabilistic algorithm (both the
algorithm and E are run on input k):

• Initial state: ν1 := ν is the root of Πp. Let f be an initially empty partial function
from node identifiers to bitstrings, and let n be an initially empty partial function
from N to bitstrings.

• For i = 2, 3, . . . do the following:

– Let ν̃ be the node identifiers in the annotation of ν. m̃j := f(ν̃j).

– Proceed depending on the type of node ν:

∗ If ν is a computation node with nonce N ∈ N: Let m′ := n(N) if
n(N) 6= ⊥ and sample m′ according to AN (k) otherwise. Let ν ′ be the
yes-successor of ν, f ′ := f(ν := m′), and n′ := n(N := m′). Let ν := ν ′,
f := f ′ and n := n′.

∗ If ν is a computation node with constructor or destructor F , then m′ :=
AF (k, m̃). If m′ 6= ⊥, then ν ′ is the yes-successor of ν, if m′ = ⊥, then ν ′

is the no-successor of ν. Let f ′ := f(ν := m′). Let ν := ν ′ and f := f ′.

2More precisely, there has to exist a single uniform probabilistic polynomial-time algorithm A that,
given the name of C ∈ C, D ∈ D, or N ∈ N, together with an integer k and the inputs m, computes
the output of AC , AD, and AN or determines that the output is undefined. This algorithm must run in
polynomial-time in k + |m| and may not use random coins when computing AC and AD.

10

∗ If ν is an input node, ask for a bitstring m from E. Abort the loop if E
halts. Let ν ′ be the successor of ν. Let f := f(ν := m) and ν := ν ′.

∗ If ν is an output node, send m̃1 to E. Abort the loop if E halts. Let ν ′

be the successor of ν. Let ν := ν ′.

∗ If ν is a control node, annotated with out-metadata l, send l to E. Abort
the loop if E halts. Upon receiving an answer l′, let ν ′ be the successor
of ν along the edge labeled l′ (or the lexicographically smallest edge if
there is no edge with label l′). Let ν := ν ′.

∗ If ν is a nondeterministic node, let D be the probability distribution in
the annotation of ν. Pick ν ′ according to the distribution D, and let
ν := ν ′.

– Let νi := ν.

– Let len be the number of nodes from the root to ν plus the total length of all
bitstrings in the range of f . If len > p(k), stop.

When facing a nondeterministic node, the computational execution uses the proba-
bility annotation to decide which successor to choose. Thus, the overall execution leads
to a probability distribution over the reachable node paths. We use them to define
trace properties. Note that in the computational setting we are not interested in a full
trace (including adversary knowledge). This is due to the fact that our (computational)
adversary is treated like a black box.

2.4 Computational Soundness

Definition 10 (Trace property). A trace property P is an efficiently decidable and
prefix-closed set of (finite) lists of node identifiers.

Let M = (C,N,T,D,`) be a symbolic model and Πs a CoSP protocol. Then Πs

symbolically satisfies a trace property P in M iff every node trace of Πs is contained
in P. Let A be a computational implementation of M and let Πp be a probabilistic
CoSP protocol. Then (Πp, A) computationally satisfies a trace property P in M iff
for all probabilistic polynomial-time interactive machines E and all polynomials p, the
probability is overwhelming that NodespM,A,Πp,E

(k) ∈ P.

Definition 11 (Computational soundness). A computational implementation A of a
symbolic model M = (C,N,T,D,`) is computationally sound for a class P of CoSP
protocols iff for every trace property P and for every efficient probabilistic CoSP protocol
Πp, we have that (Πp, A) computationally satisfies P whenever the corresponding CoSP
protocol Πs of Πp symbolically satisfies P and Πs ∈ P .

2.5 The hybrid execution

To simplify the proofs, we define yet another type of execution that stands between the
symbolic and the computational execution. With the help of a so called simulator, we
define a way for a symbolic protocol to communicate with a (simulated) computational

11

adversary. The simulator is equiped with a bunch of properties that lead to an interesting
fact: The pure existence of a simulator, which has all the defined properties, directly
implies computational soundness.

In the following, we fix a symbolic model M = (C,N,T,D,`) and a computational
implementation A of M. Additionally we assume that for every term or node that is
sent by a machine, this term/node can be suitably encoded as a bitstring.

Definition 12 (Simulator). A simulator is an interactive machine Sim that satisfies the
following syntactic requirements:

• When activated without input, it replies with a term m ∈ T. (This corresponds
to the situation that the protocol expects some message from the adversary.)

• When activated with some t ∈ T, it replies with an empty output. (This corre-
sponds to the situation that the protocol sends a message to the adversary.)

• When activated with (info, ν, t) where ν is a node identifier and t ∈ T, it replies
with (proceed).

• At any point (in particular instead of sending a reply), it may terminate.

Although a simulator is meant to communicate with a symbolic protocol, it internally
simulates a computational adversary. A simulator functions as a translater between
these worlds, especially translating terms from the protocol to bitstrings for its internal
adversary and vice versa.

The hybrid execution with a simulator is hybrid in the sense of being a mix of the
symbolic and the computational execution. It is defined as follows:

Definition 13 (Hybrid execution). Let Πp be a probabilistic CoSP protocol, and let Sim
be a simulator. We define a probability distribution H -TraceM,Πp,Sim(k) on (finite) lists
of tuples (Si, νi, fi) called the full hybrid trace according to the following probabilistic
algorithm ΠC , run on input k, that interacts with Sim. (ΠC is called the hybrid protocol
machine associated with Πp and internally runs a symbolic simulation of Πp as follows:)

• Start : S1 := S := ∅, ν1 := ν is the root of Πp, and f1 := f is a totally undefined
partial function mapping node identifiers to T. Run Πp on ν.

• Transition: For i = 2, 3, . . . do the following:

– Let ν̃ be the node identifiers in the label of ν. Define t̃ through t̃j := f(ν̃j).

– Proceed depending on the type of ν:

∗ If ν is a computation node with constructor, destructor, or nonce F ,
then let m := evalF (̃t). If m 6= ⊥, let ν ′ be the yes-successor of ν and
let f ′ := f(ν := m). If m = ⊥, let ν ′ be the no-successor of ν and let
f ′ := f .

∗ If ν is an output node, send t̃1 to Sim (but without handing over control
to Sim). Let ν ′ be the unique successor of ν. Set ν := ν ′.

12

∗ If ν is an input node, hand control to Sim, and wait to receive m ∈ T
from Sim. Let f ′ := f(ν := m), and let ν ′ be the unique successor of ν.
Set f := f ′ and ν := ν ′.

∗ If ν is a control node labeled with out-metadata l, send l to Sim, hand
control to Sim, and wait to receive a bitstring l′ from Sim. Let ν ′ be the
successor of ν along the edge labeled l′ (or the lexicographically smallest
edge if there is no edge with label l′). Let ν := ν ′.

∗ If ν is a nondeterministic node, sample ν ′ according to the probability
distribution specified in ν. Let ν := ν ′.

– Send (info, ν, t) to Sim. When receiving an answer (proceed) from Sim, con-
tinue.

– If Sim has terminated, stop. Otherwise let (Si, νi, fi) := (S, ν, f).

The probability distribution of the (finite) list ν1, . . . produced by this algorithm we
denote H -NodesM,Πp,Sim(k). We call this distribution the hybrid node trace.

With Sim + ΠC we denote the execution of Sim and ΠC .
Now we define the previously mentioned properties that will make the simulator a

key element in the proof.
The first such property is the one of Dolev-Yao style. It binds the simulator to the

symbolic world, intuitively stating, that the simulated (computational) adversary is not
more powerful than a symbolic one. More precisely, whenever Sim sends a term t to the
probabilistic CoSP protocol, t has to be derivable from the messages that Sim has seen
so far.

Definition 14 (Dolev-Yao style simulator). A simulator Sim is Dolev-Yao style (short:
DY) for M and Πp, if with overwhelming probability the following holds:

In an execution of Sim + ΠC , for each `, let m` ∈ T be the `-th term sent (during
processing of one of ΠC ’s input nodes) from Sim to ΠC in that execution. Let T` ⊆ T
the set of all terms that Sim has received from ΠC (during processing of output nodes)
prior to sending m`. Then we have T` ` m`.

The next property, called indistinguishability, intuitively says that the hybrid exe-
cution can not be distinguished from the computational execution. More precisely, the
hybrid node traces are compuationally indistinguishable3 from the computational node

traces. With
c
≈ we denote computational indistinguishability.

Definition 15 (Indistinguishable simulator). A simulator Sim is indistinguishable for
M, Πp, an implementation A, an adversary E, and a polynomial p, if

NodespM,A,Πp,E
(k)

c
≈ H -NodesM,Πp,Sim(k),

i.e., if the computational node trace and the hybrid node trace are computationally
indistinguishable.

3 The corresponding random variables cannot be distinguished by any probabilistic algorithm that
runs in polynomial time in the security parameter.

13

Definition 16 (Good simulator). A simulator is good for M, Πp, A, E, and p if it is
Dolev-Yao style for M, and Πp, and indistinguishable for M, Πp, A, E, and p.

The following theorem concludes the point of defining the notion of a good simulator:
A good simulator implies computational soundness.

Theorem 1 (Good simulator implies soundness). Let M = (C,N,T,D,`) be a symbolic
model, let P be a class of CoSP protocols, and let A be a computational implementation
of M. Assume that for every efficient probabilistic CoSP protocol Πp (whose corre-
sponding CoSP protocol is in P), every probabilistic polynomial-time adversary E, and
every polynomial p, there exists a good simulator for M, Πp, A, E, and p. Then A is
computationally sound for protocols in P .

3 Symbolic Model

This specification is taken from [1] and will be used for our proof as well. Additional
comments are marked.

The symbolic model is defined as M = (C,N,T,D,`):

• Constructors and nonces: Let C := {enc/3, ek/1, dk/1, sig/3, vk/1, sk/1, pair/2,
string0/1, string1/1, empty/0, garbageSig/2, garbage/1, garbageE/2} and
N := NP ∪NE . Here NP and NE are countably infinite sets representing protocol
and adversary nonces, respectively. Intuitively, encryption, decryption, verifica-
tion, and signing keys are represented as ek(r), dk(r), vk(r), sk(r) with a nonce
r (the randomness used when generating the keys). enc(ek(r′),m, r) encrypts m
using the encryption key ek(r′) and randomness r. sig(sk(r′),m, r) is a signature
of m using the signing key sk(r′) and randomness r. The constructors string0 ,
string1 , and empty are used to model arbitrary strings used as payload in a pro-
tocol (e.g., a bitstring 010 would be encoded as string0 (string1 (string0 (empty)))).
garbage, garbageE , and garbageSig are constructors necessary to express certain
invalid terms the adversary may send, these constructors are not used by the pro-
tocol. However garbageE will become quite important later in the proof.

• Message type: We define T as the set of all terms M matching the following
grammar:

M ::= enc(ek(N),M,N) | ek(N) | dk(N) |
sig(sk(N),M,N) | vk(N) | sk(N) |
pair(M,M) | S | N |
garbage(N) | garbageE (M,N) |
garbageSig(M,N)

S ::= empty | string0(S) | string1(S)

where the nonterminal N stands for nonces.

14

• Destructors: D := {dec/2, isenc/1, isek/1, ekof /1, verify/2, issig/1, isvk/1, vkof /2,
fst/1, snd/1, unstring0/1, unstring1/1, equals/2}. The destructors isek , isvk , isenc,
and issig realize predicates to test whether a term is an encryption key, verification
key, ciphertext, or signature, respectively. ekof extracts the encryption key from
a ciphertext, vkof extracts the verification key from a signature. dec(dk(r), c)
decrypts the ciphertext c. verify(vk(r), s) verifies the signature s with respect
to the verification key vk(r) and returns the signed message if successful. The
destructors fst and snd are used to destruct pairs, and the destructors unstring0
and unstring1 allow to parse payload-strings. (Destructors ispair and isstring are
not necessary, they can be emulated using fst , unstring i, and equals(·, empty).)

The behavior of the destructors is given by the following rules; an application
matching none of these rules evaluates to ⊥:

dec(dk(t1), enc(ek(t1),m, t2)) = m

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageE (t1, t2)) = garbageE (t1, t2)

isek(ek(t)) = ek(t)

ekof (enc(ek(t1),m, t2)) = ek(t1)

ekof (garbageE (t1 , t2)) = t1

verify(vk(t1), sig(sk(t1), t2, t3)) = t2

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

isvk(vk(t1)) = vk(t1)

vkof (sig(sk(t1), t2, t3)) = vk(t1)

vkof (garbageSig(t1, t2)) = t1

fst(pair(x, y)) = x

snd(pair(x, y)) = y

unstring0(string0(s)) = s

unstring1(string1(s)) = s

equals(t1, t1) = t1

• Deduction relation: ` is the smallest relation satisfying the rules in Figure 1.

15

m ∈ S
S ` m

N ∈ NE

S ` N
S ` t t ∈ T F ∈ C ∪D evalF (t) 6= ⊥

S ` evalF (t)

Figure 1: Deduction rules for the symbolic model of the applied π-calculus

4 Simulator Types

In this section, some variations of the hybrid execution are defined. The definitions are
taken from [1] and only changed slightly: The oracle simulator, which is called Sim′ in
the original proof in [1], is called Simo here. Additionally, the case where the decryption
oracle is called does not occur anymore and has been removed.

4.1 The Simulator

In the following, we define distinct nonces Nm ∈ NE for each m ∈ {0, 1}∗. In a hybrid
execution, we call a term t honestly generated if it occurs as a subterm of a term sent
by the protocol ΠC to the simulator before it has occurred as a subterm of a term sent
by the simulator to the protocol ΠC .

For an adversary E and a polynomial p, we construct the simulator Sim as follows:
In the first activation, it chooses rN ∈ Noncesk for every N ∈ NP . It maintains an
integer len, initially 0. At any point in the execution, N denotes the set of all nonces
N ∈ NP that occurred in terms received from ΠC . R denotes the set of randomness
nonces (i.e., the nonces associated with all randomness nodes4 of ΠC passed through up
to that point).

Sim internally simulates the adversary E. When receiving a term t̃ ∈ T from ΠC ,
it passes β(t̃) to E where the partial function β : T → {0, 1}∗ is defined in Appendix
11.3. When E answers with m ∈ {0, 1}∗, the simulator sends τ(m) to ΠC where the
function τ : {0, 1}∗ → T is defined in Appendix 11.3. The bitstrings sent from the
protocol at control nodes are passed through to E and vice versa. When the simulator
receives (info, ν, t), the simulator increases len by `(t) + 1 where ` : T → {0, 1}∗ is de-
fined below. If len > p(k), the simulator terminates, otherwise it answers with (proceed).

The function ` : T → {0, 1}∗ is defined as `(t) := |β(t)|. Note that `(t) does not
depend on the actual values of rN because of the length-regularity of Aenc , Aek , Adk , Asig ,
Avk , Ask , Apair , Astring0 , and Astring1 . Hence `(t) can be computed without accessing
rN .

4.2 The simulator with an oracle (Simo)

The simulator Simo is defined exactly like Sim, except that it makes use of an encryption
and a signing oracle (these oracles also supply keypairs (ekN , dkN), resp. (vkN , skN)).

4Randomness nodes are defined in the protocol conditions, see Appendix 11.2

16

When computing β(ek(N)) or β(dk(N)) with N ∈ N , it instructs the encryption oracle
to generate a new encryption/decryption key pair (ekN , dkN) (unless (ekN , dkN) are
already defined) and retrieves ekN or dkN from the oracle, respectively. When comput-
ing β(enc(ek(N), t,M)) with N,M ∈ N , instead of computing Aenc(Aek (rN), β(t), rM),
Simo requests the encryption enc(ekN , β(t)) of β(t) from the encryption oracle (that is,
Simo has to compute β(t) but does not need to retrieve ekN). However, the resulting
ciphertext is stored and when later computing β(enc(ek(N), t,M)) with the same ar-
guments, the stored ciphertext is reused. When computing β(enc(ek(N e), t2,M)) with
M ∈ N , Simo requests the encryption enc(e, β(t)) from Simo. (In this case, the oracle
encrypts β(t) using its own randomness but using the encryption key e provided by
Simo.)

Similarly, to compute β(vk(N)) or β(sk(N)), Simo retrieves keys vkN or skN from
the signing oracle. To compute β(sig(sk(N), t,M)), Simo invokes the signing oracle with
message β(t) to get a signature under the signing key skN . However, the resulting signa-
ture is stored and when later computing β(sig(sk(N), t,M)) with the same arguments,
the stored ciphertext is reused. Simo does not invoke the signing oracle for verifying
signatures, instead Simo executes Averify directly (as does Sim).

4.3 The faking simulator (Simf)

The simulator Simf is defined like Simo, except that when computing β(enc(ek(N), t,M))
with N,M ∈ N , instead of invoking the encryption oracle with plaintext β(t), it invokes
it with plaintext 0`(t). (But in a computation β(enc(ek(N e), t,M)) with M ∈ N , the
simulator Simf still uses β(t) as plaintext.)

5 The original proof

The main idea of the proof is the following: It shows that the hybrid execution with
the faking simulator cannot be distinguished from a computational execution with the
real protocol. Thus a link between the computational execution and the more idealized
execution, consisting of the symbolic protocol and a simulator that hides the messages
of some encryptions is established. Then it shows that the faking hybrid execution
preserves the symbolic properties that are of interest.

5.1 Computational implementation

The computational implementation uses an IND-CCA2 secure encryption scheme as
well as a strongly unforgeable signature scheme. Up to the IND-CCA2 property, the
implementation conditions are the ones that we use for our model. These can be found
in section 11.1 while the original conditions are listed in [1].

