
computer science

saarland
university

Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Master’s Program in Computer Science

Master’s Thesis

User-controlled Internet Connections in
Android

submitted by

Sven Obser

on December 22, 2011

Supervisor

Prof. Dr. Michael Backes

Advisor

Sebastian Gerling

Reviewers

Prof. Dr. Michael Backes

Dr. Matteo Maffei

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken, December 22, 2011

Acknowledgments

I would like to thank Prof. Dr. Michael Backes for the most inspiring and most exciting
lectures in my study and for introducing me into the world of cryptography and infor-
mation security. Thanks a lot for supervising this thesis. I would also like to express my
gratitude to Dr. Matteo Maffei for agreeing to review the thesis.
Special thanks to my advisor Sebastian Gerling for offering me such an interesting

topic, for his support throughout the creation of this work, and for his tremendous
feedback to improve several parts of this thesis.
Lena, I thank you for your love and support in the last years! No matter how bad my

mood is, you always manage to make me laugh.
The last words I devote to those who supported me since the beginning of my life. I

want to thank my father and my mother for building up a live as we had and for their
continuous and unlimited support. This work would not have been possible without
your great support.

Abstract

Modern mobile devices (e. g. smartphones and tablets) hold more and more sensitive
personal data and are additionally able to execute untrustworthy code from third-party
developers. To protect users from malicious applications, the security model of Android
is based on mandatory access control. For every dangerous operation, the developer of an
application has to explicitly request a corresponding permission (e. g. to read contacts or
to access the Internet). As soon as an application gets installed, the user has to approve
the requested permissions. One permission that is requested by many applications is the
Internet permission.
Unfortunately, the current security model is quite coarse with respect to this Internet

permission. Neither the user nor the developer is able to restrict the network access of
applications in a fine-grained manner. Developers can only request full Internet access
and the user can either grant this permission and install the application or reject the
permission by not installing the application at all.
In this thesis, we present a refined permission model for Android that supports fine-

grained Internet connections. Further, we have modified the stock Android firmware
and implemented user-controlled Internet connections in Android that allow to config-
ure the Internet permission of each application dynamically. We measured the network
performance of our solution on a Nexus One developer phone and found that the aver-
age throughput does not decrease significantly. This shows that our contribution can
practically increase the security of Android by giving users more control over established
Internet connections on their phones.

Contents

1 Introduction 1
1.1 Motivating example . 2
1.2 Contribution . 3
1.3 Outline . 3

2 The Android operating system 4
2.1 Android version history . 4
2.2 Android system architecture . 5

2.2.1 Linux kernel . 5
2.2.2 System libraries . 5
2.2.3 Android runtime . 6
2.2.4 Application framework . 6
2.2.5 Application layer . 7

2.3 Application Development . 7
2.3.1 AndroidManifest.xml . 8
2.3.2 Inter-process communication / Binder 8
2.3.3 Inter-component communication / Intents 9
2.3.4 Application components . 10

2.4 Application Deployment . 11
2.4.1 Android application stores . 11

3 The Android security model 13
3.1 Attacker model . 14
3.2 Protection techniques . 15

3.2.1 Application sandboxing . 15
3.2.2 Permission model . 16
3.2.3 Application signing . 19
3.2.4 Centrally managed application deployment 19
3.2.5 Android version updates . 21
3.2.6 Password protection . 21
3.2.7 File system encryption . 22

4 User-controlled Internet connections in Android (Ucicia) 23
4.1 Basics . 24

4.1.1 Network communication . 24

V

4.1.2 Access control mechanism . 26
4.2 Refined attacker model . 28
4.3 Ucicia: A high-level overview . 30

5 Permission model refinement 31
5.1 Definitions . 32

5.1.1 IP addresses, domain names, and ports 32
5.1.2 Outgoing connections . 32
5.1.3 Restriction rules . 32

5.2 New key functionalities . 33
5.2.1 Fine-grained Internet permission requests 33
5.2.2 Refinement of requested Internet permission 34
5.2.3 Granting and revoking permissions at any time 34
5.2.4 Dynamic Internet Permission requests 35
5.2.5 Observation of Internet connections 35

6 Implementation 37
6.1 Prerequisites . 38
6.2 Architectural overview . 38
6.3 Firewall . 39

6.3.1 Firewall configuration . 40
6.3.2 The chain design of Ucicia . 40

6.4 Firewall front-end . 42
6.5 Framework interaction . 44

6.5.1 The native ucicia_queue application 45
6.5.2 The UciciaService in the Android middleware 46

6.6 Application Package Installation . 48
6.6.1 Rules definition in the AndroidManifest.xml file 48
6.6.2 Revocation of the Internet permission 49

6.7 Dynamic Internet permission . 51
6.7.1 Firewall modifications . 52
6.7.2 Kernel modifications . 52
6.7.3 ucicia_queue modifications . 53
6.7.4 UciciaService and UciciaManager modifications 54

6.8 Observation mode . 56
6.8.1 Firewall modifications . 56
6.8.2 ucicia_queue modifications . 57
6.8.3 Database model modifications . 57
6.8.4 UciciaService and UciciaManager modifications 58

7 Performance Evaluation 59
7.1 Methods and tools . 59

7.1.1 Hardware setup . 60
7.1.2 Applied software . 60

VI

7.2 Scenarios . 61
7.2.1 Baseline . 63
7.2.2 Several applications . 63
7.2.3 Several rules . 63
7.2.4 Dynamic Internet connection . 64
7.2.5 Observation mode . 64

7.3 Evaluation . 64
7.3.1 Interpretation . 65

8 Related work 67

9 Conclusion 72

Bibliography 74

Appendix A Iptables commands 80

Appendix B Iptables configurations 81
B.1 Baseline . 81
B.2 Several applications . 81
B.3 Several rules . 82
B.4 Dynamic Internet connection . 83
B.5 Observation mode . 83

VII

1
Introduction

Since the first release of Apple’s iPhone in 2007, the market for high-end mobile devices
(e. g. smartphone and tablet devices) is rapidly growing. Google released Android, its
competitor to Apple’s mobile operating system iOS, in November 2007. Next to iOS
(Apple), Symbian (Nokia), and the BlackBerry OS (Research In Motion), Android has
become one of the most important mobile operating systems for smartphone devices [32].
All these mobile platforms have in common is the functionality of the mobile device is

highly customizable by the user. The functionality can be enhanced by the installation
of third-party applications. In general, these applications are available in a dedicated
application store of the platform (e. g. the Apple App Store or the Android Market).
These markets offer a large variety of free and non-free applications and allow the user
to easily install free or purchase non-free applications.
However, the extensibility of the mobile devices also has some negative impact on the

data security of the mobile devices. The growth of the mobile market made smartphones
attractive targets for attackers. We see the same threats arising on these platforms we
already know from personal computers. Thereby, malware is one of the biggest, if not
even the biggest, security threat for these mobile platforms. Banking Trojans like Zeus
also target Android in order to steal the one-time password of a transaction, the mobile
transaction authentication number (mTAN) [37]. This mTAN is sent to the user’s mobile
phone and gets forwarded automatically by the installed Trojan to the attacker’s server.
Together with the login credentials of the user, the mTAN allows to conduct transactions
on behalf of a user.
Android tries to solve this security threat with an extensive security model. A sand-

boxing approach and other security techniques (e. g. stack protection) are used to limit
the impact of malicious applications. Further, a permission system that is based on
mandatory access control limits the access to security critical functionalities and re-
sources on the device. The user grants these functionalities whenever installing a new

1

application, such that the new application is, for example, able to access the Internet or
to read the user’s address book.
Unfortunately, Android’s permission system relies heavily on the user’s abilities to

estimate the risk of permission requests. However, the average user is not always able
to decide whether to install the application or not. The user’s only intention is to get
the promised functionality of the application; however, the threats that arise from the
granted permissions are, in general, quite complex and require profound understanding
of information security. For example, granting the application the permission to read the
contact list is not dangerous in general, but in conjunction with the Internet permission,
an attacker is able to steal this information and transmit it to a remote server.
Especially the Internet permission is important for an attacker to deliver private infor-

mation from the user’s mobile phone to the attacker. We think that the current design of
Android’s Internet permission is too coarse, so that users are not able to decide whether
granting the Internet permission is secure or whether it leads to a security threat. We
shall try to illustrate our opinion with a fictional example.

1.1 Motivating example
Assuming the average user Alice is browsing the Android Market looking for the mobile
banking application of the West Pacific Bank. The only available application in the
Android Market is the West Pacific Mobile Banking application provided by a developer
called West Pacific Bank. The provided description and the screenshots of the appli-
cation look unsuspicious. However, the application has just been uploaded and does
therefore not have any user reviews.
Alice decides to install the application; however, Alice first checks the requested per-

missions of the application in detail, which reveals that the application requires full
Internet access. This permission request seems to be absolutely plausible for a mobile
banking application, so that Alice finally installs the application. After starting the
application and entering the login credentials of the bank, the application states that
Alice’s device is unfortunately not supported. In fact, the West Pacific Mobile Banking
application was a Trojan that passed the login credentials of the user to a remote server.
Although Alice tried to be as careful as possible, she was not able to detect the malicious
behavior without analyzing the application in detail.
We think that a refinement of Android’s Internet permission can help to defend against

this kind of security threat. In our example, this would mean that an official banking
application would not request full Internet access but rather restricted Internet access to
banking.westpacific.com. If we assume that it is good practice to request fine-grained
Internet permission, it would be suspicious if a banking application requests full Internet
access or if it wants to access a suspicious server.

2

banking.westpacific.com

1.2 Contribution
Our contribution to Android is a refined permission model that allows application devel-
opers to request fine-grained Internet permissions. Additionally, we give the user more
control over the Internet connections that are established by the installed Android appli-
cations. Instead of granting applications full Internet access, the user decides to which
destinations an application can finally establish a connection.
In addition to the redefined permission model, we have provided an implementation

of user-controlled Internet connections in Android (Ucicia) and have modified the stack
Android firmware in order to enforce the redefined permission model.

1.3 Outline
We structured the rest of this thesis as follows: Firstly, we introduce Android, Google’s
mobile operating system in Chapter 2. This includes an overview of Android’s version
history since its first official release and a detailed consideration of the operating system’s
internals. Further, we describe how new Android applications can be developed and how
they are deployed to the end-user. In Chapter 3, we show the current Android attacker
model and describe the different techniques that are deployed in Android’s security
model to protect the device against the existing security threats.
Chapter 4 introduces the basics of the underlying Internet communication and presents

access control mechanisms that are used to enforce a permission system. Further, we
provide a first high-level overview of our contribution. In Chapter 5, we define the mod-
ified permission model that supports fine-grained Internet connections and additionally
present the key functionalities of our contribution. In Chapter 6, we provide a de-
tailed view on how we modified the Android firmware in order to implement the refined
permission model and measure the impact of our modifications on the performance in
Chapter 7.

3

2
The Android operating system

Android is an open source operating system for mobile devices (e. g. smartphones and
tablets) developed by the Open Handset Alliance. The main contributor to the project is
the software company Google. Thus, Android is often referred to as Google’s smartphone
operating system. Since the first release of Android in November 2007, it has become
one of the most important operating systems for high-end mobile devices [30, 31].
Like other smartphone operating systems (e. g. Apple’s iOS or Nokia’s Symbian),

Android allows to extend the functionality of the device by installing third-party appli-
cations (so called apps). For this purpose, Android consists of a full software stack that
utilizes the capabilities of modern mobile devices and provides an application program-
ming interface (API) that allows application developers to easily access the capabilities
of these mobile devices.

2.1 Android version history
The first beta version of Android was released in November 2007 and about ten months
later, the first Android smartphone, the HTC Dream (a. k. a. T-Mobile G1) was released
together with Android 1.0, the first stable version of Android. In April 2009, Google
started to release major versions of Android under an additional code name by assigning
the name of a dessert to each version. Android 1.5, codenamed Cupcake, was the first
version with such a name and all following code names are in ascending alphabetic order
(e. g. Donut (1.6), Eclair (2.0/2.1), and Froyo (2.2)).
The last smartphone-only version of Android was 2.3 (Gingerbread) and the latest

release of Gingerbread by the time we implemented our solution was version 2.3.7. In
the first quarter of 2011, the first tablet optimized version of Android (codenamed Hon-
eycomb) was released. Android’s tablet version was released under the distinct version
3.x that allowed to distinguish the smartphone versions from the tablet versions.

4

The Honeycomb release divided the development tree into two separate branches:
One branch was intended for smartphones and another one was optimized for use on
tablet devices. This separation allowed Google to quickly release a version of Android
that is optimized for the significantly larger screens of tablets; for example, it included
a redesigned keyboard with additional keys [4]. Nevertheless, several tablets have also
been released with one of the smartphone versions of Android, but this included some
drawbacks in the interaction with the device due to the larger screen.
The latest major release of Android, version 4.0 (Ice Cream Sandwich), merged these

two branches and it is the first version that officially supports both, smartphone and
tablet devices. The source code of version 4.0.1 is publicly available on the Android
Open Source Project (AOSP)1. Except for some proprietary drivers (e. g. Wi-Fi) and
some Google-specific applications (e. g. the Android Market), the repository includes all
files required to build the Android firmware. However, Google omitted to release the
source code of Honeycomb at the time it was officially released and only made it available
to device manufacturers. However, since the release of Ice Cream Sandwich, the source
code of Honeycomb is now also part of the version history in the AOSP repository.

2.2 Android system architecture
The Android operating system builds on top of the Linux kernel and comprises several
system libraries and a runtime environment, the Android Runtime. The Linux kernel is
a free operating system kernel and it is the basis for all Unix-like operating systems. Due
to its open source character, the Linux kernel is steadily improved by many contributors
which makes it attractive as a basis for several operating systems.
The Android Runtime allows to execute applications in a predefined environment. As

shown in Figure 2.1, Android provides an application framework that enables interaction
with the operating system and allows an application to access the different functionalities
of a device [7]. Android ships with several preinstalled applications (e. g. a web browser,
an email client, a dialer application, and a contacts application), which provide the key
functionalities of the mobile phone.

2.2.1 Linux kernel
The operating system itself builds upon version 2.6 of the Linux kernel. The kernel
provides the required drivers to communicate with and abstract from the underlying
hardware. It is, for example, responsible for network communication and for process
and memory management. Further, the security mechanisms of the Linux kernel are
used to enforce several of Android’s security mechanisms.

2.2.2 System libraries
Several common C and C++ libraries are included in Android. They fulfill a large
variety of different functionalities required by the Android middleware. These native

1Accessible at http://source.android.com.

5

http://source.android.com

Linux Kernel

Android Runtime

Application Framework

Applications

Libraries

Dalvik
Virtual Machine

Display
Driver

Binder
Driver

Wifi
Driver ...

Core Libraries
OpenGL SQLite

libcWebKit

Activity
Manager

Location
Manager

Package
Manager ...

Home BrowserContacts ...

SSL

...

Figure 2.1: The system architecture of Android consists of five layers: A Linux kernel,
several native libraries, the Android Runtime, an application framework and
an application layer.

libraries mainly handle performance critical tasks since they can be performed faster
using native code. This includes, for example, storing and retrieving data in a SQLite
database, rendering web pages via the WebKit library, or establishing secure SSL network
connections.

2.2.3 Android runtime
The Android Runtime consists of core Java libraries and a custom Java Virtual Machine
called the Dalvik Virtual Machine (DVM). In contrast to native stack-based Java Virtual
Machines, Dalvik uses a register-based architecture and is optimized for the limited
capabilities of mobile devices [13]. These optimizations allow to run several instances of
the DVM in parallel on a mobile device. The Dalvik compiler transforms the original
Java bytecode (.class files) into a single .dex file that contains the Dalvik bytecode.
The core Java libraries of the DVM include a subset of the free Apache Harmony Java

implementation and some custom libraries. The combination of these libraries neither
fully supports the Java Standard Edition (Java SE) nor the Java Micro Edition (Java
ME) platform [20]. Instead, the Java implementation for Android is highly adapted
to the requirements of the Android operating system. As a consequence, applications
developed for Java ME are not compatible with Android.