17

5.2 Key-safe protocols

On the protocol side there are also some requirements that may seem to be quite re-
strictive. Here, the notion of “Key-safe protocols” is defined. In short, key-safe means
that for key generation, encryption and signing the protocol always has to use a fresh
randomness, that it does not produce garbage by itself and that no secret keys are sent
over the network. Just like the implementation conditions, the conditions for the pro-
tocol are important for our model and listed in Section 11.2. They equal the original
conditions up to our new condition 10.

5.3 Lemma: Indistinguishability of Sim and Simf

The full traces H -TraceM,Πp,Sim and H -TraceM,Πp,Simf
are computationally indistin-

guishable.

This lemma states that a run of the faking simulator cannot be distinguished from
a run of the original simulator. Thus, one can use the nice properties of the faking
simulator in the later proofs, where encryptions, from the point of view of the adversary,
are not even related to the messages they hide. Using the IND-CCA2 property this
Lemma is easy to show.

5.4 Lemma: Indistinguishability of Sim (and the computational exe-
cution)

Sim is indistinguishable for M, Π, A, and for every polynomial p.

Using the previous lemma (Indistinguishability of Sim and Simf) it is shown that
the hybrid execution with Sim, where the simulated adversary and the symbolic protocol
interact, cannot be distinguished from the computational execution, where the compu-
tational adversary interacts with the implementation of the protocol. In combination
with the previous lemma there is now a bridge between the (real) computational world
and a idealized view on this world with some aspects from the symbolic world.

The proof is done by showing that the translation functions cancel out and that
moving the computational effort from the actual implementation to the simulator is not
noticeable.

Now that the connection between the computational and the (faking) hybrid world
is established, it is left to connect the (faking) hybrid simulation to the purely symbolic
one. To do so, is is shown that the faking simulator has the DY property.5 When
the (faking) simulator has this property, then every such hybrid execution also directly
corresponds to a symbolic execution.6 To show the DY-ness, the notion of a “bad”

5DY-ness: Whenever the simulator sends a term t to the protocol, this term could have been deduced
from the set S of terms that the adversary received before, i.e. S ` t.

6Note that the only restriction for messages (terms) m from an “adversary” in a symbolic execution
is the fact that they have to be deducible from the set of messages S that were sent beforehand, namely
S ` m.

18

subterm is introduced. Intuitively, the idea is that whenever a term is sent from the
simulator to the protocol, that does not fulfill the DY property, then there is a “bad
subterm” which cannot exist.

5.5 Lemma: A bad subterm

In a given step of the hybrid execution with Simf , let S be the set of messages sent from
Πc to Simf . Let u′ ∈ T be the message sent from Simf to Πc in that step. Let C be a
context and u ∈ T such that u′ = C[u] and S 0 u and C does not contain a subterm of
the form sig(�, ·, ·). (� denotes the hole of the context C.)

Then there exists a term tbad and a context D such that D obeys the following
grammar

D ::= � | pair(t,D) | pair(D, t) | enc(ek(N),D,M)

| enc(D, t,M) | sig(sk(M),D,M)

| garbageE (D,M) | garbageSig(D,M)

with N ∈ NP ,M ∈ NE , t ∈ T

and such that u = D[tbad] and such that S 0 tbad and such that one of the following
holds: tbad ∈ NP , or tbad = enc(p,m,N) with N ∈ NP , or tbad = sig(k,m,N) with
N ∈ NP , or tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE or tbad = ek(N) with
N ∈ NP , or tbad = vk(N) with N ∈ NP .

This lemma states that whenever the simulator sends some term t with S 0 t then
there is a subterm tbad of t which is “bad” in the sense that it contradicts some other
properties.

The lemma follows from the structure of terms and thus can be proven by structural
induction on M.

5.6 Lemma: β does not leak information

For any (direct or recursive) invocation of β(t) performed by Simf , we have that S ` t
where S is the set of all terms sent by Πc to Simf up to that point.

The lemma basically states that the translation function β itself is not applied to
some (sub-)terms that are not deducible from the messages that were sent before. Thus,
β is not applied to secret terms. This is needed in the next proof to exclude that the
adversary has learned a secret that was leaked by β.

The lemma is shown by distinguishing the cases where β is called: When it is called
directly by the faking simulator Simf with a message t, then this message was sent
by Πc to the simulator and thus t ∈ S must hold. When β is not called directly but as
a recursive call from β itself, there are only a few cases possible. By investigating the
definition of β (to be found in Appendix 11.3) it is shown that all of the cases fulfill the
lemma.

19

5.7 Lemma: Simf is DY

Simf is DY for M and Π.

The idea of the proof is the following one: If Simf is not DY, then there will be
a term u sent from Simf to the protocol, such that S 0 u where S again is the set of
messages sent from the protocol to Simf before. By the bad subterm lemma (Section
5.5) we know that there must be a term tbad and a context D s.t. u = D[tbad]. Now it is
shown that the existence of such a term tbad is only possible when the simulator came
up with a corresponding bitstring mbad before.

Then it is shown that the bitstring mbad can only be found with negligible probability.

5.8 Theorem (computational soundness)

The implementation A (satisfying the implementation conditions [. . .]) is a computa-
tionally sound implementation of the symbolic model M [. . .] for the class of key-safe
protocols.

The previous lemma basically concluded the proof: We have that a hybrid execution
with Sim is indistinguishable from an execution of the computational protocol and also
indistinguishable from the faking hybrid execution. Since this faking hybrid execution
now has been shown to behave like a symbolic one, the main theorem follows directly.

6 Constructing the proof

The CoSP result, that has been described so far, defines a framework that allows for nice
computational soundness proofs. In the given proof for public key encryption schemes,
the requirements for the computational implementation are strict. Even if the protocols
we are interested in do not even care about the security of their encryptions or if they
use signatures in a way that allows for simpler encryption algorithms, the proofs we have
seen so far only work for very strong implementations of encryption schemes.

Our goal was to come up with ideas for weakening these constraints. What would be
necessary in order to archieve computational soundness when only having an IND-CPA
secure encryption scheme? Starting from the original proof, we constructed a new proof,
based on the new assumptions. We then simplified the proof again and again until we
surprisingly ended up with a version that only required few additional definitions and
lemmas.

20

6.1 Security notions of public key encryption schemes

In our process of proving computational soundness, security notions play a significant
role. In this work we will change the requirements imposed by the CoSP framework on
the computational implementations of encryption schemes, allowing the usage of more,
even weaker schemes. First, before investigating how the proof structure has evolved,
we will briefly explain the terms and definitions that are used. For a more detailed
explanation and a comparison between the different notions we refer to [2].

When talking about the security of public key encryptions, there are several ap-
proaches to model properties and resistance against specific attacks. The concept of
non-malleability states that an adversary is not able to modify a given ciphertext in a
way such that it decrypts to a similar plaintext as the original one. For example, flipping
one or more bits in the ciphertext should not result in the flipping of just a few bits of the
outcome of that ciphertext’s decryption. A different approach is the concept of plaintext
awareness. Here a scheme is considered secure, if the creator of a valid ciphertext must
always be “aware” of the underlying plaintext. Awareness in this sense intuitively means
the knowledge of the underlying plaintext. This is even harder to prove and requires
the encryption schemes to be of a certain form in order to be secure under this notion.
Nonetheless the concept of plaintext awareness has some nice properties and is an inter-
esting approach.

Another, more common approach, that we will focus on in our work is using the
notion of indistinguishability of ciphertexts. An encryption scheme is considered
secure if an attacker is not able to distinguish between the encryption of two messages,
even if he can chose them himself.

Formally, we define a “game” between the adversary and a challenger. The adversary
is considered to be an arbitrary probabilistic Turing machine that is allowed to run for an
amount of steps polynomial in the security parameter. The challenger behaves according
to the given security definition. During the game, the adversary may send queries to
the challenger who responds in a defined way. At a certain point, the adversary can
send two messages to the challenger. The challenger will then pick one of the messages
at random (each with probability 1

2) and encrypt it, using the given encryption scheme.
The resulting ciphertext is sent to the adversary and is called the “challenge”. If the
adversary is able to guess which of the messages has been encrypted, he wins the game.
If he guesses the wrong one, he loses the game. The advantage of an adversary is the
difference between its probability to win and to 1

2 (pure guessing).
If the advantage of all adversaries is negligible in the security parameter, the scheme

is considered secure. By changing the definition of the challenger machine and by giving
the adversary access to special oracles, different security definitions can be created. Some
quite commonly used examples are:

21

• IND-CPA
The adversary is only allowed to have the encryption key or, alternatively, access
to an encryption oracle. Thus he can encrypt arbitrary messages using this key,
but he has no access to the decryption key or a decryption oracle.

• IND-CCA1 The adversary additionally has access to a decryption oracle and
is able to decrypt arbitrary ciphertexts before he receives the challenge. After
receiving the challenge, he loses his access to the decryption oracle.

• IND-CCA2 The adversary has access to a decryption oracle and is able to de-
crypt arbitrary ciphertexts before and after he receives the challenge. The only
restriction is, that the decryption oracle does not decrypt the challenge-ciphertext
for him.

Two of those definitions, namely IND-CPA and IND-CCA2, are central for our work.
It is easy to see that the first security restriction is weaker than the second one. While
in the IND-CPA setting the adversary only has access to an encryption oracle, in the
second case he additionally has access to a decryption oracle.

Every encryption scheme that is secure under IND-CCA2 also is secure under IND-
CPA. Thus, by weakening the requirements for the encryption schemes, all previously
possible schemes still can be used while additional schemes can be taken into considera-
tion. Since those schemes do not have to fulfill the (strong) requirements for IND-CCA2,
they can be less complex. This might especially be interesting when investigating proto-
cols containing zero knowledge proofs, where using simple encryption schemes like ElGa-
mal makes proving properties easier, compared to complex IND-CCA2 secure schemes.
Additionally, some commonly used schemes like CBC Mode for stream ciphers are not
IND-CCA2 secure, but IND-CPA secure.

6.2 Approach

Our idea is the following one: We slightly change the way that messages from the
adversary are handled.

In the symbolic world we add a protocol condition, stating that the (symbolic) pro-
tocol will never try to decrypt garbage encryptions. Note that the protocol is not able
to distinguish a garbage encryption from a normal encryption without trying to de-
crypt it (there is no destructor that checks if a term is a garbage encryption term).
Thus we make sure that no encryption that originally came from the adversary will
be decrypted. What the adversary still can do is send a cipher to the protocol that
he has already observed in a previous step. This new protocol condition, that we call
garbage free decryption, is defined below. Since this property is basically the one that
will be used to restrict the possibilities of the adversary, it is crucial for the overall proof.

22

Definition A symbolic CoSP protocol Πs has garbage free decryption (GFD) if in
every full trace of Πs the second argument of every dec destructor node is not annotated
with a garbage encryption term.

Since the only possibility to introduce a garbage encryption term is via an input
node, this definition captures the notion of not decrypting any term that the adversary
has constructed on his own.

In the hybrid execution, the simulator handles the flow of information both from
the protocol to the adversary and vice versa. Since we do not want the protocol to
decrypt ciphertexts from the adversary, we just define that every cipher that has not
been generated by the protocol itself is considered to be garbage. To do this, we change
the translation function τ that translates bitstrings from the adversary into terms.

Definition Sim has garbage free decryption (GFD) for M,Π and A if for the
full trace H − TraceM,Πp,Sim the probability that there is a dec destructor node whose
second argument is annotated with a garbage encryption term is negligible.

Note that in the hybrid execution we allow for a negligible probability of failure.

Changing the simulator
As described in Section 2, the proof makes use of a simulator that connects the symbolic
and the computational world. In this so called hybrid execution we make use of two
functions: β, which translates the symbolic terms from the protocol into bitstrings, and
τ , which translates bitstrings from the adversary into terms. While the first one can
remain untouched, the second one is changed slightly as follows:

Change of τ . The following cases handle the translation of ciphertext bitstrings to
terms. In the original definition of τ we have:

• τ(c) := enc(ek(M), t, N) if c has earlier been output by β(enc(ek(M), t, N)) for
some M ∈ N, N ∈ N .

• τ(c) := enc(ek(M),m,N c) if c is of type ciphertext and τ(Aekof (c)) = ek(N) for
some N ∈ N and m := Adec(Adk(rN), c) 6= ⊥.

• τ(c) := garbageE(τ(Aekof (c), N c) if c is of type ciphertext

We modified these lines according to our idea. Whenever the adversary sends a
ciphertext that has not been output by β before, we simply consider it to be a garbage
encryption. Thus we have:

• τ(c) := enc(ek(M), t, N) if c has earlier been output by β(enc(ek(M), t, N)) for
some M ∈ N, N ∈ N .

• τ(c) := garbageE(τ(Aekof (c), N c) if c is of type ciphertext

23

This change ensures that every encryption that has been generated by the adversary
himself is handled as a garbage encryption and will not be decrypted when the simulator
has GFD. For a more detailed look on the functions see Appendix 11.3

6.3 Developing the proof structure

This section can be regarded as a “historical overview”. While it is not necessary for
understanding the proof itself, the goal of the section is to show how the proof evolved
over the time we worked on the thesis.

In order to prove the new theorem of CoSP with IND-CPA, we tried to stay as close
to the original proof from [1] as possible. We added our assumption of garbage free
decryption in the symbolic case (you will find a formal definition later on on page 27)
and slightly changed the definitions of the translation functions used in Sim (as can
be seen in Section 6.2). It seemed as if most of the original proof structure could be
preserved.

On a second look, the following problem occured: Even in the very first lemma of
the encryption related part of the proof, the IND-CCA2 property was used. In order
to apply the weaker IND-CPA property, we had to use the assumption of garbage free
decryption for the simulator (which is very close to the notion of garbage free decryption
for the symbolic protocol as stated above). While this does follow trivially from the fact
that the symbolic protocol has GFD by using the computational soundness theorem for
IND-CPA secure encryption (the one we want to prove), showing this property without
using the theorem seemed a lot harder.

In order to overcome this technical difficulty, we started to design an inductive proof.
The idea was to perform a induction over the number of steps that the symbolic protocol
makes. When showing the computational soundness step by step the GFD property
could be shown for all previous steps. We then could use the property to prove the
computational soundness for the actual step.

Analysing the new proof structure, we realised that there is a better approach. For
transfering the GFD property from the symbolic execution to the hybrid execution, it
suffices to show that Sim was Dolev-Yao first. After that, we have a connection between
the symbolic and the hybrid world and this connection then can be used to transfer the
GFD property. By rearranging the parts of the proof, we managed to reduce the overall
complexity: While we did not get rid of the induction using this idea, we managed to
reduce its size: Now we planned to do an induction for proving that Sim is Dolev-Yao
and has GFD. The rest of the proof, though restructured and expanded, would at least
not be a giant induction.

While restructuring the proof, trying to come up with good proof ideas for the new
and old lemmas, at some point we realised something quite interesting: We had a sketch
of the overall proof at our board, with lots of arrows, annotations and ideas, that was
astonishing due to one fact: There was no loop.

We would now first show that Simf is Dolev-Yao and thus fulfills our notion of
garbage free decryption. Then we would show Simf and Sim to be indistinguishable

24

and transfer the GFD property from Simf to Sim. Finally, we would use the fact that
Sim has GFD to prove it to be indistinguishable from the computational execution.

For showing that Simf is DY, no additional requirements have to be met. The in-
distinguishability however appeared to be a different thing. To prove that Simf ≈ Sim,
we first introduced another type of hybrid execution: The stopping hybrid execution.
This behaves exacltly like the hybrid execution but whenever the GFD property would
be violated, it just halts:

For a Simulator Sim, the stopping hybrid execution (SimSTOP) is defined like the
hybrid execution with the difference that whenever a dec destructor node has a garbage
encryption term as input, the stopping simulator sends ”STOP” and then stops imme-
diately.

This definition allowed us to first analyse a world, where the GFD property is not
violated.

Together with our change to τ (as defined in Section 6.2), we could be sure, that
no ciphertexts generated by the adversary can be decrypted. After showing the indis-
tinguishability of SimSTOP

f and SimSTOP , the indistinguishability of Simf and Sim
follows directly. Since Simf had been shown to have GFD, we could also prove that the
stopping faking hybrid execution did not stop and from the previous indistinguishability
result transfer the GFD property from Simf to Sim.

In fact, when analysing the proof again, we realised that the stopping hybrid exe-
cution was not even necessary. Our change in the translation functions made sure that
there was no real decryption (outside the symbolic protocol). Additionally, τ would
translate encryptions that had not been output by β before, into garbage encryption
terms. Although the GFD property was not shown for Sim, these terms could not be
decrypted by the (symbolic) protocol as the dec destructor would simply fail. Again, we
removed the redundant definitions and lemmas and simplified the proof structure.

In the end we came up with a proof that seems to be quite similar to the original
one. Many of the lemmas from [1] could be reused and most of the proofs only had to
be changed slightly in order to work in our setting. This is a surprising result. The
main work we did here was not to just copy the original proofs, but to generate a new
one and simplify it again and again. We did so until we reached a point where we could
prove the computational soundness result with IND-CPA by just introducing a few new
definitions and were able to use the same proof techniques that were used for the original
CoSP proof, although ordered differently.

25

7 Our proof

7.1 Overview

The proof is structured into the following steps:

• Proving that Simf is Dolev Yao. In the hybrid execution with Sim as defined
in Section 4.1, a computational adversary is simulated. This simulated adversary
interacts with the symbolic protocol. In this interaction messages from the protocol
to the adversary and vice versa are translated via translation functions β and τ .
In the faking hybrid execution with Simf , when translating messages from the
protocol to the adversary, every encryption is a zero-encryption. This scenario
results in an adversary that is quite similar to the one existing in the idealised
symbolic execution. The (simulated) adversary is unable to get information out of
encryptions himself and has to either just guess or deduce information out of the
data he receives.