2.2.4 Application framework
Android’s application framework is a middleware and runs on top of the Linux kernel.
It is mainly developed in Java, but several parts of the framework use the Java Native
Interface (JNI) to call native C or C++ code. In general, these native function calls

6

are used to access the underlying system libraries. The application framework itself is
executed by the same Android runtime that is used to execute the applications.
The main purpose of the Android middleware is to provide all the functionality that

is required to execute and to manage different Android applications. It is responsible for
the installation of new applications, it undertakes all tasks that are required to manage
the life cycle of an application, and it provides access to different features of the mobile
device. To interact with the system, the Android middleware includes several services
and interfaces. Applications can access those services and interfaces through an API.
The API provides, for example, access to the GPS capability in order to retrieve the
current geographic location.

2.2.5 Application layer
From the user’s perspective, the key components of Android are the different appli-
cations that enable interaction with the device. Android ships with several integral
applications that allow the user to access the crucial functionalities of a smartphone.
This includes, amongst others, a dialer application to make a phone call, an SMS and
an email application to send messages, a calendar application, and a browser to access
the Internet.
Beyond these preinstalled applications, the user can further install third-party appli-

cations. These additional applications interact with the application framework through
the same API and can in general access the same information and capabilities as the
preinstalled applications. Since these preinstalled applications are not deeply integrated
into the operating system, they can also be replaced by third-party applications.

2.3 Application Development
Android provides a software development kit, the Android SDK, which can be down-
loaded from the Android developers website2. It includes all tools and APIs to develop
new Android applications. The major programming language for applications is Java.
In addition, Android provides a Native Development Kit (NDK) which can be used to
develop performance-critical parts of the application in C and C++. The native code
can be called directly through the Java Native Interface, which permits direct interaction
with the Java VM.
To ease the development of applications, the Android developers website also provides

a plug-in for the Eclipse IDE3. The Android Development Tools (ADT) plug-in helps
developers to initialize, implement, debug, and deploy new Android Applications.
As compared to the development of standalone Java applications, there exists one ma-

jor difference in Android’s application architecture. Android applications do not have
a single entry point to start the application. Instead of calling a main method, the An-
droid middleware can enter the application through four specific application components.

2Accessible at http://developer.android.com.
3The Eclipse integrated development environment (IDE) is available on http://eclipse.org.

7

http://developer.android.com
http://eclipse.org

These components accomplish distinct tasks:

• The Activity component for user interactions,

• the Service component performing background tasks,

• the BroadcastReceiver component listening to specific events (broadcasted by the
system or by other applications), and

• the ContentProvider component for sharing an application’s private data.

The Android middleware uses so called intents to handle the interaction between
these components. These lightweight intent messages can be sent to activities, services,
and broadcast receivers. The recipient of an intent is either directly mentioned by the
recipient’s fully qualified name or indirectly by an action string. In the latter case, the
Android middleware selects a component that is capable of handling the desired action.
The communication between different components can be limited by the developer and
is accomplished by Android’s permission system4.
To inform the Android middleware about available application components and to pro-

vide further relevant information about an application, Android requires a configuration
file, the AndroidManifest.xml.

2.3.1 AndroidManifest.xml
The AndroidManifest.xml file contains all information required by the Android middleware
to install and run applications. It is an essential part of each application and includes,
among others,

• the fully qualified - and unique - name of the application,

• the application’s actual name and an optional description,

• a list of all application components the application consists of,

• all requested permissions the application requires to access protected functionali-
ties, and

• a list of newly declared permissions to restrict the access to the application’s own
functionalities.

2.3.2 Inter-process communication / Binder
The Linux kernel supports several inter-process communication (IPC) mechanisms, such
as pipes, shared memory and Unix domain sockets. In addition, Android uses a custom
kernel driver, the Binder, to exchange data between different processes. The Binder
kernel driver provides a lightweight service to exchange binary data between processes.

4Android’s permission system is further described in Chapter 3.

8

Android’s Binder implementation is based on the OpenBinder implementation by Hack-
born [35]. All exchanged data has to be marshalled into a parcel on the sender side and is
unmarshalled by the receiver. The required Java code for marshalling and unmarshalling
data can be created automatically by using the Android Interface Definition Language
(AIDL) [5]. The aidl tool shipped with the Android SDK allows to automatically trans-
form an .aidl file into a Java stub class that implements the required Binder interface.
However, the marshalling of data can also be done manually by writing the scalar values
that should be transmitted into a parcel object.

2.3.3 Inter-component communication / Intents
Android’s inter-component communication (ICC) mechanism uses intent messages to
communicate between activities, services, and broadcast receivers. Intents basically
serve two different purposes: Firstly, they describe the action to be performed, including
all information required to accomplish it. These intents are used to start activities and
services that can handle the desired action. Secondly, intents can inform broadcast
receivers about specific occurring events.
The Context class of Android’s application framework provides the startActivity, the

startService, and the sendBroadcast method to trigger ICC. Each of these methods accepts
an instance of the Intent class and the Android middleware forwards the given intent to
the recipient component. The recipient of an intent can be set explicitly to a specific
class. Explicit recipients are in general used to start known components, especially when
they reside in the same application. This is the usual way to switch between the different
activities of an application or to start an application’s own service.
Additionally, the recipient of an intent can be addressed implicitly. Thus, the Android

middleware tries to determine a suitable component that is able to handle the desired
action. The implicit intent is identified by its action string. Action strings are simple
names describing the action to be performed. An intent filtering mechanism in Android’s
middleware is used to decide which of the installed components are capable of handling
the given intent. Therefore, the developer can specify several filtering rules for each
component. These intent filter rules are defined in the AndroidManifest.xml file.
The implicit intent filtering provides a flexible way to manage several applications that

can handle the same task. As an example, a user can install several web browsers on
the mobile device. Independently of the installed browsers, an application can send an
implicit intent to open a website. The Android middleware chooses the best application
by using the system-wide default application for the specific action or by asking the user
dynamically which application should be used.
The information about which website should be opened is part of the Intent message.

Therefore, additional data can be written to and read from an intent in a key/value pair
fashion. Further details about intents and especially about their filtering mechanism are
concluded by Enck et al. [24] and by Burns [15].

9

2.3.4 Application components
Activity

Activities are the most important application components. Their main purpose is to
interact directly with the user. Thus, they are the only components that have the
ability to provide a user interface (UI). In general, each activity should only present one
UI screen and should only fulfill one single task (e. g. listing all contacts). Related tasks
that require another UI (e. g. to modify a contact) should reside in their own activity.
Such a separation into different activities makes them reusable in different contexts.
An activity is implemented by extending the Activity class and overriding one or

more of the methods that manage the lifecycle of the activity (e. g. onCreate, onStart

and onResume). To start an activity it has to be registered in the AndroidManifest.xml

file. Activities can either be started directly via the startActivity method of the Context

class or indirectly by the Android middleware. Therefore, the middleware compares the
action string of any given intent with the actions supported by the activity.

Service

Service components are meant to perform background tasks that do not require a user
interface. However, they may start an activity component in order to interact with the
user. Services are implemented by extending the Service class and overriding its onCreate

method. A service can be started and stopped by other components via the startService

and the stopService method of Android’s Context class.
If further interaction with the service is required, the bindService method allows to

receive a proxy object that allows to invoke methods of the service. The method also
automatically starts the service if it is not already running. The communication to
the service is established via ICC (in case the service and the caller reside in the same
process) or via IPC (if both reside in different processes).

Broadcast Receiver

Android provides a mechanism to send and receive system-wide broadcast events. To
receive such events, the broadcast receiver component can be implemented and registered
for specific event types. The Android framework predefines several broadcast events
(e. g. android.provider.Telephony.SMS_RECEIVED for incoming SMS), but developers may also
define new broadcast events.
Again, a broadcast receiver is implemented by extending the BroadcastReceiver class.