To prove this, we follow the idea and use the lemmas from [1]. First it is shown
that whenever a subterm of a message sent by the faking simulator Simf to the
protocol is not (symbolically) deducible from the messages sent from the protocol
to the simulator in previous steps, then it must contain some kind of secret, or
bad subterm. Additionally, we show that the undeducible subterm must be of a
specific form.

Then we show that whenever the translation function β is called with a term t,
this term also must be (symbolically) deducible from the previously received terms.
This ensures that there is no secret revealed to the adversary as a result of the
translation function. Whenever the adversary comes up with a string that corre-
sponds to some secret, he must have created it by himself.

Finally these lemmas are combined to prove that whenever a message sent from
the simulator to the protocol contains such a bad subterm tbad , then the simulator
must have created a corresponding bitstring mbad before. By the definition of tbad ,
this is only possible by pure guessing and the probability for this is negligible.
Thus, every message sent from Simf to the protocol is deducible from the set of
previously received messages.

• Proving that Simf has Garbage Free Decryption. For our proof, it is im-
portant that the notion of Garbage Free Decryption, which is a necessary property
of the symbolic protocol, also holds in the hybrid case. This property ensures that
an IND-CPA secure encryption scheme suffices for the computational soundness
result. Since the faking hybrid execution is quite similar to the symbolic execution,
the GFD property can be shown easily.

To prove it we use the previous results: We know that Simf is Dolev Yao and
thus with an overwhelming probability behaves like a symbolic adversary. Since
the symbolic protocol fulfills the GFD property for symbolic adversaries, it must
also fulfill it in the faking hybrid execution with overwhelming probability.

26

• Proving Simf and Sim to be indistinguishable. Until now, we only had a
look at the faking hybrid execution and have shown some nice properties for it.
The next step is relating the faking hybrid execution and the normal, non-faking
hybrid execution. Although this has also been done in [1], it seems to be more
complicated in this context, because we can not just use the IND-CCA2 security
of the encryption scheme.

The changes in τ lead to an interesting fact: In our faking hybrid execution, the
decryption oracle is never called. Thus, there will never be a real decryption of
ciphers sent by the adversary. This allows us to apply the IND-CPA property to
show the indistinguishability of Simf and Sim.

• Proving properties of Sim. After we have shown all the previously mentioned
results, we can now use them to prove some interesting properties of Sim which
are needed for proving the computational soundness theorem.

First, we show that since Sim and Simf are indistinguishable from each other,
the GFD property must hold for Sim too. If it would not hold, they could be
distinguished.

Now Sim has to finally meet its destiny: Designed as an hybrid execution that
stands between the purely symbolic one and the computational one, it has to func-
tion as a bridge between these two worlds. In order to achieve this, we show that
on the one hand it also fulfills the Dolev Yao property. This can be shown easily
using the fact that Sim and Simf are indistinguishable and that Simf is Dolev
Yao. On the other hand we show that the hybrid execution with Sim is indis-
tinguishable from the computational execution. To do so, we fix the randomness
of the adversary (both the real one and the simulated one) and by comparing the
behaviour of both executions we show that we yield indistinguishable node traces.

• Proving Computational Soundness with IND-CPA. In this final part of
the proof, we plug together the individual lemmas and conclude the overall proof.
From the properties of Sim (shown in the previous part) it follows directly that
Sim is a good simulator in the sense of Definition 16. Using Theorem 1, this
directly implies computational soundness.

7.2 Definitions

We will use the following definitions in the proof. Some of them have already been
mentioned and formulated in the previous sections. Nevertheless, we repeat them here.

Definition 17. A symbolic CoSP protocol Πs has garbage free decryption (GFD)
iff in every full trace of Πs the second argument of every dec destructor node is not
annotated with a garbage encryption term.

27

Since the only possibility to introduce a garbage encryption term is via an input
node, this definition captures the notion of not decrypting any term that the adversary
has constructed on his own. Note that although normal encryptions are not included,
no encryption term generated by the adversary will be decrypted. If the protocol would
try to decrypt an encryption term that was sent by the adversary, then the adversary
could have sent a garbage encryption term instead. With the given set of destructors,
the protocol can not distinguish encryptions and garbage encryptions without applying
the dec destructor. Trying (and failing) to decrypt nonces, encryption keys or signature
keys etc. from the adversary is still possible, but does not harm us.

Definition 18. Sim has garbage free decryption (GFD) for M,Π, and A iff for the
full trace H -TraceM,Πp,Sim the probability that there is a dec destructor node whose sec-
ond argument is annotated with a garbage encryption term is negligible.

Note that in the hybrid execution we allow for a negligible probability of failure.

7.3 Proving the DY property of the faking simulator

To prove that Simf is DY, we follow the original lemmas. First we introduce a so called
bad subterm (tbad) and show that when the DY property is violated, such a term must
exist. We also show that the translation function β does not leak secret information.
More precisely, we show that whenever β is applied to a term, the adversary could
already deduce it. Having eliminated this possibility, we show that the existence of a
bad subterm leads to a contradiction.

Lemma 1. In a given step of the hybrid execution with Simf , let S be the set of messages
sent from Πc to Simf . Let u′ ∈ T be the message sent from Simf to Πc in that step.
Let C be a context and u ∈ T such that u′ = C[u] and S 0 u and C does not contain a
subterm of the form sig(�, ·, ·). (� denotes the hole of the context C.)

Then there exists a term tbad and a context D such that D obeys the following gram-
mar

D ::= � | pair(t,D) | pair(D, t) | enc(ek(N),D,M)

| enc(D, t,M) | sig(sk(M),D,M)

| garbageE (D,M) | garbageSig(D,M)

with N ∈ NP ,M ∈ NE , t ∈ T

and such that u = D[tbad] and such that S 0 tbad and such that one of the following
holds: tbad ∈ NP , or tbad = enc(p,m,N) with N ∈ NP , or tbad = sig(k,m,N) with
N ∈ NP , or tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE or tbad = ek(N) with
N ∈ NP , or tbad = vk(N) with N ∈ NP .

Proof. The lemma is proven by structural induction on M . The following cases remain
exactly the same as in the original proof of this lemma with the exception of case 15.

28

Case 1: “u = garbage(u1)”.
By protocol condition 9 the protocol does not contain garbage-computation nodes.
Thus u is not an honestly generated term.7 Hence it was produced by an invo-
cation τ(m) for some m ∈ {0, 1}∗, and hence u = garbage(Nm). Hence S ` u in
contradiction to the premise of the lemma.

Case 2: “u = garbageE (u1, u2)”.
By protocol condition 9 the protocol does not contain garbageE -computation nodes.
Thus u is not an honestly generated term. Hence it was produced by an invocation
τ(c) for some c ∈ {0, 1}∗, and hence u = garbageE (u1, N

m). Since S ` Nm and
S 0 u, we have S 0 u1. Hence by the induction hypothesis, there exists a subterm
tbad of u1 and a context D satisfying the conclusion of the lemma for u1. Then
tbad and D′ := garbageE (D, Nm) satisfy the conclusion of the lemma for u.

Case 3: “u = garbageSig(u1, u2)”.
By protocol condition 9 the protocol does not contain garbageSig-computation
nodes. Thus u is not an honestly generated term. Hence it was produced by an
invocation τ(c) for some c ∈ {0, 1}∗, and hence u = garbageSig(u1, N

m). Since
S ` Nm and S 0 u, we have S 0 u1. Hence by the induction hypothesis, there
exists a subterm tbad of u1 and a context D satisfying the conclusion of the lemma
for u1. Then tbad and D′ := garbageSig(D, Nm) satisfy the conclusion of the lemma
for u.

Case 4: “u = dk(u1)”.
By protocol condition 5, any dk -computation node occurs only as the first argument
of a dec destructor node. The output of the destructor dec only contains a subterm
dk(u1) if its second argument already contained such a subterm. Hence a term
dk(u1) cannot be honestly generated. But subterms of the form dk(·) are not in
the range of τ . (Except if dk(·) was given as argument to a call to β. However, as
β is only invoked with terms sent by Πc, this can only occur if dk(·) was honestly
generated or produced by τ .) Thus no term sent by Simf contains dk(·). Hence u
cannot be a subterm of u′.

Case 5: “u = ek(u1) with u1 /∈ NP”.
By protocol condition 1, the argument of an ek -computation node is anN -computation
node with N ∈ NP . Hence u is not honestly generated. Hence it was produced by
an invocation τ(e) for some e ∈ {0, 1}∗, and hence u = ek(N e). Hence S ` u in
contradiction to the premise of the lemma.

Case 6: “u = ek(N) with N ∈ NP”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 7: “u = vk(u1) with u1 /∈ NP”.
By protocol condition 1, the argument of a vk -computation node is anN -computation

7as defined in Section 4.1

29

node with N ∈ NP . Hence u is not honestly generated. Hence it was produced by
an invocation τ(e) for some e ∈ {0, 1}∗, and hence u = vk(N e). Hence S ` u in
contradiction to the premise of the lemma.

Case 8: “u = vk(N) with N ∈ NP”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 9: “u = sk(N)”.
Say a subterm sk(N) occurs free in some term t′ if an occurrence of sk(N) in t′

is not the first argument of a sig constructor in t′. Since C is not of the form
sig(�, ·, ·), we have that u occurs free in u′. However, by protocol condition 7, Πc

only sends a free sk(N) if Simf first sends one. And by construction of τ , Simf

sends a free sk(N) only if sk(N) was given as an argument to a call to β. And
sk(N) is given as an argument to β only if it is sent by Πc. Hence Simf cannot
have sent u′ in contradiction to the premise of the lemma.

Case 10: “u = pair(u1, u2)”.
Since S 0 u, we have S 0 ui for some i ∈ {1, 2}. Hence by induction hypothesis,
there exists a subterm tbad of ui and a context D satisfying the conclusion of the
lemma for ui. Then tbad and D′ = pair(D, u2) or D′ = pair(u1,D) satisfy the
conclusion of the lemma for u.

Case 11: “u = stringi(u1) with i ∈ {0, 1} or u = empty”.
Then, since u ∈ T, u contains only the constructors string0, string1, empty . Hence
S ` u in contradiction to the premise of the lemma.

Case 12: “u ∈ NP”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 13: “u ∈ NE”.
Then S ` u in contradiction to the premise of the lemma.

Case 14: “u = enc(u1, u2, N) with N ∈ NP”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 15: “u = enc(u1, u2, u3) with u3 /∈ NP”.
By protocol condition 1, Πc does not generate such a term, so it must have been
produced by τ , but by definition of τ , such a term is not generated. Thus, this
case does not occur.

Case 16: “u = sig(u1, u2, N) with N ∈ NP”.
The conclusion of the lemma is fulfilled with D := � and tbad := u.

Case 17: “u = sig(sk(N), u2, u3) with u3 /∈ NP and N ∈ NP”.
Since u ∈ T we have u3 ∈ N, hence u3 ∈ NE . The conclusion of the lemma is
fulfilled with D := � and tbad := u.

30

Case 18: “u = sig(u1, u2, u3) with S ` u1 and u3 /∈ NP and u1 is not of the form
sk(N) with N ∈ NP”.
By protocol condition 1, the third argument of a Sig-computation node is an N -
computation node with N ∈ NP . Hence u is not honestly generated. Hence
it was produced by an invocation τ(s) for some s ∈ {0, 1}∗, and hence u =
sig(sk(N), u2, N

s) for some N ∈ N. Since u1 is not of the form sk(N) with
N ∈ NP , we have N ∈ NE . From S ` u1, S ` N c, and S 0 u we have
S 0 u2. Hence by induction hyposthesis, there exists a subterm tbad of u2 and
a context D satisfying the conclusion of the lemma for u2. Then Then tbad and
D′ = sig(sk(N),D, N s) satisfy the conclusion of the lemma for u.

Case 19: “u = sig(u1, u2, N) with S 0 u1 and u3 /∈ NP”.
As in the previous case, u = sig(sk(N), u2, N

s) for some N ∈ N. Since S 0 u1,
N /∈ NE . Hence N ∈ NP . Thus conclusion of the lemma is fulfilled with D := �
and tbad := u.

Lemma 2. For any (direct or recursive) invocation of β(t) performed by Simf , we have
that S ` t where S is the set of all terms sent by Πc to Simf up to that point.

Proof. The proof can remain almost as it was in the original paper. The only change is,
that one of the later cases does not occur anymore and thus can be dropped. The other
cases still have to be checked carefully.

We show the lemma by performing an induction on the point in time at which β(t)
has been invoked. Assume that Lemma 2 holds for all invocations prior to the current
invocation β(t). We can distinguish the following two cases:

The first is that β(t) was directly invoked by Simf . This implies that t is a message
sent from the protocol to Simf . Thus, t ∈ S holds, which directly implies S ` t.

The second case is that β(t) was not directly invoked but as a recursive call from
β itself. Assume that beta(t) has been invoked from a call β(t′) for some term t′. By
definition of β this leaves the following cases for t′, where N,M ∈ N , u ∈ T:

• t′ = enc(t, u,M)

• t′ = sig(sk(N), t,M)

• t′ = pair(t, u) or t′ = pair(u, t)

• t′ = string0 (t) or t′ = string1 (t)

• (The case t′ = enc(ek(N), t,M) with N,M ∈ N , where t occurs as the plaintext
inside an encryption does not lead to a recursive call, since we are talking about
the faking simulator that encrypts 0|`(t)| instead of β(t).)

31

• (The original definition of β included a recursive call for an adversary generated
encryption term. This case does not occur anymore and thus is omitted in our
proof.)

In all these cases from the definition of ` and the fact that S ` t′ it follows that
S ` t. Thus, the lemma holds.

Lemma 3. Simf is DY for M and Π.

Proof. The proof for this lemma can stay as it was in the original paper. The only differ-
ence is, that our change in the translation functions slightly changes the argumentation
of one of the cases. This part is marked. Although the proof syntactically stayed as it
was after all, it had to be checked carefully. Since there were changes in the definitions,
the semantics of the proof have changed.

Let a1, . . . , an be terms sent by the protocol to Simf . Let u1, . . . , un be the terms
sent by Simf to the protocol. Let Si := {a1, . . . , ai}. If Simf is not DY, then with
non-negligible probability there exists an i such that Si 0 ui. Fix the smallest such i0
and set S := Si0 and u := ui0 . By Lemma 1 (with u′ := u and C := �), we have that
there is a term tbad and a context D obeying the grammar given in Lemma 1 and such
that u = D[tbad] and such that S 0 tbad and such that one of the following holds:

• tbad ∈ NP , or

• tbad = enc(p,m,N) with N ∈ NP , or

• tbad = sig(k,m,N) with N ∈ NP , or

• tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE or

• tbad = ek(N) with N ∈ NP , or

• tbad = vk(N) with N ∈ NP .

By construction of the simulator, if the simulator outputs u, we know that the
simulated adversary E has produced a bitstring m such that τ(m) = u = D[tbad]. By
definition of τ , during the computation of τ(m), some recursive invocation of τ has
returned tbad . Hence the simulator has computed a bitstring mbad with τ(mbad) = tbad .

We are left to show that such a bitstring mbad can be found only with negligible
probability.

We distinguish the possible values for tbad (as listed in 1):

Case 1: “tbad = N ∈ NP”.
By definition of β and using the fact that Simf uses the signing and encryption
oracle for all invocations of β except β(N) that involve rN (such as β(dk(N))), we
have that Simf accesses rN only when computing β(N) and in τ . Since S 0 tbad =
N , by Lemma 2 we have that β(N) is never invoked, thus rN is never accessed

32

through β. In τ , rN is only used in comparisons. More precisely, τ(r) checks for
all N ∈ N whether r = rN . Such checks do not help in guessing rN since when
such a check succeeds, rN has already been guessed. Thus the probability that
mbad = rN occurs as input of τ is negligible.

Case 2: “tbad = enc(p,m,N) with N ∈ NP”.
Then τ(mbad) returns tbad only ifmbad was the output of an invocation of β(enc(p,m,N)) =
β(tbad). But by Lemma 2, β(tbad) is never invoked, so this case does not occur.

Case 3: “tbad = sig(k,m,N) with N ∈ NP”.
Then τ(mbad) returns tbad only ifmbad was the output of an invocation of β(sig(k,m,N)) =
β(tbad). But by Lemma 2, β(tbad) is never invoked, so this case does not occur.

Case 4: “tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE”.
Then τ(mbad) returns tbad only if mbad was not the output of an invocation of β.
In particular, mbad was not produced by the signing oracle. Furthermore, τ(mbad)
returns tbad only ifmbad is a valid signature with respect to the verification key vkN .
Hence mbad is a valid signature that was not produced by the signing oracle. Such
a bitstring mbad can only be produced with negligible probability by E because
of the strong existential unforgeability of (SKeyGen,Sig,Verify) (implementation
condition 20).

Case 5: “tbad = ek(N) with N ∈ NP”.
Then by Lemma 2, β(ek(N)) is never computed and hence ekN never requested
from the encryption oracle. Furthermore, from protocol conditions 5 and 2, we have
that no term sent by Πc contains dk(N), and all occurrences of N in terms sent by
Πc are of the form ek(N). Thus S 0 dk(N). Hence by Lemma 2, β(dk(N)) is never
computed and dkN is never requested from the encryption oracle. Furthermore,
since S 0 ek(N), for all terms of the form t = enc(ek(N), . . . , . . .), we have that
S 0 t. Thus β(t) is never computed and hence no encryption using ekN is ever
requested from the encryption oracle.

In the original proof, it was possible, that decryption queries with respect to dkN
were sent to the encryption oracle. Since there are no decryption queries in our
definition, this case does not occur anymore.

Case 6: “tbad = vk(N) with N ∈ NP”.
Then by 2, β(vk(N)) is never computed and hence vkN is never requested from
the signing oracle. Furthermore, since S 0 vk(N), we also have S 0 sk(N) and
S 0 t for t = sig(sk(N), . . . , . . .). Thus β(sk(N)) and β(t) never computed and
hence neither skN nor a signature with respect to skN is requested from the signing
oracle. Hence the probability that vkN = mbad occurs as output of τ is negligible.

Summarizing, we have shown that if the simulator Simf is not DY, then with non-
negligible probability Simf performs the computation τ(mbad), but mbad can only occur
with negligible probability as an argument of τ . Hence we have a contradiction to the
assumption that Simf is not DY.

33

7.4 Garbage Free Simulator

Lemma 4. Simf has garbage free decryption.

Proof. We have to show that in the full trace H − TraceM,Πp,Simf
, the probability that

a garbageEnc term occurs as second argument of a dec destructor node is negligible.

Since Simf is DY, it holds that in an execution of Simf + Πp, the probability is over-
whelming, that for every l s.t. ml ∈ T sent as l-th message (input node of Πp),

Tl ` ml

Where Tl is the set of terms that Simf has received from Πp prior to sending this message.

Now let a hybrid execution with a full trace (S1, ν1, f1), (S2, ν2, f2), . . . be fixed. Assume
the DY-property holds for this execution. Furthermore assume that in this execution
there is a dec destructor node with garbageEnc as second input.
Since the DY-property holds for this execution, we have that every term sent from Simf

to Πp was deducible from the terms sent to Simf before. Thus the full hybrid trace
also constitutes a full symbolic trace for Πs where there is a dec destructor node with
garbageEnc as second input. This, however, is a contradiction to the fact that Πs has
GFD.

Thus, with overwhelming probability, there is no dec destructor node whose sec-
ond argument is annotated with a garbage encryption term, so Simf has garbage free
decryption.

7.5 Sim and Simf indistinguishable

Lemma 5. The full traces H -TraceM,Πp,Sim and H -TraceM,Πp,Simf
are computationally

indistinguishable.

Proof. One might expect this proof to be completely different from the original one. In
fact, we first thought that some additional constructs and lemmas are necessary. Our
change to the translation functions however reduces this additional complexity. As in
the original proof, we first have a look at Sim and Simo.

The difference between Sim and Simo lies in the handling of the randomness. While
Sim uses randomness nonces (rN) for key generation, encryption and signing, in Simo

the randomness is chosen by the oracles for key generation, encryption and signing
themselves. From protocol conditions 1, 2, 3, 4, it follows that Sim never uses a given
randomness rN twice (note that, since N ∈ R, τ does not access rN either). Hence the
full traces H -TraceM,Πp,Sim and H -TraceM,Πp,Simo

are indistinguishable. Note that by
definition of τ , Simo never invokes dec(dkN , c).

Our definition of τ ensures that the decryption oracle is never queried (since there
is no call for decryption inside of τ). While ciphertexts that were generated by the
protocol still can be decrypted (symbolically), no encryptions from the adversary will

34

be decrypted. Note that they may be translated to garbageE terms but when the sym-
bolic protocol tries to apply the dec destructor to them it will fail. So even if the GFD
property is violated, they will not be decrypted by either the simulator-oracle or the
protocol. This allows to apply the IND-CPA property.

Since |β(t)| = |0`(t)| by definition of `, the IND-CPA property of (KeyGen, enc, dec)
(implementation condition 19) implies that the full traces H -TraceM,Πp,Simo

and
H -TraceM,Πp,Simf

are indistinguishable. Using the transitivity of computational indis-
tinguishability, the lemma follows.

7.6 Properties of Sim

Lemma 6. Sim is DY.

Proof. By Lemma 3, Simf is DY for key-safe protocols. Whether a full trace satisfies the
conditions from Definition 14 can be efficiently verified (since ` is efficiently decidable).
Hence, Lemma 5 implies that Sim is DY for key-safe protocols too.

Lemma 7. Sim has garbage free decryption.

Proof. By Lemma 4 we know that Simf has GFD. Thus the probability, that there
will be a garbage encryption as an input of a dec destructor node is negligible. If the
probability would be non neglogible for Sim, this would constitute a contradiction to
Lemma 5. Thus Sim has garbage free decryption.

Lemma 8. Sim is indistinguishable for M, Π, A, and for every polynomial p.

Proof. The proof can remain as it was in the original paper. We have to add the
assumption that the GFD property holds. The rest of the proof had to be checked
carefully but with the exception of one of the cases in Claim 4, nothing changed. The
changes are marked again.

We will first show that when fixing the randomness of the adversary and the pro-
tocol, the node trace NodespM,A,Πp,E

in the computational execution and the node trace
H -NodesM,Πp,Sim in the hybrid execution are equal. Hence, fix the variables rN for all
N ∈ NP , fix a random tape for the adversary, and for each node ν fix a choice eν of an
outgoing edge.

We assume that the randomness is chosen such that all bitstrings rN , Aek (rN),
Adk (rN), Avk (rN), Ask (rN), Aenc(e,m, rN), and sig(s,m, rN) are all pairwise distinct
for all N ∈ N and all bitstrings e of type encryption key, s of type signing key, and
m ∈ {0, 1}∗ that result from some evaluation of β in the execution and that the GFD
condition holds for this trace.

Note that this is the case with overwhelming probability: For terms of different types
this follows from implementation condition 5. For keys, this follows from the fact that if
two randomly chosen keys would be equal with non-negligible probability, the adversary
could guess secret keys and thus break the IND-CPA property or the strong existential
unforgeability (implementation conditions 19 and 20). For nonces, if two random nonces

35

rN , rM would be equal with non-negligible probability, so would encryption keys Aek (rN)
and Aek (rM). For encryptions, by implementation condition 21, the probability that
Aenc(e,m, rN) for random rN ∈ Noncesk matches any given string is negligible. Since
by protocol condition 4, each Aenc(e,m, rN) computed by β uses a fresh nonce rN ,
this implies that Aenc(e,m, rN) equals a previously computed encryption is negligible.
Analogously for signatures (implementation condition 22, protocol conditions 4 and 8).

In the following, we designate the values fi and νi in the computational execution
by f ′i and ν ′i, and in the hybrid execution by fCi and νCi . Let s′i denote the state of the
adversary E in the computational model, and sCi the state of the simulated adversary
in the hybrid model.
Claim 1: In the hybrid execution, for any b ∈ {0, 1}∗, β(τ(b)) = b.

This claim follows by induction over the length of b and by distinguishing the cases
in the definition of τ .
Claim 2: In the hybrid execution, for any term t stored at a node ν, β(t) 6= ⊥.

By induction on the structure of t.
Claim 3: For all terms t 6∈ R that occur in the hybrid execution, τ(β(t)) = t.

By induction on the structure of t and using the assumption that rN , Aek (rN),
Adk (rN), Avk (rN), Aek (rN), as well as all occuring encryptions and signatures are pair-
wise distinct for all N ∈ N . For terms t that contain randomness nonces, note that by
protocol condition 4, randomness nonces never occur outside the last argument of enc-,
sig-, ek -, dk -, vk -, or sk -terms.
Claim 4: In the hybrid execution, at any computation node ν = νi with constructor or
destructor F and arguments ν̄1, . . . , ν̄n the following holds: Let ti be the term stored at
node ν̄i (i.e., tj = f ′i(ν̄j)). Then β(evalF (t)) = AF (β(t1), . . . , β(tn)). Here the left hand
side is defined iff the right hand side is.

We show Claim 4. We distinguish the following cases:

Case 1: “F = ek”.
Note that by protocol condition 1, we have t1 ∈ NP . Then β(ek(t1)) = Aek (rt1) =
Aek (β(t1)).

Case 2: “F ∈ {dk , vk , sk}”.
Analogous to the case F = ek .

Case 3: “F ∈ {pair , fst , snd , string0, string0, unstring0, unstring1, empty}”.
Claim 4 follows directly from the definition of β.

Case 4: “F = isek”.
If t1 = ek(t′1), we have that t′1 = N ∈ N or t′1 = Nm where m is of type ciphertext
(as other subterms of the form ek(·) are neither produced by the protocol nor by τ).
In both cases, β(ek(t′1)) is of type encryption key. Hence β(isek(t1)) = β(ek(t′1)) =
Aisek (β(ek(t′1))) = Aisek (β(t1)). If t1 is not of the form ek(·), then β(t1) is not of
type public key (this uses that τ only uses Nm with m of type public key inside a
term ek(Nm)). Hence β(isek(t1)) = ⊥ = Aisek (β(t1)).

36

Case 5: “F ∈ {isvk , isenc, issig}”.
Similar to the case F = isek .

Case 6: “F = ekof ”.
If t1 = enc(ek(u1), u2,M) withM ∈ N , we have that β(t1) = Aenc(β(ek(u1)), β(u2), rM).
By implementation condition 8, Aekof (β(t1)) = β(ek(u1)). Furthermore, ekof (t1) =
ek(u1), hence Aekof (β(t1)) = β(ekof (t1)). If t1 = enc(ek(u1), u2, N

m), by protocol
condition 9, t1 was not honestly generated. Hence, by definition of τ , m is of type
ciphertext, and ek(u1) = τ(Aekof (m)). Thus with Claim 1, β(ek(u1)) = Aekof (m).
Furthermore, we have β(t1) = m by definition of β and thus Aekof (β(t1)) =
β(ek(u1)) = β(ekof (t1)). If t1 = garbageE (u1, u2), the proof is analogous. In
all other cases for t1, β(t1) is not of type ciphertext, hence Aekof (β(t1)) = ⊥ by
implementation condition 8. Furthermore ekof (t1) = ⊥. Thus β(ekof (t1)) = ⊥ =
Aekof (β(t1)).

Case 7: “F = vkof ”.
If t1 = sig(sk(N), u1,M) withN,M ∈ N , we have that β(t1) = Asig(Ask (rN), β(u2), rM).
By implementation condition 9, Aekof (β(t1)) = Avk (rN). Furthermore, vkof (t1) =
vk(N), hence Avkof (β(t1)) = Avk (rN) = β(vk(N)) = β(vkof (t1)). All other cases
for t1 are handled like in the case of F = ekof .

Case 8: “F = enc”.
By protocol condition 1, t3 =: N ∈ N . If t1 = ek(u1) we have β(enc(t1, t2, t3)) =
Aenc(β(t1), β(t2), rN) by definition of β. Since β(N) = rN , we have β(enc(t1, t2, t3)) =
Aenc(β(t1), β(t2), β(t3)). If t1 is not of the form ek(u1), then enc(t1, t2, t3) = ⊥ and
by definition of β, β(t1) is not of type encryption key and hence by implementation
condition 10, β(enc(t1, t2, t3)) = Aek (β(t1), . . .) = ⊥ = β(enc(t1, t2, t3)).

Case 9: “F = dec”.
By protocol condition 6, t1 = dk(N) with N ∈ N . We distinguish the following
cases for t2:

Case 9.1: “t2 = enc(ek(N), u2,M) with M ∈ N”.
Then Adec(β(t1), β(t2)) = Adec(Adk (rN), Aenc(Aek (N), β(u2), rM)) = β(u2)
by implementation condition 12. Furthermore β(dec(t1, t2)) = β(u2) by defi-
nition of dec.

Case 9.2: “t2 = enc(ek(N), u2, N
c)”.

Then t2 was produced by τ and hence c is of type ciphertext and τ(Adec(Adk (rN), c)) =
u2. Then by Claim 1, Adec(Adk (rN), c) = β(u2) and henceAdec(β(t1), β(t2)) =
Adec(Adk (rN), c) = β(u2) = β(dec(t1, t2)).

Case 9.3: “t2 = garbageE (u1, N
c)”.

By assumption this case does not occur.

37

Case 9.4: “All other cases”.
Then β(t2) is not of type ciphertext. By implementation condition 8, Aekof (β(t2)) =
⊥. Hence Aekof (β(t2)) 6= Aek (rN) and by implementation condition 11,
Adec(β(t1), β(t2)) = Adec(Adk (rN), β(t2)) = ⊥ = β(dec(t1, t2)).

Case 10: “F = sig”.
By protocol conditions 8 and 1 we have that t1 = sk(N) and t3 = M with N,M ∈
N . Then β(sig(t)) = Asig(Ask (rN), β(t3), rM) = Asig(β(sk(N)), β(t2), β(M)) =
Asig(β(t1), β(t2), β(t3)).

Case 11: “F = verify”.
We distinguish the following subcases:

Case 11.1: “t1 = vk(N) and t2 = sig(sk(N), u2,M) with N,M ∈ N”.

ThenAverify(β(t1), β(t2)) = Averify(Avk (rN), Asig(Ask (rN), β(u2), rM))
(∗)
= β(u2) =

β(verify(t)) where (∗) uses implementation condition 13.

Case 11.2: “t2 = sig(sk(N), u2,M) and t1 6= vk(N) with N,M ∈ N”.
By Claim 3, β(t1) 6= β(vk(N)) Furthermore Averify(β(vk(N)), β(t2)) =

Averify(β(t1), Asig(Ask (rN), β(u2), rM))
(∗)
= β(u2) 6= ⊥. Hence with implemen-

tation condition 14, Averify(β(t1), β(t2)) = ⊥ = β(⊥) = verify(t1, t2).

Case 11.3: “t1 = vk(N) and t2 = sig(sk(N), u2,M
s)”.

Then t2 was produced by τ and hence s is of type signature with τ(Avkof (s)) =
vk(N) and m := Averify(Avkof (s), s) 6= ⊥ and u2 = τ(m). Hence with Claim 1
we have m = β(τ(m)) = β(u2) and β(t1) = β(vk(N)) = β(τ(Avkof (s))) =
Avkof (s). Thus Averify(β(t1), β(t2)) = Averify(Avkof (s), s) = m = β(u2). And
β(verify(t1, t2)) = β(verify(vk(N), sig(sk(N), u2,M

s))) = β(u2).

Case 11.4: “t2 = sig(sk(N), u2,M
s) and t1 6= vk(N)”.

As in the previous case, Averify(Avkof (s), s) 6= ⊥ and β(vk(N)) = Avkof (s).
Since t1 6= vk(N), by Claim 3, β(t1) 6= β(vk(N)) = Avkof (s). From implemen-
tation condition 14 andAverify(Avkof (s), s) 6= ⊥, we haveAverify(β(t1), β(t2)) =
Averify(β(t1), s) = ⊥ = β(⊥) = β(verify(t1, t2)).

Case 11.5: “t2 = garbageSig(u1, N
s)”.

Then t2 was produced by τ and hence s is of type signature and either
Averify(Avkof (s), s) = ⊥ or τ(Avkof (s)) is not of the form vk(. . .). The lat-
ter case only occurs if Avkof (s) = ⊥ as otherwise Avkof (s) is of type verification
key and hence τ(Avkof (s)) = vk(. . .). Hence in both casesAverify(Avkof (s), s) =
⊥. If β(t1) = Avkof (s) then Averify(β(t1), β(t2)) = Averify(Avkof (s), s) =
⊥ = β(verify(t1, t2)). If β(t1) 6= Avkof (s) then by implementation condi-
tion 14, Averify(β(t1), β(t2)) = Averify(β(t1), s) = ⊥. Thus in both cases, with
verify(t1, t2) = ⊥ we have Averify(β(t1), β(t2)) = ⊥ = β(verify(t1, t2)).

Case 11.6: “All other cases”.
Then β(t2) is not of type signature, hence by implementation condition 9,

38

Avkof (β(t2)) = ⊥, hence β(t1) 6= Avkof (β(t2)), and by implementation condi-
tion 14 we have Averify(β(t1), β(t2)) = ⊥ = β(verify(t1, t2)).

Case 12: “F = equals”.
If t1 = t2 we have β(equals(t1, t2)) = β(t1) = Aequals(β(t1), β(t1)) = Aequals(β(t1), β(t2)).
If t1 6= t2, then t1, t2 6∈ R. To see this, let N1 be the node associated with
t1. If N1 is a nonce computation node, then t1 6∈ R follows from protocol con-
ditions 2, 3, and 4. In case N1 is an input node, t1 6∈ R follows by definition
of τ . Finally, if N1 is a destructor computation node, t1 6∈ R follows induc-
tively. (Similarly for t2.) By Claim 3, t1, t2 6∈ R implies β(t1) 6= β(t2) and hence
β(equals(t1, t2)) = ⊥ = Aequals(β(t1), β(t2)) as desired.

Case 13: “F ∈ {garbage, garbageE , garbageSig} ∪NE”.
By protocol condition 9, the constructors garbage, garbageE , garbageSig , and N ∈
NE do not occur in the protocol.

Thus Claim 4 holds.
We will now show that for the random choices fixed above,

NodespM,A,Πp,E
= H -NodesM,Πp,Sim .

To prove this, we show the following invariant: f ′i = β ◦ fCi and ν ′i = νCi and si = s′i
for all i ≥ 0. We show this by induction on i.

We have f ′0 = fC0 = ∅ and ν ′0 = νC0 is the root node, so the invariant is satisfied
for i = 0. Assume that the invariant holds for some i. If ν ′i is a nondeterministic node,
ν ′i+1 = νCi+1 is determined by eν′i = eνCi

. Since a nondeterministic node does not modify

f and the adversary is not activated, f ′i+1 = f ′i = β ◦ fCi = β ◦ fCi+1 and si = s′i. Hence
the invariant holds for i+ 1 if ν ′i is a nondeterministic node.

If ν ′i is a computation node with constructor or destructor F , we have that f ′i+1(ν ′i) =
AF (f ′i(ν̄1), . . . , f ′i(ν̄n)) = AF (β(fCi (ν̄1)), . . . , β(fCi (ν̄n))) for some nodes ν̄s depending on
the label of ν ′i. And fCi+1(ν ′i) = fCi+1(νCi) = evalF (fCi (ν̄1), . . . , fCi (ν̄n)). From Claim 4
it follows that β(fCi+1(ν ′i)) = f ′i+1(ν ′i) where the lhs is defined iff the rhs is. Hence
β ◦ fCi+1 = f ′i+1.