They register for specific broadcast events either via the AndroidManifest.xml file or pro-
grammatically by calling the registerReceiver method of the Context class. In both cases
the intent filtering mechanism (see Section 2.3.3) is used to name the action string of
the desired event.
Every application component can send broadcasts via the sendBroadcast method of the

Context class by providing an instance of the Intent class. The intent contains the action

10

string that identifies the event and some additional optional information. Worth men-
tioning is the fact that broadcasts are transmitted to all registered receivers regardless
of whether the receiving application is running or not. This allows to start applications
on specific events, for example, after the device has finished booting.

Content Provider

The data of Android applications is, by default, not accessible to any other application.
But Android allows to share the data of an application explicitly through a specific
application component, the content provider. The access to the data is realized through
a common interface. The interface defines basic CRUD5 operations that have to be
provided by each content provider.
Content providers are implemented by extending the ContentProvider class and they

have to be declared in the AndroidManifest.xml. The manifest file defines the Uniform
Resource Identifier (URI) of each content provider and all other applications can operate
on a content provider through its specific URI. Access to the data can be restricted by
protecting a content provider with additional permissions. In case a content provider is
protected, other components have to request read or write permissions in order to be
able to access the data. In addition, the content provider itself can grant fine-grained
temporary access to the data based on the requested URI.

2.4 Application Deployment
Android applications are deployed within a compressed application package file (.apk).
The archive contains the following files required to execute the application:

1. The compiled Java source code as Dalvik bytecode (classes.dex),

2. the compiled native source code if applicable,

3. the application’s configuration file (AndroidManifest.xml),

4. all additional resources (e. g. images), and

5. a digital signature of the developer who signed the application package (CERT.RSA

and CERT.SF).

This application package can then be installed on any device or uploaded to the Android
Market for further distribution.

2.4.1 Android application stores
The Android Market is the official store to purchase and download applications for the
Android platform. Since its opening in 2008 the number of applications has risen up
to more than 200.000 applications in 2011 [10]. In the second quarter of 2011, Android

5CRUD stands for the four basic operations on persistent storage: Create, Read, Update, and Delete.

11

even overtook Apple’s App Store with a market share of 44 %; compared to 31 % of the
application downloads for Apple [1].
The Android market is directly linked to the user’s Google account and can be ac-

cessed through a Market application that is preinstalled on many—but not all—Android
phones. The integration of the Android Market is up to the device manufacturers and
requires them to comply to Android’s Compatibility Program6.
In contrast to Apple’s iOS, Android allows to obtain applications from alternative ap-

plication stores. Thus, several additional sources for new applications (e. g. the Amazon
Appstore, AppBrain, and SlideME7) exist beside the official Android Market.

6Accessible at http://source.android.com/compatibility/index.html.
7Accessible at https://www.amazon.com/appstore, http://www.appbrain.com, and http://slideme.

org, respectively.

12

http://source.android.com/compatibility/index.html
https://www.amazon.com/appstore
http://www.appbrain.com
http://slideme.org
http://slideme.org

3
The Android security model

The extensibility of today’s smartphone platforms gives the user the opportunity to
extend the functionality of mobile phones through the installation of additional applica-
tions. To fulfill their task, these applications store more and more privacy sensitive data
on the user’s device. In particular, the user’s e-mail conversations, private and business
contacts, calendar entries and several login credentials are usually stored unencrypted
on the device.
Vulnerabilities in the installed applications or even inside the underlying operating

system put the private data at risk. To avoid such vulnerabilities at the forefront, Java
is used as the primary programming language in Android. In contrast to other low-level
languages like C, Java hinders developers from introducing buffer overflows and other
vulnerabilities that can be exploited by an attacker to execute arbitrary code.
Further, Android uses several tools and techniques to defend against common control

hijacking attacks in the Android operating system itself [2]. Control hijacking attacks
often exploit vulnerabilities inside applications to place their malicious code on the stack
or heap of an application. After attackers placed their code in the memory, they try to
execute it by modifying the control flow of an application.
To make malicious code execution more difficult, Android protects the stack and the

heap regions in the memory through the Non eXecutable (NX) hardware bit. This
hardware-based protection denies executing code that is part of an application’s stack
or heap memory. As a consequence, attackers can not execute their malicious code in
those memory regions. Additionally, the ProPolice extension for the gcc compiler is
used to protect the stack against buffer overflows and the safe-iop library is used to
detect integer overflows. And the mentioned techniques are only some examples of the
implementation used to harden the security of the low-level operating system.
Android integrates several additional techniques in its framework that strengthen the

security on the mobile phone. In the following, we first introduce the attacker model of

13

Android, and afterwards show the several techniques used to defend against the different
security threats.

3.1 Attacker model
As we have seen, modern smartphones are an attractive target for attacks. However,
to steal information or to infect the device with malware, attackers need access to the
user’s device. They may use one or even a combination of the following attacks to get
access to the user’s device and thereby to privacy sensitive data:

1. Attackers install malicious applications (e. g. through social engineering attacks),

2. they access private data by circumventing the existing security measures (e. g. by
exploiting vulnerabilities on the device), and

3. they may get direct (physical) access to the device.

We categorize these three attacks into two categories: Remote and local attacks. The
first two attacks, (1) and (2), are usually executed remotely over the network and there-
fore without physical access to the device. This approach allows to target a vast amount
of devices without much effort for the attacker. The last attack (3) assumes that the
attacker has physical access to the device. Getting direct access is not always feasible
for an attacker and this approach does not scale to attack a large number of devices.
Malicious applications (1) are the most common security threat on mobile devices.

In order to install the malicious application on the user’s device, attackers often use
social engineering techniques. They supply intentionally wrong information about the
purpose of their application to trick the user into installing their malicious application.
Afterwards, the malware may perform actions that are unintended by the user. For
example, malware may read out the user’s private data and transmit it to the attacker’s
server, or it may call costly telephone numbers.
Since modern smartphones are designed to be highly expandable through the installa-

tion of additional applications, they provide a variety of security measures to protect the
phone. These protection mechanisms may restrict the access to several resources on the
phone or they may reveal the purpose of the malicious application. Therefore, attacks
try to exploit vulnerabilities in the operating system or in the installed applications to
circumvent the security measures (2).
In rare cases, attackers may be interested in one particular phone and they may also

have direct physical access to the device (3). If the phone is not protected by a screen
lock, attackers have almost the same privileges as the original owner of the phone which
allows to overcome several of the security mechanisms of the device. For example, they
may install an application and grant it all required permissions or even modify the
operating system itself.
Android’s attacker model includes all three types of attacks and consequently defends

against remote and local attacks. However, we assume that Android’s estimate in the
expertise of the average user are to high. Therefore, we will have a closer look at a refined

14

attacker model in Chapter 4, but we will first see how the current implementation of
Android handles the existing security threats.

3.2 Protection techniques
The Android operating system makes use of several techniques to protect the device
against the mentioned security threats. To mitigate against malware, Android uses
application sandboxing and additionally provides a permission system that is based on
mandatory access control. Together, these two techniques create a confined environment
in which each application is executed. Application signing allows to compare the author
of two applications such that malicious applications can not replace a trustworthy ap-
plication on the device when the user installs a new or updates an existing application.
Furthermore, the Android Market acts as a trustworthy1 source for new applications.
The sandboxing approach and the permission model also reduce the impact of vul-

nerabilities inside an application, such that an exploited vulnerability may not lead to
unlimited access to the device. The update mechanism of the Android Market also helps
to deliver updates of an application more easily and more quickly. In addition, a simple
update mechanism is used to deliver firmware updates to the end-user. This mechanism
allows to deploy security updates of Android fast and easily.
To mitigate against direct access attacks, Android locks the phone with a user-defined

password and recent versions of Android allow to encrypt the whole data partition of
the mobile device.

3.2.1 Application sandboxing
The fundamental mechanism of Android’s security model is a sandboxing approach to
isolate running applications from each other and from the core system. The sandboxing
approach is used to mitigate against remote attacks. Sandboxing has become important
when dealing with untrusted content and is nowadays applied in several desktop appli-
cations, for example, in the Google Chrome web browser and in the latest version of
Adobe’s PDF Reader [54, 46].
In Android, process isolation is realized by assigning a unique2 Unix user identifier

(UID) to each newly installed application. This approach differs from the use of Linux’
user model on a desktop machine. A desktop machine provides one user account for
each physical user and almost all applications run with the privileges of the user that
started the application. This implies that all applications run with the same privileges
and are able to access each other’s data. As a consequence, the user has to trust each
executed application.
In contrast, Android’s security model assumes that all applications are potentially

malicious. Therefore, each application is started in a separate instance of the Dalvik
VM. This instance runs with the permission of the assigned UID of the application.

1We will see later that this is—unfortunately—not always the case.
2Several applications may share the same user ID iff they are signed by the same certificate.

15

Linux kernel

Application 1

UID: app1
GID: inet

Files Network ...

Resources owned by app1

Application 2

UID: app2

Files Network ...

X

Resources owned by app2

IPC
Android middleware

X

Figure 3.1: Each Android application is running in its own sandbox. Process isolation
is enforced by the underlying Linux kernel which restricts the access to file
system resources. IPC is possible through the Android middleware.

Hence, any data of an application that is stored in the file system, is owned by this
specific system user and is, by default, not accessible to any other user. Additionally, all
security critical system resources are owned by a distinct user. This approach protects
the core resources of the operating system in the same way.
The discretionary access control is enforced by the underlying Linux kernel and helps

to reduce the risk of a vulnerability inside an application. Figure 3.1 illustrates how the
different resources of an application are protected. Hereby, a potential attacker should
be prevented from gaining full control over a device by exploiting a vulnerability inside
an application. However, Backes et al. [9] showed that this is not always fully true. They
exploited a vulnerability inside the browser to install arbitrary applications. As a result,
they compromised the integrity of the whole device.

3.2.2 Permission model
In addition to the sandboxing approach, the Android operating system uses a capability-
based permission mechanism to restrict the operations an application is allowed to per-
form. An Android application is by default not allowed to access any of the device’s
low-level functionalities like determining the current location via GPS, establishing In-
ternet connections, or letting the device vibrate. All these functionalities are available
through a Java API, which is part of the Android SDK3.

3The Android SDK and the API reference are available at http://developer.android.com.

16

http://developer.android.com

Several of these API calls are protected by Android’s fine-grained permission sys-
tem. Only applications explicitly requesting a permission for a desired functionality
are allowed to access it. Permission requests are defined in the AndroidManifest.xml file
of an application by adding one or more <uses-permission android:name="PERMISSION" />

tags with the desired permission name (e. g. android.permission.INTERNET) to the file. The
Android operating system predefines several permissions4, but any application can in-
troduce new permissions to limit the access to its own functionality.
New permissions are also defined in the AndroidManifest.xml. They consist of a unique

name, a label, a description, and a protectionLevel and are defined by the <permission

/> tag. The assigned protection level estimates the potential risk of a permission and
decides whether the operating system grants a permission to an application or not. There
are currently four different classifications:

• Permissions with a protection level of normal are always granted to the application
and should not impact the security of the device.

• All permissions that enable access to private data or to security critical functionali-
ties are classified as dangerous. For that reason, they have to be confirmed explicitly
by the user at the time of the application installation.

• As with “normal” permissions, signature permissions require no approval by the
user. However, they are only granted to applications that are signed with the same
certificate as the application that declared the permission.

• SignatureOrSystem permissions are mainly meant to be used by system vendors. In
addition to signature permissions, they are also granted to applications that have
been signed with the certificate of the system image.

Figure 3.2 shows how the permissions are enforced through two different mechanisms.
On the one hand, the Android middleware provides mechanisms to check permissions
implicitly and explicitly; on the other hand, the Linux kernel enforces several permissions
that protect low-level functionalities.

Permission enforcement by the Android middleware

In conjunction with the definition of application components in the AndroidManifest.xml,
each application component can be protected with one optional permission. The An-
droid middleware ensures implicitly that only callers with this particular permission are
allowed to interact with the protected components. Consequently, the permission of the
caller is checked whenever it starts an activity; whenever it starts, stops, or binds to a
service; or whenever it reads from or writes to a content provider.
Likewise, senders of a broadcast can only notify a protected broadcast receiver if they

possess the appropriate permission, otherwise the broadcast is not delivered. But when

4See http://developer.android.com/reference/android/Manifest.permission.html for a list of
predefined permissions.

17

http://developer.android.com/reference/android/Manifest.permission.html

Application 1

Linux Kernel

Android Middleware

Reference Monitor

Application 2

Bluetooth

Content
Provider

Internet

...

...

(1)

(3)

(2)

Application
component

Figure 3.2: Permissions are enforced implicitly by the Android middleware (1), explicitly
inside the application (2), or by the Linux kernel (3).

sending broadcasts a converse restriction can also be set. The sender can programmat-
ically define a permission that is required to receive the broadcast. In this case, only
receivers with this particular permission will get notified.
The Android middleware also allows to check the permission explicitly. Therefore,

different methods (e. g. checkCallingPermission() or checkPermission()) of the Context class
can be used to check whether the calling process has been granted a certain permission.

Permission enforcement by the Linux kernel

Several of the core permissions in Android rely on the security concepts of the Linux ker-
nel. These core permissions, which mainly protect low-level functionalities, are enforced
by making use of the discretionary access control (DAC) mechanism of Unix.
Each resource on the Unix file system has an assigned file mode that describes the

operations allowed on the resource. The potential operations are read, write, and execute
and they can be set separately for three different user classes: user, group, and others.
Each file resource is additionally owned by a specific user and by a specific group.
Consequently, the file mode implies which operations the owner of the file is allowed
to perform, which operations members of a specific group are allowed to perform, and
which operations are allowed to all other users.
In Android, certain low-level devices and libraries on the file system are owned by

distinct Unix groups. These groups are allowed to perform the required operations on
the respective resource (e. g. to read and write to a device or to execute code inside a
library); all other users are not allowed to access the resource. These Android specific
Unix groups are directly linked to specific Android permissions that protect access to
low-level functionalities. If an application requests one of the permissions and the user
acknowledged it, the Android middleware adds the Unix user of the application to the

18

corresponding group. As a consequence, the Linux kernel grants the right to access the
protected resource.

3.2.3 Application signing
To install an application on a device, the application package file (.apk) has to be signed
by the developer. The purpose of this signing process is to identify applications that
have been created by the same developer. In contrast to other platforms (e. g. Symbian),
the certificate used to sign an application can be self-signed and must not be signed by
a trusted authority. Nevertheless, this signing approach has three positive consequences
for the security of the Android operating system.
First of all, the certificate of an application is checked whenever an installed application

gets updated to a newer version. The update only proceeds if the certificate of the new
version matches the one of the installed version; if they do not match, there is no way
to replace the old version of the application automatically. The user will either have to
manually remove the old version of the application before installing the new one or the
new version must be released under a different package name. In the latter case, the
new version will be installed in parallel to the old version.
Secondly, the signing of applications with the same certificate gives the developer the

possibility to run two applications in the same sandbox. For this purpose, a developer
can request the same UID for several applications by defining the same value for the
sharedUserId attribute in the AndroidManifest.xml files. Further, the process attribute
enables the developer to put several applications into the same process. Applications
sharing the same UID are treated as one unit and consequently, they share the union
of all requested permissions. To avoid that malicious applications bypass the security
checks of the Linux kernel by declaring the same UID as an already installed application,
these UID requests are only accepted for applications that have been signed with the
same certificate.
Thirdly, the signing process allows a developer to restrict the inter-process communi-

cation with respect to Android’s permission model. By setting the protection level of
a new permission to signature, the Android middleware only grants this permission to
applications that have been signed by the same developer. As a consequence, two or
more applications from the same developer can communicate via Android’s inter-process
communication mechanism without revealing data to any other application.
The signing mechanisms again defend against remote attacks in which the attacker

tries to install a malicious application on the user’s device. The attacker can not remotely
replace an installed application with a malicious one.