By Claim 2, β(fCi+1(νCi)) is defined if fCi+1(ν ′i) is. Hence fCi+1(νCi) is defined iff f ′i+1(ν ′i)
is. If fCi+1(νCi) is defined, then νCi+1 is the yes-successor of νCi and the no-successor
otherwise. If f ′i+1(ν ′i) is defined, then ν ′i+1 is the yes-successor of ν ′i = νCi and the
no-successor otherwise. Thus νCi+1 = ν ′i+1.

The adversary E is not invoked, hence s′i+1 = sCi+1. So the invariant holds for i + 1
if ν ′i is a computation node with a constructor or destructor.

If ν ′i is a computation node with nonce N ∈ NP , we have that f ′i+1(ν ′i) = rN =
β(N) = β(fCi+1(ν ′i)). Hence β ◦ fCi+1 = f ′i+1. By 9, the ν ′i+1 is the yes-successor of ν ′i.
Since N ∈ T, νCi+1 is the yes-successor of νCi = ν ′i. Thus ν ′i+1 = νCi+1. The adversary E
is not invoked, hence s′i+1 = sCi+1. So the invariant holds for i+ 1 if ν ′i is a computation
node with a nonce.

39

In the case of a control node, the adversary E in the computational execution and
the simulator in the hybrid execution get the out-metadata l of the node ν ′i or νCi ,
respectively. The simulator passes l on to the simulated adversary. Thus, since s′i = sCi ,
we have that s′i+1 = sCi+1, and in the computational and the hybrid execution, E answer
with the same in-metadata l′. Thus ν ′i+1 = νCi+1. Since a control node does not modify
f we have f ′i+1 = f ′i = β ◦ fCi = β ◦ fCi+1. Hence the invariant holds for i + 1 if ν ′i is a
control node.

In the case of an input node, the adversary E in the computational execution and the
simulator in the hybrid execution is asked for a bitstring m′ or bitstring tC , respectively.
The simulator produces this string by asking the simulated adversary E for a bitstring
mC and setting tC := τ(mC). Since s′i = sCi , m′ = mC . Then by definition of the
computational and hybrid executions, f ′i+1(ν ′i) = m′ and fCi+1(ν ′i) = tC = τ(m′). Thus

f ′i+1(ν ′i) = m′
(∗)
= β(τ(m′)) = β(fCi+1(ν ′i)) where (∗) follows from Claim 1. Since f ′i+1 = f ′i

and fCi+1 = fC everywhere else, we have f ′i+1 = β ◦ fCi+1. Furthermore, since input nodes
have only one successor, ν ′i+1 = νCi+1. Thus the invariant holds for i + 1 in the case of
an input node.

In the case of an output node, the adversary E in the computational execution gets
m′ := f ′i(ν̄1) where the node ν̄1 depends on the label of ν ′i. In the hybrid execution,
the simulator gets tC := fCi (ν̄1) and sends mC := β(tC) to the simulated adversary E.
By induction hypothesis we then have m′ = mC , so the adversary gets the same input
in both executions. Thus s′i+1 = sCi+1. Furthermore, since output nodes have only one
successor, ν ′i+1 = νCi+1. And f ′i+1 = f ′i and fCi+1 = fC , so f ′i+1 = β ◦ fCi+1. Thus the
invariant holds for i+ 1 in the case of an output node.

From the invariant it follows, that the node trace is the same in both executions.
Since random choices with all nonces, keys, encryptions, and signatures being pair-

wise distinct occur with overwhelming probability (as discussed above), the node traces
of the real and the hybrid execution are indistinguishable.

7.7 Computational Soundness Theorem

Theorem 2. The implementation A (satisfying the implementation conditions listed in
Appendix 11.1) is a computationally sound implementation of the symbolic model M
defined in Section 3 for the class of key-safe protocols with garbage free decryption.

Proof. By Lemma 3, Simf is DY for key-safe protocols. Whether a full trace satisfies the
conditions from Definition 14 can be efficiently verified (since ` is efficiently decidable).
Hence Lemma 5 implies that Sim is DY for key-safe protocols, too. By Lemma 8,
Sim is indistinguishable. Hence Sim is a good simulator for M, key-safe Π, A, and
polynomials p. By Theorem 1, the computational soundness of A for key-safe protocols
follows.

40

8 Computational soundness of the applied π-calculus

We have seen now that for protocols that have GFD (see Definition 17), we can apply
the somputational soundness theorem even if the encryption scheme is secure only under
IND-CPA. In order to make use of this new property, we now show that it can be
transferred to other calculi. Also we come up with a way to test automatically if a
protocol satisfies the GFD property.

The definitions of the calculus have been taken from [1], since they can be used for
our proof as well. In contrast to our main proof, here we can use some of the lemmas
from the original proof, since we do not change the definition of the calculus.

8.1 Syntax and Semantics of the applied π-calculus

The process calculus that we use is the same that was used in the CoSP paper [1]. The
syntax is listed in Figure 2. The calculus corresponds to the one considered in [4], ex-
tended only by adding event processes event(e).P for strings e. Such an event process
raises the event e and then proceeds to execute the process P . Although technically
this defines a variant of the applied π-calculus, it is not given a new name for simplicity
reasons.

Notation

• To avoid ambiguity, we add the prefix CoSP- to terms, constructors, destructors,
nodetraces etc. that are defined in the sense of the symbolic Model of CoSP in
Section 2.2. Equivalently, terms, constructors, traces etc. that originate in the
π-calculus receive the prefix π-.

• The set of ground π-terms is denoted Tπ.

• For a process P , the set of free names8 is denoted by µ(P), while the set of free
variables9 is denoted by η(P).

• A process P is called closed if it has no free variables (it may have free names).

The applied π-calculus is parametrized over:

• A (possibly infinite) set of π-constructors Cπ like the ones from Section 3.

• A (possibly infinite) set of π-destructors Dπ also like the ones from Section 3.

• An equivalence relation ≈ over ground π-terms that we will call equational theory.
We require ≈ to fulfill the following equations for all π-constructors f and π-
destructors d of arity n, for all ground π-terms M1, . . . ,Mn,M

′
1, . . . ,M

′
n with Mi ≈

M ′i for i = 1, . . . , n

8A free name in the sense of this notation is a name n that is not protected by a restriction.
9We call a variable x free, if it is not protected by a let or an input statement.

41

– f(M) ≈ f(M ′)

– d(M) = ⊥ iff d(M ′) = ⊥
– d(M) ≈ d(M ′)

– d(Mτ) = d(M)τ for any renaming τ of names.

M,N ::= terms

x, y, z variables

a, b, c names

f(M1, . . . ,Mn) constructor application

D ::= destructor terms

M terms

d(D1, . . . , Dn) destructor application

f(D1, . . . , Dn) constructor application

P,Q ::= processes

M̄〈N〉.P output

M(x).P input

0 nil

P | Q parallel composition

!P replication

νa.P restriction

let x = D let

in P else Q

event(e).P event

Figure 2: Syntax of the applied π-calculus.

Although there is no explicit definition of an if-statement in the syntax of the applied
π-calculus, we can emulate such a statement. To do so, we use an additional destructor
equals. It is defined by equals(x, y) = x for x ≈ y. When we want to express an if-
statement like if M=N then P else Q, we write it as Let x = equals(M,N) in P else Q
for some x /∈ η(P). In the following we will assume equals ∈ Dπ.

To simplify notation we will use the if-statement instead of the longer let-expression
and we will write Let x = D in P for Let x = D in P else 0 and analogously for if .

Note that, in contrast to the CoSP model from Section 3, we here have destructor
terms. When dealing with them, we can evaluate a ground destructor π-term D to a
ground π-term evalπ(D) by evaluating all the π-destructors. If one of them returns ⊥,

42

P | 0 ≡ P P ≡ P P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)

P ≡ Q Q ≡ R
P ≡ R

νa.νb.P ≡ νb.νa.P
P ≡ Q

P | R ≡ Q | R
a /∈ µ(P)

νa.(P | Q) ≡ P | νa.Q

P ≡ Q
νa.P ≡ νa.Q

N ≈ N ′

N〈M〉..Q | N ′(x)..P → Q | P{M/x}

evalπD 6= ⊥
Let x = D in P else Q→ P{evalπD/x}

evalπD = ⊥
Let x = D in P else Q→ Q

!P → P |!P
P → Q

P | R→ Q | R νa.P → νa.Q

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′ event(e).P
e→ P

P
e→ Q

P | R e→ Q | R νa.P
e→ νa.Q

P ′ ≡ P P
e→ Q Q ≡ Q′

P ′
e→ Q′

Figure 3: Semantics of the applied π-calculus with events.

we set evalπ(D) := ⊥. Similary we can talk about destructor CoSP terms D including
CoSP-destructors, -constructors and -nonces. We define evalCoSP(D) analogously to
evalπ.

The semantics of the calculus corresponds to the one defined in [4] except for a new
type of transitions. In addition to the normal transition→ we define an event transition
e→, denoting that the event e has occured. The rules of the semantics are formally

defined in Figure 3.
We use the event transitions to define trace properties as sequences of events that

occur during the execution of a process. The formal definition is as follows:

Definition 19 (π-trace properties). A list of strings e1, . . . , en is an event trace of P

if there is a process Q that does not contain events such that P | Q →∗ e1→→∗ e2→→∗
· · · →∗ en→. A π-trace property is an efficiently decidable and prefix-closed set of strings.
A process P symbolically satisfies a π-trace property ℘ if we have e ∈ ℘ for all event
traces e of P .

43

8.2 A computational π-execution

In analogy to the computational CoSP implementation, we specify a computational π-
implementation as a set of partial deterministic polynomial time algorithms. To each
π-constructor or π-destructor f , we assign an algorithm Aπf . For our equality check

function we require that Aπequals(1
k, x, x) = x and Aπequals(1

k, x, y) = ⊥ for x 6= y. Thus,
our computational interpretation of the ≈ relation is the equality of bitstrings.

We also fix a set Noncesk depending on a security parameter k and require it to be
efficiently sampleable.

For the computational π execution there are still a few things to define:

• names and variables:
We define two injective functions µ from names to bitstrings and η from variables to
bitstrings. Their task is to assign a bitstring to each name or variable respectively.

• a computational π-evaluation:
Analogously to the symbolic case we define cevalη,µD. Also, as in the symbolic
case we define cevalη,µD := ⊥ if at least one of the algorithms Aπf fails. Note that
ceval formally has the security parameter k as an additional input.

• nondeterminism:
We model the nondeterminism by giving the adversary total control over the
scheduling. This gives the adversary a lot of power and can be considered a worst-
case assumption and thus a safe approximation.

• information flow to the adversary:
In the applied π-calculus, an adversary can receive every message on any channel
that he knows. To model this, we allow the (computational) adversary to query
for messages. He receives them if he is able to produce the bitstring corresponding
to the channels name, which corresponds to the (symbolic) knowledge.

• evaluation contexts:
For the computational implementation of a process we make use of evaluation
contexts, defined as follows: An evaluation context is a context with either one hole,
or with two (distinguished) holes where each hole occurs only once and is located
only below parallel compositions.10 In the case of two holes, we write E[P][Q] to
denote the replacement of the first hole by P and of the second hole by Q.

Definition 20 (Computational π-execution). Let P0 be a closed process, and let C be
an interactive machine called the adversary. We define the computational π-execution as
an interactive machine ExecP0(1k) that takes a security parameter k as argument and
interacts with C:

10Traditionally, one considers evaluation contexts where the hole may also be protected by a restriction.
However, computationally the evaluation of a restriction has to be considered a proper reduction step
(it corresponds to choosing a nonce).

44

• Start : Let P := P0 (where we rename all bound variables and names such that they
are pairwise distinct and distinct from all unbound ones). Let η be a totally unde-
fined partial function mapping variables to bitstrings, let µ be a totally undefined
partial function mapping names to bitstrings. Let a1, . . . , an denote the free names
in P0. For each i, pick ri ∈ Noncesk at random. Set µ := µ(a1 := r1, . . . , an := rn).
Send (r1, . . . , rn) to C.11

• Main loop: Send P to the adversary and expect an evaluation context E from the
adversary. Distinguish the following cases:

– P = E[M(x).P1]: Request two bitstrings c, m from the adversary. If c =
cevalη,µ(M), set η := η(x := m) and P := E[P1].

– P = E[νa.P1]: Pick r ∈ Noncesk at random, set P := E[P1] and µ := µ(a :=
r).

– P = E[M1〈N〉..P1][M2(x)..P2]: If cevalη,µ(M1) = cevalη,µ(M2) then set P :=
E[P1][P2] and η := η(x := cevalη,µ(N)).

– P = E[Let x = D in P1 else P2]: If m := cevalη,µ(D) 6= ⊥, set η := η(x := m)
and P := E[P1]. Otherwise set P := E[P2].

– P = E[event(e).P1]: Let P := E[P1] and raise the event e.
– P = E[!P1]: Rename all bound variables of P1 such that they are pairwise

distinct and distinct from all variables and names in P and in the domains of
η and µ, yielding a process P̃1. Set P := E[P̃1 |!P1].

– P = E[M〈N〉..P1]: Request a bitstring c from the adversary. If c = cevalη,µ(M),
set P := E[P1] and send cevalη,µ(N) to the adversary.

– In all other cases, do nothing.

In order to check if trace properties are fulfilled, we again use the events that are
raised from our event transitions. We gather the events raised during the computational
execution in a list. More precisely, for a given polynomial-time interactive machine C,
a closed process P0 and a polynomial p we define EventsC,P0,p(k) as the list of events e
raised within the first p(k) computation steps (where we count the steps from both C(1k)
and ExecP0(1k)). Based on these lists, we define, if a π-trace property is computationally
fulfilled:

Definition 21 (Computational π-trace properties). Let P0 be a closed process, and p
a polynomial. We say that P0 computationally satisfies a π-trace property ℘ if for all
polynomial-time interactive machines C and all polynomials p, we have that
Pr[EventsC,P0,p(1

k) ∈ ℘] is overwhelming in k.

8.3 Towards Computational Soundness

We now want to show the computational soundness of the applied π-calculus using our
result from Theorem 2. Since we did not change the applied π-calculus from [1], we will
be able to apply the lemmas proven there. However, we have to find a condition for π

11In the applied π-calculus, free names occurring in the initial process represent nonces that are
honestly chosen but known to the attacker.

45

m ∈ S
S ` m

N ∈ NE

S ` N
S `M f ∈ C \N

S ` f(M)

S `M d ∈ D d(M) 6= ⊥
S ` d(M)

Figure 4: Deduction rules for the symbolic model of the applied π-calculus

protocols that corresponds to the GFD property in the sense of Definition 17. Then we
have to prove that this condition implies that the (symbolic) CoSP protocol which we
derive from the given π protocol fulfills our GFD property.

In order to make this thesis self contained, we first include the definitions and lemmas
that are needed to prove the computational soundness of the applied π-calculus. They
are taken from [1] and do not need to be changed.

Definition 22 (Symbolic model of the applied π-calculus). For a π-destructor d, we
define d′ by d′(t) := d(tρ)ρ−1 where ρ is any injective map from the nonces occurring in
the CoSP-terms t to names.12 Let NE and NP be countably infinite sets.

The symbolic model of the applied π-calculus is given by M = (C,N,T,D,`), where
N := NE ∪NP , C := Cπ, D := {d′ : d ∈ Dπ}, and where T consists of all terms over C
and N, and where ` is defined by the rules in Figure 4.

We fix M,C,N,D,` as in Definition 22. The destructor equals ′ induces an equiva-
lence relation ∼= on the set of CoSP-terms with x ∼= y iff equals ′(x, y) 6= ⊥. The relation
∼= is the analogue to the equivalence relation ≈ describing the equational theory of the
applied π-calculus.

Definition 23 (Computational implementation of Def. 22). The computational imple-
mentation A of the symbolic model M of the applied π-calculus is given by Af := Aπf
for all f ∈ C and Ad := Aπd for all d ∈ D. AN for N ∈ N picks r ∈ Noncesk uniformly
at random and returns r.

The following definition of the symbolic execution is a technical tool, designed to
relate the symbolic and the computational semantics. It is defined analogously to the
computational execution while constituting a safe approximation of the original seman-
tics.

Note that in the following definition we have evalCoSPMηµ = Mηµ for π-terms M
that are no destructor terms. To show the analogy to Definition 20 the redundant
application is not removed.

Definition 24 (Symbolic execution of a π-process). Let P0 be a closed process, and let
C be an interactive machine called the adversary. We define the symbolic π-execution
as an interactive machine SExecP0 that interacts with C:

12This is well-defined and independent of ρ since for any renaming of names τ , we have d(Mτ) =
d(M)τ ; intuitively d′ behaves as d except that it uses nonces instead of names.

46

• Start : Let P := P0 (where we rename all bound variables and names such that
they are pairwise distinct and distinct from all unbound ones). Let η be a totally
undefined partial function mapping variables to terms, let µ be a totally undefined
partial function mapping names to terms. Let a1, . . . , an denote the free names
in P0. For each i, choose a different ri ∈ NPri ∈ NPri ∈ NP Set µ := µ(a1 := r1, . . . , an := rn).
Send (r1, . . . , rn) to C.
• Main loop: Send P to the adversary and expect an evaluation context E from the

adversary. Distinguish the following cases:
– P = E[M(x).P1]: Request two CoSP-termsCoSP-termsCoSP-terms c, m from the adversary. If
c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ), set η := η(x := m) and P := E[P1].