3.2.4 Centrally managed application deployment
As other smartphone systems, Android provides a centrally managed application store.
The Android Market is the official source to download and install new applications.
In contrast to desktop computers, where software is often downloaded from different
untrusted sources, the centralized repository reduces the risk of installing malicious ap-

19

plications. Further, the Android Market includes an update mechanism to keep all the
installed applications on a device up-to-date. This mechanism allows to close security
holes inside applications more quickly. Consequently, the Android Market helps to mit-
igate malicious applications and thus protects against remote attacks.
In contrast to other mobile platforms (e. g. Apple’s App Store), the Android Market

does not apply any approval process for uploaded applications [8, 33]. Any registered
developer can upload applications to the Market and these applications are available
almost immediately without being screened for malicious behavior. To identify poor
or even malicious applications, the Android Market uses a user review system. This
system allows users to rate each application with one to five stars. Google assumes
that the review mechanism will identify poor applications quite quickly and therefore
restrain further users from installing the application. It is a debatable point whether
this approach can identify malicious applications, because the general user is no security
expert. Additionally, this approach accepts that the first couple of users install the
application without any auxiliary information about its quality.
Another protection mechanism against spam and low quality applications in the An-

droid Market is a registration fee of USD 25 to create a new Android developer account.
The registration fee makes it unprofitable for an attacker to scatter applications under
many different pseudonyms. Thus, as soon as one infected application has been identi-
fied, Google can easily find additional infected applications by examining all applications
that correspond to the same developer account.
Due to the missing approval process, several malicious applications have been found in

and were removed from the Android Market [53, 16]. Android malware relies on one or
several dangerous permissions to fulfill its task. It therefore promises attractive features
and tries to trick the user into granting the application a combination of dangerous
permissions. As a consequence, malicious applications are able to steal the user’s private
data, collect location information, subscribe to costly premium services, or make the
phone part of a botnet.
In March 2011, several applications in the Market were infected by a Trojan named

DroidDream. The malware was included in over 50 applications and had been down-
loaded between 50.000 and 200.000 times before it was finally removed from the Market.
Instead of tricking the user into granting an application dangerous permissions, Droid-
Dream exploited a vulnerability inside Android. Using this vulnerability, DroidDream
rooted the user’s phone and silently installed a backdoor. By this time, the vulnerability
was actually already fixed in the latest Gingerbread release of Android. Unfortunately,
not everybody was able to update the mobile device to that latest Android version.
It is unlikely that the malware situation for Android will become better. For the

second quarter of 2011, McAfee Labs [40] even reported that over 50 % of new mobile
malware threats targeted the Android platform. This is not really surprising since the
market share of Android has been growing rapidly.

20

3.2.5 Android version updates
Exploitable vulnerabilities inside the Android system itself harm the security of the
user’s device dramatically. Therefore, it is important that security fixes are rolled out as
soon as possible. Google releases security updates quite quickly and also integrates the
security fixes into the Android Open Source Project, such that firmware modifications
can also close the security holes. To ease the installation of the firmware for the end-
user, updates are installed Over the Air (OTA), which means that a network connection
is sufficient to retrieve and install the new firmware. As a consequence, even users
without profound technical skills will be able to keep their devices up-to-date. The
update mechanism helps to reduce the risk that an attacker can exploit vulnerabilities
and therefore mitigates remote attacks on the device.
Nevertheless, there is one downside when we compare Android phones to Apple’s

iPhone: Apple’s closed infrastructure makes it easy to keep each iPhone model up to
date, because the update is directly shipped from Apple to the customer’s phone. How-
ever, this is not true for Android. Depending on the phone, Android updates have to
pass through phone manufacturers and maybe also phone carriers before they eventually
arrive on the customer’s device [19]. As a consequence, over 50 % of the devices have
not been updated to the latest Honeycomb release and are running an Android version
that is one or even more major versions behind [6].
To improve this situation, Google formed, together with several phone manufacturers

and carriers, the Android Update Alliance [55]. Regrettably, few details were announced
about their agreement; the only detail published is the intention to provide updates for
a period of at least 18 months. A renewed view on the situation three months after
the announcement showed that several phones received an update [50]. Nevertheless, the
situation still needs further improvements.

3.2.6 Password protection
Android allows to protect the device through a user-defined password. The user has
to supply this password whenever the phone is started and whenever the device screen
is locked. If the user sets a timeout to automatically turn off the screen, the device
will automatically be locked and will ask for the password to unlock. The password
can be supplied as a pattern of nine connected dots5, as a numeric PIN, or as a full
alpha-numeric password.
This mechanism prevents direct interaction with the phone if the phone gets lost or

in case it is left unattended. Thus, this password requests defend against local attacks
against the device. However, an attacker can still remove the SD card of the phone and
read out its data with an external card reader.

5The user has to connect nine dots in the right order by sliding over them.

21

3.2.7 File system encryption
Since Android 3.0, Android supports rudimentary encryption of the device’s file system.
We call the current state of Android’s encryption mechanism rudimentary, because only
the /data partition of the SD card is encrypted; all other files (e. g. pictures) are still stored
unencrypted. However, the encryption of the data partition secures the information that
is stored in the application specific directories. This may, for example, include database
and text files with crucial information (e. g. login credentials).
The data is encrypted using the Advanced Encryption Standard (AES) block cipher

with a key size of 128 bits; the cipher operates in cipher block chaining (CBC) mode
and the initialization vector is generated via Encrypted Salt-Sector Initialization Vector
(ESSIV) with the SHA256 hash function [3, 27]. The user-provided password is used to
encrypt the secret encryption key, which is used for the file encryption. In combination
with the password protection mechanism, the file system encryption partially protects
against direct access by an attacker even if the attacker is able to get direct access to
the SD card. Therefore, the encryption of the data partition helps to protect against
local attacks mounted against a device.

22

4
User-controlled Internet connections in

Android (Ucicia)

Although the security model of Android includes several different security mechanisms,
we see more and more malware aiming at the Android platform. Many malicious ap-
plications utilize the network functionality of the device which is explicitly protected by
Android’s permission system. Nevertheless, this protection mechanism does not seem to
be very effective to mitigate malware that relies on network access. The problem is that
the permission to access the Internet is requested by too many applications and that the
average user can not estimate the risk that arises from granting an application the right
to access the Internet.
The Internet permission can be abused in many ways; for example, by making the

device be part of a botnet or by stealing the owner’s personal information. The latter
especially becomes very security critical if the stolen information can be used to steal
money from the user. A simple example would be a malicious banking application that
tries to steal user credentials in order to later conduct unauthorized transactions.
In January 2010, at least 39 unofficial banking applications were uploaded to the

Android market by the same user [28]. They targeted customers of several international
banks. It seems as if the only purpose of these applications was to trick some people
into buying the $0.99 application, whereas the only functionality of the applications was
to open the official online banking website. Nevertheless, the application’s request of
the Internet permission would have been sufficient to steal the user’s credentials and to
transmit them without user notice to the server of the attacker.
However, requesting Internet access is quite natural for an online banking application,

and unfortunately, the Internet permission request on Android does not reveal to which
destination the application wants to connect to. To mitigate against malware threats
that heavily rely on the Internet permission, we extend the security model of Android

23

and give users more control over the Internet connections on their device. We let the
user decide whether the Internet permission should be granted or not and provide the
opportunity to limit the Internet access to a restricted subset of destinations.
Before we describe our contribution to the Android operating system, we first intro-

duce the underlying network basics that are used in this thesis and provide an introduc-
tion to different access control mechanisms. Afterwards, we show the current weaknesses
of Android with respect to the Internet permission. Based on these weaknesses, we refine
the attacker model against Android. We close the chapter with a high-level overview of
our solution and show how it is possible to defend against the new attacker model.