– P = E[νa.P1]: Choose r ∈ NP \ rangeµr ∈ NP \ rangeµr ∈ NP \ rangeµ, set P := E[P1] and µ := µ(a := r).
– P = E[M1〈N〉..P1][M2(x)..P2]: If evalCoSP(M1)ηµ ∼= evalCoSP(M2ηµ)evalCoSP(M1)ηµ ∼= evalCoSP(M2ηµ)evalCoSP(M1)ηµ ∼= evalCoSP(M2ηµ) then set
P := E[P1][P2] and η := η(x := evalCoSP(Nηµ)evalCoSP(Nηµ)evalCoSP(Nηµ)).

– P = E[Let x = D in P1 else P2]: If m := evalCoSP(Dηµ)evalCoSP(Dηµ)evalCoSP(Dηµ) 6= ⊥, set η := η(x :=
m) and P := E[P1]. Otherwise set P := E[P2].

– P = E[event(e).P1]: Let P := E[P1] and raise the event e.
– P = E[!P1]: Rename all bound variables of P1 such that they are pairwise

distinct and distinct from all variables and names in P and in the domains of
η and µ, yielding a process P̃1. Set P := E[P̃1 |!P1].

– P = E[M〈N〉..P1]: Request a CoSP-termCoSP-termCoSP-term c from the adversary.
If c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ)c ∼= evalCoSP(Mηµ), set P := E[P1] and send evalCoSP(Nηµ)evalCoSP(Nηµ)evalCoSP(Nηµ) to the adver-
sary.

– In all other cases, do nothing.

Defined like this, the symbolic π-execution is quite similar to the computational
π-execution (Definition 20). The only differences are:

• The symbolic execution uses CoSP-terms instead of bitstrings as messages.

• The symbolic execution compares its messages using ∼= instead of checking for
bitstring equality.

• The symbolic execution computes evalCoSPXηµ instead of cevalη,µX.

• As value for a restricted name, the symbolic execution chooses a fresh CoSP-nonce
instead of a random bitstring.

The interactive machine SExecP0 performs only basic operations on CoSP-terms: the
application of CoSP-constructors (including nonces) and CoSP destructors 13 , sending
and receiving terms. Thus we can realise the machine as a CoSP protocol in the sense
of Definition 4. For sending P to the adversary and receiving an evaluation context E,
we use control nodes. If an event e is raised, we model this by sending (event , e) to the
adversary, again using a control node (but with only one successor). We call these nodes
event nodes, and given a sequence of nodes ν, by events(ν) we denote the events e raised
by the event nodes in ν.

13This includes comparing terms using ∼=, which can be done by applying the destructor equals ′.

47

For an interactive machine SExecP0 , we call the protocol resulting from applying
this construction ΠP0 . Since ΠP0 does not contain nondeterministic nodes, it is a CoSP
protocol and a probabilistic protocol simultaneously. For the technical details of the
construction we recommend having a look at [1].

Definition 25. A nondeterministic interactive machine C is a Dolev-Yao adversary if
the following holds in an interaction with any interactive machine M in each step of the
interaction: Let S be the set of all CoSP-terms sent by M up to the current step. Let
m be the term sent by C in the current step. Then S ` m.

SExecP0 satisfies a π-trace property ℘ if in a finite interaction with any Dolev-Yao
adversary, the sequence of events raised by SExecP0 is contained in ℘.

The following lemmas that originated in the CoSP paper will be needed for our result
but we omit the proofs here. Since we did not change the applied π-calculus, we can
apply the lemmas as they are. If you are interested in the proofs, you can find them in
[1].

Lemma 9. Let ℘ be a trace property. Then SExecP0 satisfies ℘ iff ΠP0 symbolically
satisfies events−1(℘) (in the sense of Definition 10). Moreover, P0 computationally
satisfies ℘ iff (ΠP0 , A) computationally satisfies events−1(℘) (in the sense of Definition
10).

Lemma 10. The probabilistic CoSP protocol ΠP0 is efficient.

Lemma 11. If a closed process P0 symbolically satisfies a π-trace property ℘, then
SExecP0 satisfies ℘.

The previous lemmas constitute a basis for showing the computational soundness of
the calculus. For a trace property ℘, a closed process P and a computationally sound
implementation A of the calculus, we can show: If P symbolically satisfies ℘, then by
Lemma 11 the corresponding SExecP also satisfies ℘. By Lemma 9 it follows that ΠP

symbolically satisfies events−1(℘). By Lemma 10 ΠP is efficient. If we now could apply
Theorem 2 to show that ΠP , together with A, computationally satisfies events−1(℘), we
could apply Lemma 9 again to show that P computationally satisfies ℘.

Unfortunately, we can only apply Theorem 2 when the CoSP protocol fulfills all of
the protocol conditions listed in Appendix 11.2, especially our new condition of garbage
free decryption in the sense of Definition 17.

In the following, we specify what condition the π process P has to fulfill. Also we
show that when the process fulfills this condition, then the coresponding CoSP protocol
ΠP has garbage free decryption in the sense of Defintition 17.

48

8.4 A related protocol

For a π-process P we create a new protocol Pgfd that is a copy of P but whenever in
P the destructor dec is applied to a garbageEnc-term, in Pgfd the event badDec is gen-
erated. Basically, every decryption term dec(c) is replaced by If isGarbageEnc(c) then
event badDec Else dec (c). We then require the following condition to hold in order to
apply our results:
Additional condition: The process Pgfd has to satisfy the trace property ϕgfd (as de-
fined below), stating that the event badDec does not occur.

Our condition for the process might seem a bit strange, since it acutally does not
speak about our original process, but about a related one. We will however show that in
practice the condition can be checked easily and that this process can even be automa-
tised (see Section 9 for more details).

Formally we state that Pgfd is a π-protocol related to P by a new relation R, defined
as follows: Two states s = (P, η, µ) and s′ = (P ′, η′, µ′) are related by R (we also write
s ≈R s′ or (s, s′) ∈ R) iff µ = µ′, η ⊂ η′ ◦ π for a variable renaming π and (P, P ′) ∈ RP
(we also write P ≈P P ′), where RP is the following relation on processes: (P, P ′) ∈ RP
holds iff one of the following cases is met

• P = M(x).P1

P ′ = M(x).P ′1
and (P1, P

′
1) ∈ RP

• P = νa.P1

P ′ = νa.P ′1
and (P1, P

′
1) ∈ RP

• P = M1〈N〉.P1

P ′ = M1〈N〉.P ′1
and (P1, P

′
1) ∈ RP

• P = M1〈x〉.P1

P ′ = M1〈x〉.P ′1
and (P1, P

′
1) ∈ RP

• P = let x = dec(x1, D) in P1 else P2

P ′ = let y = isGarbageEnc(D) in event badDec.L else L
with L = let π(x) = dec(x1, D) in P ′1 else P ′2
and (P1, P

′
1) ∈ RP , (P2, P

′
2) ∈ RP , y /∈ domain(η).

• let x = D in P1 else P2

P ′ = let π(x) = D in P ′1 else P ′2
and (P1, P

′
1) ∈ RP , (P2, P

′
2) ∈ RP , D not of the form dec(. . .).

49

• P = P1|P2

P ′ = P ′1|P ′2
and (P1, P

′
1) ∈ RP , (P2, P

′
2) ∈ RP .

• P = event(e).P1

P ′ = event(e).P ′1
and (P1, P

′
1) ∈ RP

• P = !P1

P ′ = !P ′1
and (P1, P

′
1) ∈ RP

• P = M〈N〉.P1

P ′ = M〈N〉.P ′1
and (P1, P

′
1) ∈ RP

• P is not of the form “let x = D in P1 else P2” and P = P ′.

Note that for every evaluation context E and for processes P1, P ′1 with (P1, P
′
1) ∈ RP

and for E′[] with (E[], E′[]) ∈ RP it holds that (E[P1], E′[P ′1]) ∈ RP .

Definition 26. The trace property ϕgfd is the set of all lists of events that do not contain
the event badDec.

Definition 27. A machine SExecP has GFD if it has no bad state in the following sense:
A state (P, η, µ) is called bad if P = E[let x = dec(x1, D) in P1] with evalη(D) is of

the form gE(. . .)

Lemma 12. Pgfd symbolically satisfies ϕgfd ⇒ SExecPgfd
satisfies ϕgfd.

Proof. This follows directly by applying Lemma 11.

8.5 Transfering GFD-ness

In order to apply Theorem 2, we need that ΠP has garbage free decryption in the sense
of Definition 17. Intuitively this follows from the fact that Pgfd symbolically satisfies
ϕgfd: We have defined that whenever a garbage decryption would occur in P, Pgfd raises
the event badDec. If we assume that this event was not raised, no garbage decryptions
can occur in the original protocol. If there is no garbage decryption in P , there should
be no garbage decryption in ΠP . The proof however is a bit more complicated.

Lemma 13. SExecPgfd
satisfies ϕgfd ⇒ SExecP has GFD.

Proof. To show this we assume that there is an execution of SExecP in interaction with
a DY adversary E that contradicts the GFD property. We then show that this leads to
the existence of a execution of SExecPgfd

in interaction with a DY adversary Eg where
the event badDec is raised.

50

First we connect the states of SExecP and SExecPgfd
in the following way:

Let s′ = (P ′, η′, µ′) be the state of SExecP , initially being the state before the first
iteration but after the first message (r1, . . . , rn) has been sent. Analogously let s′g =
(P ′g, η

′
g, µ
′
g) be the state of SExecPgfd

, also initially being the state before the first iteration
but after the first message has been sent.

Since by changing P to Pgfd no names are changed, dropped or additionally intro-
duced (see Section 8.4), the free names in P are also exactly the free names in Pgfd.
Thus we can choose the same first message (r1, . . . , rn) for SExecPgfd

.

We now use the relation from Section 8.4 that links the states of SExecP to states
of SExecPgfd

. Observe that, like it was intended, now s′ ≈R s′g holds with s′ being the
state of SExecP and s′g being the state of SExecPgfd

:

• At this point, P ′g = Pgfd and P ′ = P . Since Pgfd is derived from P as described in

Section 8.4, P ≈P Pgfd holds by definition of Pgfd and thus P ′ ≈P P ′g.

• η′ = η′g since both are totally undefined partial functions from variables to terms.
Thus η′ ⊂ η′g ◦ π holds for arbitrary π.

• By definition of the symbolic execution, µ′ = µ0(a1 := r1, . . . , an := rn) where µ0

is totally undefined, a1, . . . an are the free names in P and (r1, . . . , rn) is the first
message sent to the adversary in SExecP .

Since, as stated above, a1, . . . an also are the free names in Pgfd and (r1, . . . , rn)
also is the first message sent to the adversary in SExecPgfd

,
µ′g = µ0(a1 := r1, . . . , an := rn) = µ′.

Showing the following three claims will conclude the proof:

Claim 1: For all states s = (P, η, µ) with P = E′[let y = isGarbageEnc(D) in
event badDec.P1 else P1] where E′ is given by the adversary and evalη(D) is of type

gE(. . .), there is a state s∗ s.t. s −→badDec−→ s∗ is possible in interaction with some adver-
sary Eg.

By applying the rules from Definition 24 we see that in the next iteration of the
main loop, s −→ s′ for some s′ = (P ′, η′, µ′) with P ′ = E′[event badDec.P1]. When, in
the next iteration, the adversary sends the same E′ again, we have that by applying the

same rules s′
badDec−→ s∗ for some s∗.

Claim 2: s′ ≈R t′ ∧ s′ −→ s′′ ⇒ ∃t′′ : s′′ ≈R t′′ ∧ t′ −→∗ t′′

Let there be an iteration step in SExecP that transforms the state from s′ = (P ′, η′, µ′)
to s′′ = (P ′′, η′′, µ′′) and a state t′ = (P ′t , η

′
t, µ
′
t) with s′ ≈R t′.

51

In SExecP , P ′ is sent to the adversary that answers with an evaluation context E.
For SExecPgfd

we choose an evaluation context Et with E ≈R Et. This is possible

because P ′ ≈P P ′t . So for every context E s.t. P ′ = E[P1] we will find a context Et
with P ′t = Et[Pt1], E ≈P Et and P1 ≈P Pt1. We now distunguish the following cases
depending on P ′:

• P ′ = E[let x = dec(x1, D) in P1 else P2] with evalη(D) not of type gE(. . .)

Since P ′ ≈P P ′t and E ≈P Et, P ′t must be of the form Et[let y = isGarbageEnc(D)
in event badDec.L else L] for L = let xt = dec(x1, D) in Pt1 else Pt2.

We also know that P1 ≈P Pt1 and P2 ≈P Pt2 since this is necessary for P ′ ≈P P ′t .
By applying the rules from Definition 24 we have that s′t −→ s∗t = (P ∗t , η

∗
t , µ
∗
t)

with P ∗t = E′[L], η∗t = η′t, µ
∗
t = µ′t.

Now, depending on dec(x1, D), both machines make a step:

– If l := evalCOSP (dec(x1, D)) 6= ⊥
P ∗t = E′[Pt1], P ′′ = E[P1],

We know that η′ = η′t ◦ π for a variable renaming π. For π′ := π[x → xt] we
have that η′′ = η′(x := l) = η′t(xt := l) ◦ π′ = η∗t ◦ π′. Thus there again exists
a variable renaming π′ such that η′′ = η∗ ◦ π′.
µ′′ = µ′ = µ′t = µ∗t .

Thus s′′ ≈R s∗t .
– If evalCOSP (dec(x1, D)) = ⊥
P ∗t = E′[Pt2], P ′′ = E[P2].

η′′ = η′
(1)
= η′t ◦ π = η∗t ◦ π, where (1) follows from s′ ≈R t′ for some variable

renaming π.

µ′′ = µ′ = µ′t = µ∗t .

Thus s′′ ≈R s∗t .

Thus s′t −→∗ s∗t with s′′ ≈R s∗t .

• P ′ = E[let x = dec(x1, D) in P1 else P2] with evalη(D) of type gE(. . .)

By Claim 1 we have that

s′t −→
badDec−→ s∗t = (P ∗t , η

∗
t , µ
∗
t) with P ∗t , η

∗
t , µ
∗
t as in the previous case.

We now proceed as above.

• The other cases follow directly from the definition of RP .

Claim 3:For an evaluation context E and Processes P ′ and P ′t with P ′ ≈P P ′t and
P ′ = E[P ′′] we can create another evaluation context Eg with P ′t = Eg[P

′′
t] such that

P ′′ ≈P P ′′t .

52

The only differences of the protocols lies in variable names and the extension of Let
constructs with decryption terms. Traversing down the structure of both P ′ and P ′t until
reaching P ′′, seeing that for the relation to hold the subterms have to be related as well,
the claim follows immediately with P ′′t being the pendant to P ′′ and Eg being the rest.

Claim 4: s′ = (P ′, η′, µ′) bad ⇒ ∀s′t = (P ′t , η
′
t, µ
′
t) with s′ ≈R s′t there is a process P ∗

and an evaluation context Eg such that P ′t = Eg[let y = isGarbageEnc(D) in event
badDec.P ∗ else P ∗] with evalη(D) is of the form gE(. . .).

Let s′t = (P ′t , η
′
t, µ
′
t) be a state with s′ ≈R s′t. By Definition 27 s′ = (P ′, η′, µ′) is

bad implies that P ′ = E[let x = dec(x1, D) in P1else P2] with eval′η(D) is of the form
gE(. . .) for some evaluation context E.

Since s′ ≈R s′t we know that P ′ ≈P P ′t . For an evaluation context E with P ′ = E[P ′′]
by Claim 3 we know that we can create another evaluation context Eg with P ′t = Eg[P

′′
t]

such that P ′′ ≈P P ′′t . But since in our case, for the chosen E, the inner process P ′′ is of
the form let x = dec(x1, D) in P1 else P2, by the definition of RP (see Section 8.4) we
know that P ′′t must be of the form let y = isGarbageEnc(D) in event badDec.P ∗ else
P ∗ for some P ∗.

Lemma 14. SExecP has GFD ⇒ ΠP has GFD.

Proof. This follows directly from the construction of ΠP . When in ΠP a dec destructor
node is reached with the second argument being of type garbageEnc, then in SExecP
there is a bad state (in the sense of Definition 27) that is also reachable.

This Lemma concludes the proof. We can now show the computational soundness of
the calculus:

Theorem 3. Computational soundness with IND-CPA in the applied π-calculus
Assume that the computational implementation A of the applied π-calculus (Definition
23) is a computationally sound implementation (in the sense of Definition 11) of the
symbolic model of the applied π-calculus (Definition 22) for a class P of protocols.

If a closed process P symbolically satisfies a π-trace property ℘, ΠP ∈ P, and the
related process Pgfd with P ≈P Pgfd symbolically satisfies ϕgfd then P computationally
satisfies ℘.

Proof. Assume that P symbolically satisfies ℘. Then by Lemma 11 the correspond-
ing SExecP also satisfies ℘. By Lemma 9 it follows that ΠP symbolically satisfies
events−1(℘). By Lemma 10 ΠP is efficient. Since ℘ is an efficient decidable, prefix
closed set, so is events−1(℘). Thus, events−1(℘) is a CoSP trace property in the sense
of Definition 10. Since by assumption Pgfd symbocically satisfies ϕgfd, by Lemma 12 we
have that SExecPgfd

satisfies ϕgfd. Thus, by Lemma 13 SExecP has GFD in the sense of
Definition 27. By Lemma 14 it follows that ΠP has GFD.

53

Together with the assumption that the computational implementation A of the
applied π-calculus is computationally sound, we can apply Theorem 2 and yield that
(ΠP , A) computationally satisfies events−1(℘). We apply Lemma 9 again to show that
P computationally satisfies ℘.

9 Case Study

In the previous section, we have shown how the computational soundness result with
IND-CPA can be used for the applied π-calculus. We stated that the required condition
for our new symbolic property, the concept of garbage free decryption, can even be
checked automatically.

In this section we will present an example of how to check for GFD and how to use
ProVerif to automatise this.

9.1 ProVerif

ProVerif is a tool designed to automatically verify cryptographic protocols. It is based
on Prolog rules. The definitions of functions like destructors are stated as facts. The
protocol itself is written in a π-calculus alike syntax.

By writing queries the user can ask ProVerif to check if certain properties are fulfilled.
Some of the possible queries include:

• Checking if an adversary is able to deduce some nonce n

• Checking if some event A is raised

• Checking if events are raised in a specific order. (e.g. event B is never raised before
event A is raised)

ProVerif uses some abstractions and approximations but they are proven to be sound.
If ProVerif states that it does not find a violation to the queries, there is none. ProVerif
is not complete though. For more information about ProVerif, please have a look at [3].

In the CoSP paper it is shown that and how ProVerif can be used to check whether a
certain property is fulfilled. We wanted to extend this by showing that also the fact that
a protocol has symbolic GFD can be shown. This is a necessary criterion for a protocol
in order to apply our computational soundness theorem. In Section 8 we have shown
how this can be verified: A related protocol is created like described in Section 8.4. If it
can be shown that the (new) event badDec() is never raised, the original protocol has
GFD.

Our example directly follows this approach. In order to modify the protocol we make
use of the preprocessor m4. In our protocol we use the pattern

DEC(a,b,c)

instead of the ProVerif line

54

let a = dec(b,c) in

When we want to check for the GFD property, m4 replaces the line by

let y = isgarbageenc(c) in event badDec() else let a = dec(b,c) in

where isgarbageenc checks, if the input is a garbage encryption term. Thus, whenever a
garbage encryption would be decrypted, the event badDec() will be raised. Now when
ProVerif can prove that the event is never raised, from Section 8 we know that the
corresponding CoSP protocol will have GFD.

9.2 Some words about m4

We did not want to leave applying the changes from Section 8.4 by hand to the user.
Thus we made use of the GNU m4 preprocessor [7] and defined a few simple rules for
it, that are stated below. For the ProVerif file we simply require, that decryption is
applied in the previously mentioned syntax (DEC(a,b,c)) and that the following lines
are included:

GFDDEF

GFDQUERY

The GNU m4 preprocessor is a macro processor that copies its input to the output
while expanding both built in and user defined macros. We barely use the power that
comes with the many features of m4, using it to simply replace a few words by other
words. If interested in the features, we recommend having a look at the extensive manual
(see [7]).

As mentioned before, here you will se the m4 definitions:

Our definitions follow a very simple pattern.

define(f, this is a text including $1 and $2)

defines a function symbol f . Every occurence of f is replaced by the text that fol-
lows the comma. The symbols $1 and $2 are replaced by the parameters of the function
symbol. The text f(cats,dogs) would be replaced by this is a text including cats and dogs.

First, you will se our m4 definition file for the normal check. The resulting file
includes the user defined queries that allow to check for the security properties, but it
excludes the GFD check.

define(DEC,let $1 = dec($2,$3) in)

define(GFDQUERY,)

define(GFDDEF,)

define(QUERY,query $1.)

55

As you can see, in this “normal” setting, we replace the DEC symbol by a normal decryp-
tion. The placeholders for the GFD query and for the definition of the garbage check are
removed from the file. The normal, user defined queries stay in the file and are converted
to the ProVerif syntax.

In our GFD check definition we exclude the user defined queries that allow to check
for the security properties. Instead we include the check for GFD and the additional
definition for checking if a term is a garbage encryption.

define(DEC,let y = isgarbageenc($3) in event badDec() else let $1 = dec($2,$3) in)

define(GFDQUERY,query ev:badDec().)

define(GFDDEF,reduc isgarbageenc(garbageenc(r1,r2)) = garbageenc(r1,r2).)

define(QUERY,)

Here, whenever a decryption occurs, we want to check if it would be a garbage encryption
first. Thus, we replace the DEC symbol by a garbage encryption check, followed by the
actual decryption.

Additionally the definition for the garbage encryption check is given and a new
query is included. It simply checks if the event badDec can be send. All other queries
are removed.

When applyingm4 to the example lines listed in Figure 5, we will see some differences.

GFDDEF

QUERY(evinj:end() ==> evinj:begin())

GFDQUERY

[...]

let e1 = verify(vkA,s1) in

DEC(nA’,dkB,e1)

new r1; new r2;

Figure 5: original file “replay2.pv”

When using m4defGFD, the resulting file will look like shown in Figure 6.
When using m4defNORMAL instead, we will get a file as shown in Figure 7.
As you can see, in the first proverif file we can check if the GFD property is fulfilled,
while the second file allows to check for the user defined properties.

9.3 The example protocol

Our example protocol models a communication between Alice and her bank. She wants
her bank to execute a transaction for her (for example transfering money from her bank
account to another one). We assume that both she and the bank already have exchanged
public keys for encryptions and verification keys for signatures, via some secret channel
but now are communicating using an insecure channel.

56

reduc isgarbageenc(garbageenc(r1,r2)) = garbageenc(r1,r2).

query ev:badDec().

[...]

let e1 = verify(vkA,s1) in

let y = isgarbageenc(e1) in event badDec() else let nA’ = dec(dkB,e1) in

new r1; new r2;

Figure 6: gfd check file “replay2 gfd.pv”

query evinj:end() ==> evinj:begin().

[...]

let e1 = verify(vkA,s1) in

let nA’ = dec(dkB,e1) in

new r1; new r2;

Figure 7: normal check file “replay2 normal.pv”

We want our protocol to not only be secure against an eavesdropping adversary, or an
adversary that changes the messages directly, but also against so called replay attacks.
In our setting, a replay attack occurs, if an adversary can make the bank execute a
transaction more often than Alice requested it. Lets assume that Alice wants to transfer
50$ from her account to the account of Eve. If by copying some messages and sending
them to the bank over and over again, Eve can make the bank transfer the 50$ not once
but 10 times, she made a replay attack.

Our protocol is modelled like this:

A
sig(sigkA,(A,enc(pkB ,NA)))

−−−−−−−−−−−−−−−−−−−−−−−→ B

A
sig(sigkB ,(B,enc(pkB ,(NA,NB))))

←−−−−−−−−−−−−−−−−−−−−−−− B
A

sig(sigkA,(enc(pkB ,(NB ,m))))

−−−−−−−−−−−−−−−−−−−−−−−→ B

Alice sends to the bank a new nonce NA, encrypted with the public key of the bank,
and signs the message with her signing key sigkA. The bank verifies the signature and
then decrypts the nonce. Then it picks a new nonce NB and sends to Alice an encryption
of both nonces, signed with its signing key sigkB Upon receiving this, Alice first verifies
the signature of the message and then decrypts it. If the result of the decryption is a
tuple with her own nonce (NA) and another one (NB), she sends an encryption of NB

and her actual transaction message (e.g. ”Transfer 50$ to Eve”) to the bank, again
signed with sigkA. The bank, upon receiving the message, again verifies the signature

57

and then decrypts. If NB matches the nonce of the current transaction, it executes the
transaction.

Since both Alice and the bank pick a new nonce and check whether this nonce is
used correctly, we claim that a replay attack is impossible. We prove our claim using
ProVerif and our m4 macros. We model our protocol in the ProVerif syntax. The full
protocol description can be found in Appendix 11.4.1. In order to check for our protocol
to be secure against replay attacks, we do the following:

We allow the adversary to specify for which message textm he wants to host a replay
attack. Whenever Alice starts the protocol, we allow the adversary to even specify
which transaction message she picks. Additionally, the adversary can chose how often
and in which order the protocol members are invoked (He could for example let Alice
start the protocol twice and combine the messages he sees in some way). This is an
overapproximation of the adversaries capabilities.

When Alice starts the protocol and her transaction message is textm, she raises
the event begin(). When the bank executes the transaction textm, it raises the event
end().

The idea is the following one: If a replay attack is possible, then it will be possible
that the event end() is raised more often than the event begin(). We ask ProVerif to
check if this can happen be checking the query
evinj:end() ==> evinj:begin().

This query states that for every event end() there has to exist a distinct event begin()
that was raised before.

In Appendix 11.4 you can find the full description of a protocol and the query in
ProVerif syntax, where the placeholders are at the right places. Additionally you can
find the files that are produced by m4.

When invoking ProVerif with the “gfd check” file (see Appendix 11.4.2), the output
looks as follows:

-- Query not ev:badDec()

Completing...

Starting query not ev:badDec()

RESULT not ev:badDec() is true.

Proverif states that the event badDec() is never raised. By Lemmas 12, 13 and 14
we know that the CoSP protocol, corresponding to our original protocol has garbage
free decryption. Thus we can safely analyse it.

When invoking ProVerif with the “normal” file (see Appendix 11.4.4), the output
looks as follows:

-- Query evinj:end() ==> evinj:begin()

Completing...

Starting query evinj:end() ==> evinj:begin()

RESULT evinj:end() ==> evinj:begin() is true.

58

ProVerif states that our query holds. Thus, the event end() can not be raised more
often than the event begin(). A replay attack is impossible.

We have shown now that our protocol is secure against the replay attack. By The-
orem 3 we know that a computational implementation, satisfying all implementation
conditions, will also be secure against the replay attack. Following this example we can
analyse arbitrary protocols that satisfy our requirements.

10 Conclusion and Future Work

We have shown how to change the requirements for protocols in order to prove a symbolic
model computationally sound using the CoSP framework when requiring the implemen-
tation of the encryption scheme to be IND-CPA secure. We have presented the simple
condition of garbage free decryption and shown how to check if a protocol fulfills this
property. We have presented a way to automatically check if a protocol in the applied
π-calculus has garbage free decryption using ProVerif.

We plan to investigate which security flaws might arise from the fact that the GFD
property was violated at a certain point in the protocol. A goal might be to expand
the overall result from stating “We cant prove anything, since the GFD property is not
fulfilled” to something like “We cant prove that nonce N is secure after point x”.

We also plan to have a look at the computational soundness of zero knowledge proofs
in combination with IND-CPA secure encryption schemes.

59

11 Appendix

11.1 Implementation Conditions

We require that the implementation A of the symbolic model M has the following prop-
erties:

1. A is an implementation of M in the sense of 8 (in particular, all functions Af
(f ∈ C ∪D) are polynomial-time computable).

2. There are disjoint and efficiently recognizable sets of bitstrings representing the
types nonces, ciphertexts, encryption keys, decryption keys, signatures, verification
keys, signing keys, pairs, and payload-strings. The set of all bitstrings of type
nonce we denote Noncesk.

14 (Here and in the following, k denotes the security
parameter.)

3. The functions Aenc , Aek , Adk , Asig , Avk , Ask , Apair , Astring0 , and Astring1 are
length-regular. All m ∈ Noncesk have the same length.

4. AN for N ∈ N returns a uniformly random r ∈ Noncesk.
5. Every image of Aenc is of type ciphertext, every image of Aek and Aekof is of type

encryption key, every image of Adk is of type decryption key, every image of Asig

is of type signature, every image of Avk and Avkof is of type verification key, every
image of Aempty , Astring0 , and Astring1 is of type payload-string.

6. For allm1,m2 ∈ {0, 1}∗ we haveAfst(Apair (m1,m2)) = m1 andAsnd (Apair (m1,m2)) =
m2. Every m of type pair is in the range of Apair . If m is not of type pair,
Afst(m) = Asnd (m) = ⊥.

7. For all m of type payload-string we have that Aunstringi (Astringi (m)) = m and
Aunstringi (Astringj (m)) = ⊥ for i, j ∈ {0, 1}, i 6= j. For m = empty or m not of
type payload-string, Aunstring0 (m) = Aunstring1 (m) = ⊥. Every m of type payload-
string is of the form m = Aunstring0 (m′) or m = Aunstring1 (m′) or m = empty for
some m′ of type payload-string.

8. Aekof (Aenc(p, x, y)) = p for all p of type encryption key, x ∈ {0, 1}∗, y ∈ Noncesk.
Aekof (e) 6= ⊥ for any e of type ciphertext and Aekof (e) = ⊥ for any e that is not
of type ciphertext.

9. Avkof (Asig(Ask (x), y, z)) = Avk (x) for all y ∈ {0, 1}∗, x, z ∈ Noncesk. Avkof (e) 6= ⊥
for any e of type signature and Avkof (e) = ⊥ for any e that is not of type signature.

10. Aenc(p,m, y) = ⊥ if p is not of type encryption key.
11. Adec(Adk (r),m) = ⊥ if r ∈ Noncesk and Aekof (m) 6= Aek (r). (This implies that

the encryption key is uniquely determined by the decryption key.)
12. Adec(Adk (r), AE(Aek (r),m, r′)) = m for all r, r′ ∈ Noncesk.
13. Averify(Avk (r), Asig(Ask (r),m, r′)) = m for all r, r′ ∈ Noncesk.
14. For all p, s ∈ {0, 1}∗ we have that Averify(p, s) 6= ⊥ implies Avkof (s) = p.
15. Aisek (x) = x for any x of type encryption key. Aisek (x) = ⊥ for any x not of type

encryption key.
16. Aisvk (x) = x for any x of type verification key. Aisvk (x) = ⊥ for any x not of type

14This would typically be the set of all k-bit strings with a tag denoting nonces.

60

verification key.
17. Aisenc(x) = x for any x of type ciphertext. Aisenc(x) = ⊥ for any x not of type

ciphertext.
18. Aissig(x) = x for any x of type signature. Aissig(x) = ⊥ for any x not of type

signature.
19. We define an encryption scheme (KeyGen, enc, dec) as follows: KeyGen picks a

random r ← Noncesk and returns (Aek (r), Adk (r)). enc(p,m) picks a random
r ← Noncesk and returns Aenc(p,m, r). dec(k, c) returns Adec(k, c). We require
that then (KeyGen, enc, dec) is IND-CPA secure.

20. We define a signature scheme (SKeyGen,Sig,Verify) as follows: SKeyGen picks a
random r ← Noncesk and returns (Avk (r), Ask (r)). Sig(p,m) picks a random r ←
Noncesk and returns Asig(p,m, r). Verify(p, s,m) returns 1 iff Averify(p, s) = m.
We require that then (SKeyGen, Sig,Verify) is strongly existentially unforgeable.

21. For all e of type encryption key and allm ∈ {0, 1}∗, the probability thatAenc(e,m, r) =
Aenc(e,m, r′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

22. For all rs ∈ Noncesk and all m ∈ {0, 1}∗, the probability that Asig(Ask (rs),m, r) =
Asig(Ask (rs),m, r

′) for uniformly chosen r, r′ ∈ Noncesk is negligible.

11.2 Protocol Conditions

A CoSP protocol is key-safe if it satisfies the following conditions:
1. The argument of every ek -, dk -, vk -, and sk -computation node and the third

argument of every enc- and sig-computation node is an N -computation node with
N ∈ NP . (Here and in the following, we call the nodes referenced by a protocol
node its arguments.) We call these N -computation nodes randomness nodes. Any
two randomness nodes on the same path are annotated with different nonces.

2. Every computation node that is the argument of an ek -computation node or of
a dk -computation node on some path p occurs only as argument to ek - and dk -
computation nodes on that path p.

3. Every computation node that is the argument of a vk -computation node or of
an sk -computation node on some path p occurs only as argument to vk - and sk -
computation nodes on that path p.

4. Every computation node that is the third argument of an enc-computation node
or of a sig-computation node on some path p occurs exactly once as an argument
in that path p.

5. Every dk -computation node occurs only as the first argument of a dec destructor
node.

6. The first argument of a dec destructor node is a dk -computation node.
7. Every sk -computation node occurs only as the first argument of a sig-computation

node.
8. The first argument of a sig-computation node is an sk -computation node.
9. There are no computation nodes with the constructors garbage, garbageE , garbageSig ,

or N ∈ NE .
10. The protocol has garbage free decryption in the sense of Definition 17.

61

11.3 Translation Functions

Translation functions. The partial function β : T → {0, 1}∗ is defined as follows
(where the first matching rule is taken):

• β(N) := rN if N ∈ N .

• β(Nm) := m.

• β(enc(ek(t1), t2,M)) := Aenc(β(ek(t1)), β(t2), rM) if M ∈ N .

• β(ek(N)) := Aek (rN) if N ∈ N .

• β(ek(Nm)) := m.

• β(dk(N)) := Adk (rN) if N ∈ N .

• β(sig(sk(N), t,M)) := Asig(Ask (rN), β(t), rM) if N,M ∈ N .

• β(sig(sk(M), t, N s)) := s.

• β(vk(N)) := Avk (rN) if N ∈ N .

• β(vk(Nm)) := m.

• β(sk(N)) := Ask (rN) if N ∈ N .

• β(pair(t1, t2)) := Apair (β(t1), β(t2)).

• β(string0(t)) := Astring0(β(t)).

• β(string1(t)) := Astring1(β(t)).

• β(empty) := Aempty().

• β(garbage(N c)) := c.

• β(garbageE (t,N c)) := c.

• β(garbageSig(t1, t2, N
s)) := s.

• β(t) := ⊥ in all other cases.

The total function τ : {0, 1}∗ → T is defined as follows (where the first matching rule is
taken):

• τ(r) := N if r = rN for some N ∈ N \ R.

• τ(r) := N r if r is of type nonce.

• τ(c) := enc(ek(M), t, N) if c has earlier been output by β(enc(ek(M), t, N)) for
some M ∈ N, N ∈ N .

62

• τ(e) := ek(N) if e has earlier been output by β(ek(N)) for some N ∈ N .

• τ(e) := ek(N e) if e is of type encryption key.

• τ(s) := sig(sk(M), t, N) if s has earlier been output by β(sig(sk(M), t, N)) for
some M,N ∈ N .

• τ(s) := sig(sk(M), τ(m), N s) if s is of type signature and τ(Avkof (s)) = vk(M) for
some M ∈ N and m := Averify(Avkof (s), s) 6= ⊥.