4.1 Basics
Our solution refines the Internet permission of the Android operating system and enforces
this new permission model on the device. In order to refine the existing permission
model, it is necessary to understand the underlying network basics that are used when
a connection with the Internet is established. Further, the enforcement of the modified
permission system requires an understanding of available access control policies.

4.1.1 Network communication
Since this work targets the Internet permission, our proposed solution is dependent on
the underlying network transport mechanisms. The interconnected machines of such a
network communicate with each other through several protocols. We will discuss the
most important protocols that are required in this thesis. Further, we will have a look at
the Domain Name System that allows to identify a host in the network by its hostname.

Internet protocol stack

In order to establish a communication between two machines that are interconnected by
a network of several machines, the following tasks have to be accomplished: First of all,
the two communicating machines have to agree on a unique message structure, such that
both are able to understand the message. Secondly, the arbitrarily long message is split
into chunks of the same size and has to be transmitted from one machine to the other
machine in a way that the receiver is able to rebuild the original message—even if chunks
arrive in the wrong order. Thirdly, different machines need to be uniquely identifiable in
order to transmit the message to the correct destination machine. Fourthly, the machines
are connected through a wire or through another communication medium and need to
transmit the message to the desired destination; and fifthly, the machines in the network
need to exchange information by transmitting the individual bits of the message on the
hardware basis.
The Internet communication is realized by using several protocols, which each under-

take one of the above mentioned tasks. These protocols are categorized into five distinct
layers. Together, they form the Internet protocol stack [38]. As applicable in Figure 4.1,
the five layers are

24

Physical layer
IEEE 802.11, …

Link layer
PPP, …

Network layer
IPv4, IPv6, …

Transport layer
TCP, UDP, …

Application layer
HTTP, FTP, DNS, …

Figure 4.1: The Internet protocol stack organized in five layers.

1. the application layer,

2. the transport layer,

3. the network layer,

4. the link layer, and

5. the physical layer.

Each of the layers fulfills a specific task in the communication. The categorization into
different layers allows to easily exchange the used protocol of one layer without influenc-
ing the task of any other layer. For example, the same transport and network protocol
can be used to transmit different types of messages (i. e. different application protocols
are used); but it is also possible to send the same message over a wired or a wireless
network infrastructure without changing the transport or network layer protocols.
The link and the physical layer are very hardware oriented. Therefore, we omit further

details about these two layers, since the actual transfer of the bits is not relevant for
this thesis. In the following, we will focus on the first three layers and especially on the
most important protocols of these layers. We start with the IP protocol of the network
layer and proceed bottom-up.

Internet Protocol The Internet Protocol (IP) is used to transport network packets
between two different machines. Different machines are addressed by a unique identifi-
cation number, called the IP address. In the Internet Protocol version 4 (IPv4) the IP
address is a 32-bit integer value that is commonly represented in dot-decimal notation
(e. g. 127.0.0.1). IP packets contain both the source IP address of the sender and the
destination IP address of the receiver. This information allows to route packets to their
desired location.

Transport Protocols (TCP and UDP) The Transmission Control Protocol (TCP) and
the User Datagram Protocol (UDP) are transport layer protocols used to transmit a
stream of bytes from one machine to another. It enhances the Internet Protocol in such
a way that different packets can be assigned to specific connections. TCP establishes

25

a reliable and ordered connection between two machines and guarantees that the byte
stream arrives in the same order and without any gaps, whereas UDP is a simpler
protocol with less overhead. Consequently parts of the byte stream may arrive in a
different order, may appear twice, or may be lost without notice.
Both protocols include two 16-bit port numbers to identify the endpoints of the com-

municating machines. Depending on the destination port, the operating system forwards
the incoming packet to different applications.

Application Protocols (HTTP) One of the most important application protocols on
the Internet is the Hypertext Transfer Protocol (HTTP). It is used for the communication
between a web browser and a web server. HTTP connections are established via TCP
and the port used for communication on the server side is port 80.
As we have seen before, several domain names can point to the same IP address and

consequently to the same web server. Since none of the underlying protocols (neither IP
nor TCP) includes the domain name, the header of an HTTP request includes the Host
field with the requested domain name (e. g. www.google.com).

Domain Name System

The use of 32-bit integer numbers to set the destination of a packet is, from a user’s per-
spective, rather cumbersome. Therefore, a hierarchical Domain Name System (DNS)
is used to address a machine in the network via a meaningful domain name (e. g.
www.google.com). The hierarchical network of DNS servers is capable of translating
a given domain name back into an IP address.
Important to notice are three facts: Firstly, the result of a DNS request is not a single

IP address, but may be a set of those. Secondly, several different domain names can
point to the same IP address. And last, several DNS requests may not return the same
set of IP addresses. From this it follows that the mapping between IP addresses and
domain names is an N : M relation.

4.1.2 Access control mechanism
There exist several access control mechanisms to restrict the access to a resource on a
computer system. In the following part, we will have a closer look at the three most
important access control mechanisms. Thereby, we concentrate on the possibility to
restrict the Internet access of the several applications that run on Android in a fine
grained manner.
In general, the access control policy decides whether a subject is allowed to perform

an operation on an object. Therefore, we define the subject of the access control policy
to be the instance that wants to access a resource (e. g. a user); we define the object as
the resource being accessed (e. g. a file); and we define the operation as the operation
the subject wants to perform on the object (e. g. reading or writing).

26

Mandatory access control

For mandatory access control (MAC) the decision whether an operation on an object
is permitted or not is based on properties of the object and the subject, and on several
global rules that act upon these properties. Consequently, the actual identity of the
subject is irrelevant for the decision. MAC is often mentioned together with military
multi-level secure systems. These military systems handle documents (objects) with mul-
tiple security classifications in one system [49]. Every user (subject) and every document
has an assigned security level of: Unclassified, Confidential, Secret, or Top Secret. The
MAC mechanism now ensures that no user can read documents with a higher security
level than the own level.
This restriction is achieved through two rules: The first rule restricts the reading

(first operation) of documents and states that users are only allowed to read documents
with the same or a lower security level. The second rule restricts the writing (second
operation) of documents and only allows a user to write documents with the same or
an higher security level. The purpose of the first rule is quite obvious; the second rule
however ensures that a document can not be made available to a lower security level.
This example shows that it does not matter at all which subject wants to access an

object; the access control only relies on the global rules. This access control policy is
named mandatory, because although an entity may have access to a specific resource it
can not pass this access privilege to any other entity [47].

Discretionary access control

In contrast to MAC, discretionary access control (DAC) is based on the identity of the
subject that wants to access an object. DAC is the mechanism that is used in the Unix
and the Windows operating system to restrict the access to the different resources of the
computer. For each resource exists an access control list that defines which operations
(e. g. read, write, and execute on Unix) are allowed by which user.
Consequently, one could represent DAC as a three-dimensional matrix of user, re-

source, and operation: Each cell contains a boolean value that determines whether the
operation by the user on the object is permitted or not. This access control policy is
named discretionary, because an entity can have permission to grant other entities access
to a specific resource [47].

Role-based access control

Another access control mechanism is role-based access control (RBAC). RBAC allows
to define roles that can be assigned to several subjects. The role-based approach helps
to reduce the administration overhead by assigning the desired properties to all subjects
with a specific role, instead of defining it for each subject separately. RBAC can be used
both with MAC and with DAC.
Both Unix and Windows use RBAC together with DAC. They allow to define so

called groups that can contain several users. These groups can then be used to allow all
members specific operations on a system resource.

27

4.2 Refined attacker model
As seen in Chapter 3, Android provides a security model that is based on mandatory
access control. The permission system of Android is used to decide whether an appli-
cation can access a specific functionality or not. One of the permissions that is used
by many applications is the Internet permission (android.permission.INTERNET), which is
required to establish network connections.
The Internet permission is enforced by adding the Unix UID of an application to a

specific Unix group, named inet. Without this group membership, applications are not
allowed to open new network sockets. Consequently, the granularity of the Internet
permission is rather coarse and the permission only support two states: Full Internet
access or no Internet access at all.
Network connections can be misused in several ways and imply a high security risk.