• τ(e) := vk(N) if e has earlier been output by β(vk(N)) for some N ∈ N .

• τ(e) := vk(N e) if e is of type verification key.

• τ(m) := pair(τ(Afst(m)), τ(Asnd (m))) if m of type pair.

• τ(m) := string0(m′) if m is of type payload-string and m′ := Aunstring0 (m) 6= ⊥.

• τ(m) := string1(m′) if m is of type payload-string and m′ := Aunstring1 (m) 6= ⊥.

• τ(m) := empty if m is of type payload-string and m = Aempty().

• τ(c) := garbageE (τ(Aekof (c)), N c) if c is of type ciphertext.

• τ(s) := garbageSig(τ(Avkof (s)), N s) if s is of type signature.

• τ(m) := garbage(Nm) otherwise.

The function ` : T → {0, 1}∗ is defined as `(t) := |β(t)|. Note that `(t) does not
depend on the actual values of rN because of the length-regularity of AE , Aek , Adk , Asig ,
Avk , Ask , Apair , Astring0 , and Astring1 . Hence `(t) can be computed without accessing
rN .

11.4 Case Study Files

11.4.1 file “replay.pv”

free c.

free adv.

fun enc/3. fun ek/1. fun dk/1.

fun sig/3. fun vk/1. fun sk/1.

fun pair/2. fun garbage/1. fun garbageenc/2. fun garbagesig/2.

fun string0/1. fun string1/1. fun empty/0.

reduc fst(pair(x,y)) = x.

reduc snd(pair(x,y)) = y.

reduc equals(x,x) = x.

reduc unstring0(string0(s)) = s.

reduc unstring1(string1(s)) = s.

reduc dec(dk(r1),enc(ek(r1),y,r2)) = y.

63

reduc isenc(enc(ek(r1),m,r2)) = enc(ek(r1),m,r2);

isenc(garbageenc(r1,r2)) = garbageenc(r1,r2).

reduc ekof(enc(ek(r1),m,r2)) = ek(r1);

ekof(garbageenc(r1,r2)) = r1.

reduc isek(ek(r)) = ek(r).

reduc verify(vk(r1),sig(sk(r1),m,r2)) = m.

reduc issig(sig(sk(r1),m,r2)) = sig(sk(r1),m,r2);

issig(garbagesig(r1,r2)) = garbagesig(r1,r2).

reduc vkof(sig(sk(r1),m,r2)) = vk(r1);

vkof(garbagesig(r1,r2)) = r1.

reduc isvk(vk(r)) = vk(r).

GFDDEF

QUERY(evinj:end() ==> evinj:begin())

GFDQUERY

let A’ =

out(c, sig(skA, enc(ekA, nA, r), r’));

in (c, s);

let e = verify(vkB, s) in

let p = dec(dkA, e) in

if nA = fst(p) then

let nB’ = snd(p) in new r1; new r2;

let en = enc(ekB, pair(nB’,m), r1) in

out(c, sig(skA, en, r2)).

let A = new nA; new r; new r’; in(adv,m);

if m = testm then event begin(); A’ else A’.

let B = new nB; in (c, s1);

let e1 = verify(vkA,s1) in

DEC(nA’,dkB,e1)

new r1; new r2;

let en = enc(ekA, pair(nA’,nB), r1) in

let si = sig(skB, en, r2) in

out (c, si);

in (c, s2);

let e2 = verify(vkA,s2) in

DEC(p,dkB,e2)

if fst(p) = nB then

if snd(p) = testm then event end().

let C = event false().

process new rA; let ekA = ek(rA) in let dkA = dk(rA) in out(c, ekA);

new rA’; let vkA = vk(rA’) in let skA = sk(rA’) in out(c, vkA);

new rB; let ekB = ek(rB) in let dkB = dk(rB) in out(c, ekB);

new rB’; let vkB = vk(rB’) in let skB = sk(rB’) in out(c, vkB);

in(adv,testm);

(!A | !B)

11.4.2 file “replay gfd.pv”

free c.

free adv.

fun enc/3. fun ek/1. fun dk/1.

fun sig/3. fun vk/1. fun sk/1.

64

fun pair/2. fun garbage/1. fun garbageenc/2. fun garbagesig/2.

fun string0/1. fun string1/1. fun empty/0.

reduc fst(pair(x,y)) = x.

reduc snd(pair(x,y)) = y.

reduc equals(x,x) = x.

reduc unstring0(string0(s)) = s.

reduc unstring1(string1(s)) = s.

reduc dec(dk(r1),enc(ek(r1),y,r2)) = y.

reduc isenc(enc(ek(r1),m,r2)) = enc(ek(r1),m,r2);

isenc(garbageenc(r1,r2)) = garbageenc(r1,r2).

reduc ekof(enc(ek(r1),m,r2)) = ek(r1);

ekof(garbageenc(r1,r2)) = r1.

reduc isek(ek(r)) = ek(r).

reduc verify(vk(r1),sig(sk(r1),m,r2)) = m.

reduc issig(sig(sk(r1),m,r2)) = sig(sk(r1),m,r2);

issig(garbagesig(r1,r2)) = garbagesig(r1,r2).

reduc vkof(sig(sk(r1),m,r2)) = vk(r1);

vkof(garbagesig(r1,r2)) = r1.

reduc isvk(vk(r)) = vk(r).

reduc isgarbageenc(garbageenc(r1,r2)) = garbageenc(r1,r2).

query ev:badDec().

let A’ =

out(c, sig(skA, enc(ekA, nA, r), r’));

in (c, s);

let e = verify(vkB, s) in

let p = dec(dkA, e) in

if nA = fst(p) then

let nB’ = snd(p) in new r1; new r2;

let en = enc(ekB, pair(nB’,m), r1) in

out(c, sig(skA, en, r2)).

let A = new nA; new r; new r’; in(adv,m);

if m = testm then event begin(); A’ else A’.

let B = new nB; in (c, s1);

let e1 = verify(vkA,s1) in

let y = isgarbageenc(e1) in event badDec() else let nA’ = dec(dkB,e1) in

new r1; new r2;

let en = enc(ekA, pair(nA’,nB), r1) in

let si = sig(skB, en, r2) in

out (c, si);

in (c, s2);

let e2 = verify(vkA,s2) in

let y = isgarbageenc(e2) in event badDec() else let p = dec(dkB,e2) in

if fst(p) = nB then

if snd(p) = testm then event end().

let C = event false().

process new rA; let ekA = ek(rA) in let dkA = dk(rA) in out(c, ekA);

new rA’; let vkA = vk(rA’) in let skA = sk(rA’) in out(c, vkA);

new rB; let ekB = ek(rB) in let dkB = dk(rB) in out(c, ekB);

65

new rB’; let vkB = vk(rB’) in let skB = sk(rB’) in out(c, vkB);

in(adv,testm);

(!A | !B)

11.4.3 ProVerif output for “replay GFD.pv”

Process:

new rA_41;

{1}let ekA_42 = ek(rA_41) in

{2}let dkA_43 = dk(rA_41) in

{3}out(c, ekA_42);

new rA’_44;

{4}let vkA_45 = vk(rA’_44) in

{5}let skA_46 = sk(rA’_44) in

{6}out(c, vkA_45);

new rB_47;

{7}let ekB_48 = ek(rB_47) in

{8}let dkB_49 = dk(rB_47) in

{9}out(c, ekB_48);

new rB’_50;

{10}let vkB_51 = vk(rB’_50) in

{11}let skB_52 = sk(rB’_50) in

{12}out(c, vkB_51);

{13}in(adv, testm_53);

{14}!

(

new nA_67;

new r_68;

new r’_69;

{32}in(adv, m_70);

{33}if m_70 = testm_53 then

(

{42}event begin();

{43}out(c, sig(skA_46,enc(ekA_42,nA_67,r_68),r’_69));

{44}in(c, s_78);

{45}let e_79 = verify(vkB_51,s_78) in

{46}let p_80 = dec(dkA_43,e_79) in

{47}if nA_67 = fst(p_80) then

{48}let nB’_81 = snd(p_80) in

new r1_82;

new r2_83;

{49}let en_84 = enc(ekB_48,pair(nB’_81,m_70),r1_82) in

{50}out(c, sig(skA_46,en_84,r2_83));

0

)

else

(

{34}out(c, sig(skA_46,enc(ekA_42,nA_67,r_68),r’_69));

{35}in(c, s_71);

{36}let e_72 = verify(vkB_51,s_71) in

{37}let p_73 = dec(dkA_43,e_72) in

{38}if nA_67 = fst(p_73) then

{39}let nB’_74 = snd(p_73) in

new r1_75;

new r2_76;

{40}let en_77 = enc(ekB_48,pair(nB’_74,m_70),r1_75) in

{41}out(c, sig(skA_46,en_77,r2_76));

0

)

) | (

{15}!

66

new nB_54;

{16}in(c, s1_55);

{17}let e1_56 = verify(vkA_45,s1_55) in

{18}let y_57 = isgarbageenc(e1_56) in

(

{31}event badDec();

0

)

else

(

{19}let nA’_58 = dec(dkB_49,e1_56) in

new r1_59;

new r2_60;

{20}let en_61 = enc(ekA_42,pair(nA’_58,nB_54),r1_59) in

{21}let si_62 = sig(skB_52,en_61,r2_60) in

{22}out(c, si_62);

{23}in(c, s2_63);

{24}let e2_64 = verify(vkA_45,s2_63) in

{25}let y_65 = isgarbageenc(e2_64) in

(

{30}event badDec();

0

)

else

(

{26}let p_66 = dec(dkB_49,e2_64) in

{27}if fst(p_66) = nB_54 then

{28}if snd(p_66) = testm_53 then

{29}event end();

0

)

)

)

-- Query not ev:badDec()

Completing...

Starting query not ev:badDec()

RESULT not ev:badDec() is true.

11.4.4 file “replay norm.pv”

free c.

free adv.

fun enc/3. fun ek/1. fun dk/1.

fun sig/3. fun vk/1. fun sk/1.

fun pair/2. fun garbage/1. fun garbageenc/2. fun garbagesig/2.

fun string0/1. fun string1/1. fun empty/0.

reduc fst(pair(x,y)) = x.

reduc snd(pair(x,y)) = y.

reduc equals(x,x) = x.

reduc unstring0(string0(s)) = s.

reduc unstring1(string1(s)) = s.

reduc dec(dk(r1),enc(ek(r1),y,r2)) = y.

reduc isenc(enc(ek(r1),m,r2)) = enc(ek(r1),m,r2);

isenc(garbageenc(r1,r2)) = garbageenc(r1,r2).

reduc ekof(enc(ek(r1),m,r2)) = ek(r1);

67

ekof(garbageenc(r1,r2)) = r1.

reduc isek(ek(r)) = ek(r).

reduc verify(vk(r1),sig(sk(r1),m,r2)) = m.

reduc issig(sig(sk(r1),m,r2)) = sig(sk(r1),m,r2);

issig(garbagesig(r1,r2)) = garbagesig(r1,r2).

reduc vkof(sig(sk(r1),m,r2)) = vk(r1);

vkof(garbagesig(r1,r2)) = r1.

reduc isvk(vk(r)) = vk(r).

query evinj:end() ==> evinj:begin().

let A’ =

out(c, sig(skA, enc(ekA, nA, r), r’));

in (c, s);

let e = verify(vkB, s) in

let p = dec(dkA, e) in

if nA = fst(p) then

let nB’ = snd(p) in new r1; new r2;

let en = enc(ekB, pair(nB’,m), r1) in

out(c, sig(skA, en, r2)).

let A = new nA; new r; new r’; in(adv,m);

if m = testm then event begin(); A’ else A’.

let B = new nB; in (c, s1);

let e1 = verify(vkA,s1) in

let nA’ = dec(dkB,e1) in

new r1; new r2;

let en = enc(ekA, pair(nA’,nB), r1) in

let si = sig(skB, en, r2) in

out (c, si);

in (c, s2);

let e2 = verify(vkA,s2) in

let p = dec(dkB,e2) in

if fst(p) = nB then

if snd(p) = testm then event end().

let C = event false().

process new rA; let ekA = ek(rA) in let dkA = dk(rA) in out(c, ekA);

new rA’; let vkA = vk(rA’) in let skA = sk(rA’) in out(c, vkA);

new rB; let ekB = ek(rB) in let dkB = dk(rB) in out(c, ekB);

new rB’; let vkB = vk(rB’) in let skB = sk(rB’) in out(c, vkB);

in(adv,testm);

(!A | !B)

68

11.4.5 ProVerif output for “replay norm.pv”

Process:

new rA_39;

{1}let ekA_40 = ek(rA_39) in

{2}let dkA_41 = dk(rA_39) in

{3}out(c, ekA_40);

new rA’_42;

{4}let vkA_43 = vk(rA’_42) in

{5}let skA_44 = sk(rA’_42) in

{6}out(c, vkA_43);

new rB_45;

{7}let ekB_46 = ek(rB_45) in

{8}let dkB_47 = dk(rB_45) in

{9}out(c, ekB_46);

new rB’_48;

{10}let vkB_49 = vk(rB’_48) in

{11}let skB_50 = sk(rB’_48) in

{12}out(c, vkB_49);

{13}in(adv, testm_51);

{14}!

(

new nA_63;

new r_64;

new r’_65;

{28}in(adv, m_66);

{29}if m_66 = testm_51 then

(

{38}event begin();

{39}out(c, sig(skA_44,enc(ekA_40,nA_63,r_64),r’_65));

{40}in(c, s_74);

{41}let e_75 = verify(vkB_49,s_74) in

{42}let p_76 = dec(dkA_41,e_75) in

{43}if nA_63 = fst(p_76) then

{44}let nB’_77 = snd(p_76) in

new r1_78;

new r2_79;

{45}let en_80 = enc(ekB_46,pair(nB’_77,m_66),r1_78) in

{46}out(c, sig(skA_44,en_80,r2_79));

0

)

else

(

{30}out(c, sig(skA_44,enc(ekA_40,nA_63,r_64),r’_65));

{31}in(c, s_67);

{32}let e_68 = verify(vkB_49,s_67) in

{33}let p_69 = dec(dkA_41,e_68) in

{34}if nA_63 = fst(p_69) then

{35}let nB’_70 = snd(p_69) in

new r1_71;

new r2_72;

{36}let en_73 = enc(ekB_46,pair(nB’_70,m_66),r1_71) in

{37}out(c, sig(skA_44,en_73,r2_72));

0

)

) | (

{15}!

new nB_52;

{16}in(c, s1_53);

{17}let e1_54 = verify(vkA_43,s1_53) in

{18}let nA’_55 = dec(dkB_47,e1_54) in

new r1_56;

69

new r2_57;

{19}let en_58 = enc(ekA_40,pair(nA’_55,nB_52),r1_56) in

{20}let si_59 = sig(skB_50,en_58,r2_57) in

{21}out(c, si_59);

{22}in(c, s2_60);

{23}let e2_61 = verify(vkA_43,s2_60) in

{24}let p_62 = dec(dkB_47,e2_61) in

{25}if fst(p_62) = nB_52 then

{26}if snd(p_62) = testm_51 then

{27}event end();

0

)

-- Query evinj:end() ==> evinj:begin()

Completing...

Starting query evinj:end() ==> evinj:begin()

RESULT evinj:end() ==> evinj:begin() is true.

References

[1] Michael Backes, Dennis Hofheinz, and Dominique Unruh. CoSP: A general frame-
work for computational soundness proofs. In Proc. 16th ACM Conference on Com-
puter and Communications Security (CCS). 2009.

[2] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations
among notions of security for public-key encryption schemes. In Hugo Krawczyk,
editor, Advances in Cryptology — CRYPTO ’98, volume 1462 of Lecture Notes in
Computer Science, pages 26–45. Springer Berlin / Heidelberg, 1998.

[3] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pages 82–96,
2001.

[4] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. Journal of Logic and Algebraic Pro-
gramming, 75:3–51, 2008. Online available at http://www.di.ens.fr/~blanchet/

publications/BlanchetAbadiFournetJLAP07.pdf.

[5] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[6] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In George Blakley and David Chaum, editors, Advances in Cryptology,
volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer Berlin /
Heidelberg, 1985.

[7] GNU Project. Gnu m4 - gnu macro processor. Online available at
http://www.gnu.org/software/m4/manual/index.html.

70

http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf
http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf

	Introduction
	Motivation
	The computational world and the symbolic world
	CoSP

	Our contribution

	CoSP framework
	Notation
	Symbolic protocols
	Computational model
	Computational Soundness
	The hybrid execution

	Symbolic Model
	Simulator Types
	The Simulator
	The simulator with an oracle (Simo)
	The faking simulator (Simf)

	The original proof
	Computational implementation
	Key-safe protocols
	Lemma: Indistinguishability of Sim and Simf
	Lemma: Indistinguishability of Sim (and the computational execution)
	Lemma: A bad subterm
	Lemma: does not leak information
	Lemma: Simf is DY
	Theorem (computational soundness)

	Constructing the proof
	Security notions of public key encryption schemes
	Approach
	Developing the proof structure

	Our proof
	Overview
	Definitions
	Proving the DY property of the faking simulator
	Garbage Free Simulator
	Sim and Simf indistinguishable
	Properties of Sim
	Computational Soundness Theorem

	Computational soundness of the applied -calculus
	Syntax and Semantics of the applied -calculus
	A computational -execution
	Towards Computational Soundness
	A related protocol
	Transfering GFD-ness

	Case Study
	ProVerif
	Some words about m4
	The example protocol

	Conclusion and Future Work
	Appendix
	Implementation Conditions
	Protocol Conditions
	Translation Functions
	Case Study Files
	file ``replay.pv''
	file ``replay_gfd.pv''
	ProVerif output for ``replay_GFD.pv''
	file ``replay_norm.pv''
	ProVerif output for ``replay_norm.pv''