Therefore, they are classified as dangerous permissions and the user has to explicitly
grant applications the permission to access the Internet. Once the user has confirmed
the permission request, which is done during the application installation, the application
can access the network without further approval. Revocation of any permission is not
possible, or rather implies the uninstallation of the application.
As shown by Barrera et al. [11], the Internet permission is the most frequently re-

quested permission. Over 60 % of their analyzed applications requested to access the
network. They argue that this is due to the Internet-orientated services of these modern
smartphones and due to the fact that many free applications make use of mobile ad-
vertisement. Consequently, it is quite normal that an application requests the Internet
permission and many users don’t consider whether the Internet permission request is
really necessary.
Attackers can utilize this fact and request the dangerous Internet permission with-

out causing suspicion. Afterwards, they can abuse the Internet permission in several
malicious ways, for example,

1. to receive and execute malicious code,

2. to remotely control the device, or

3. to steal the user’s private data.

For (1) and (2) the attacker only has to convince the user that the Internet permission
is required for an application. As we have seen, it is quite hard for users to estimate
the risk that is associated with the Internet permission and to decide whether a network
connection is really mandatory to execute the application. For (3) the attacker has
to additionally convince the user that the request to access the user’s private data is
plausible.

Information gathering The private data that is stored on the user’s device is quite
diverse. There is device related information like the IMEI and IMSI number that allow
to uniquely identify the device and the SIM card. Additionally, the device contains the

28

user’s private information like contacts and message history, but also security critical
login credentials are stored on the device.
If an attacker wants to steal private data, there are two possibilities to obtain the

information:

1. The data is available through a public API by another application (e. g. contacts)
or

2. the malicious application requests the data itself (e. g. login credentials).

In both cases, the malicious behavior is hard to distinguish from normal behavior. In
the first case, the API may or may not be protected by Android’s permission system
such that the API access may entail a permission request by the attacker.
However, if the information is obtained through an unprotected API, there is no

way to recognize it, but even if the API is protected by a normal permission, it is
hard to notice. For this reason, the private information that is defined in Android’s
core functionality (e. g. contacts) are protected by a dangerous permission. However,
attackers can try to add some related functionality that makes the permission request
plausible. Consequently, accessing publicly available private data through an API is
feasible for an attacker.
For the second case, when the application requests the information itself, Android’s

permission system can not protect the user from entering private information. However,
the attacker has to convince the user that entering the information is mandatory and
safe. One way to do so, is to mimic some official application. This happened, as an
example, to the Netflix application that allows to watch movies on the smartphone.
The Netflix application was available in the official Android Market; however, only to
a limited number of devices. This made it possible to distribute a malicious version of
the Netflix application outside the official Market. The application looked similar to the
official application, but stole the login credentials of the user and transmitted them to
a remote server [39, 52].

Attacker model Android’s current attacker model does not mitigate against attacks
that try to use the Internet connection in an unintended manner. Therefore, we extend
the attacker model as follows: Attackers still have no physical access to the device and we
assume that Android’s protection mechanisms (sandboxing and the permission system)
can not be circumvented. Consequently, attackers can not get additional permissions by
exploiting potential existing vulnerabilities. As before, attackers can upload malicious
applications to the official Android Market.
However, we assume that the average user is able to estimate the risk of granting full

Internet access, so that they will not install any application that requests full Internet
permission without a comprehensible reason. In addition, we assume that a user can
judge on the requested connections and decide which are reasonable and which are
suspicious.

29

Figure 4.2: High-level overview over the Ucicia modifications.

4.3 Ucicia: A high-level overview
We provide a solution to this refined attacker model, named Ucicia (user-controlled
Internet connections in Android). Therefore, we modified the Android operating system
and enhanced the security mechanisms of Android.
As applicable from the high-level overview in Figure 4.2, our modifications affect three

parties that interact with the application: Firstly, we give application developers the
possibility to request fine-grained Internet permissions. Secondly, users grant or refuse
the requested Internet permissions at the time of the application installation and they
are also able to manage them later; and thirdly, the Android operating system enforces
the new fine-grained Internet permissions.
In order to enforce the new Internet permission, we had to choose an appropriate

access control policy. The task was defined as follows: We want to control whether an
application (subject) is allowed to access a specific Internet location (object) or not.1 We
extended Android’s mandatory access control mechanisms and give the user the control
to define the global rules that all applications have to act on. Applications themselves
shall not have the possibility to pass their permission on to any other application.
Since Android directly assigns each installed application a distinct Unix UID, we can

define a set of restriction rules per UID—and consequently per application. To restrict
the Internet access for each application separately, we stick to Android’s enforcement
mechanisms and make use of the discretionary access control mechanisms of the Linux
kernel. However, it is important to mention that none of the third-party applications can
either change existing Internet permission rules or pass the granted Internet permission
on to another application. Our final solution is separated into two parts:

1. A refined permission model that allows fine-grained Internet permissions for out-
going connections and

2. our Ucicia implementation that manages and enforces this new permission model.

We will discuss the modified permission model of Android in the next chapter and show
the implementation of Ucicia in Chapter 6.

1Hence, we only control one operation that judges upon outgoing Internet connections.

30

5
Permission model refinement

As shown in the last sections, the security of Android is weakened by its coarse definition
of the Internet permission. This is especially true in case this permission is granted in
conjunction with further permissions that give the application access to the user’s private
data. The consequences that arise from such a combination of permissions are difficult
to be grasped by the average user.
To make the consequences more obvious and to give the user more control over the

Internet connections of the device, we extend Android’s permission system with respect
to the Internet permission. Instead of granting full Internet access, we allow to restrict
the network communication to a limited subset. We give both the developer and the user
of an application additional tools to control the network communication. Our refinement
of the Internet permission consists of five key functionalities:

1. Fine-grained Internet permission requests by limiting network connections to spe-
cific destinations.

2. Refinement of requested Internet permission that allows to modify requested In-
ternet permissions at the time of application installation.

3. Granting and revoking permissions at any time.

4. Dynamic Internet permission requests that allow an application to request the
Internet permission at runtime.

5. Observation of Internet connections to identify malicious behavior.

In the following chapter, we will define a mathematical model for our extension of
Android’s security model. Afterwards, we present the definition of each of the five key
functionalities in detail.

31

5.1 Definitions
We provide several definitions that describe an Internet connection in a mathematical
manner. These definitions are based on the underlying network architecture that we
discussed in Chapter 4. Using these definitions, we define the set of all possible Internet
connections an application can establish. Finally, these definitions allow us to define the
restricted Internet access of the user-controlled Internet connections.

5.1.1 IP addresses, domain names, and ports
We define the set of all possible IPv4 addresses I, the set of all possible domain names D
(with respect to [43, section 3.5]), and the set of valid ports P as follows:

I := {0, . . . , 232 − 1}
D := {d | d is a valid domain name}
P := {0, . . . , 216 − 1}

5.1.2 Outgoing connections
Outgoing TCP and UDP connections are identified by their destination IP address and
the destination port. Based on the definitions above, we can define the set of all possible
outgoing connections as a set of tuples:

C := {(i, p) | i ∈ I ∧ p ∈ P}

Further, we define the set of permitted outgoing Internet connections for an application
app to be

Capp ⊆ C

As mentioned earlier, Android only supports two different states for the Internet
permission. Either an application has full Internet access (i. e. Capp = C) or no Internet
access at all (i. e. Capp = ∅). Our extensions to Android allow to define an arbitrary
subset of permitted connections for each application. Consequently, an application may
only have restricted Internet access.

5.1.3 Restriction rules
To limit the Internet access of a device, we define the set of all possible restriction rules
as a tuple of hostname (which is either an IP address or a domain name) and port:

R := {(h, p) | h ∈ I ∪D ∧ p ∈ P}

This allows us to define IP-based and domain-based restrictions combined with a desti-
nation port for each application app:

Rapp ⊆ R

32

UserDeveloper

Fine grained Internet
permission request

Refinement of requested
Internet permission

Granting and revoking
Internet permission

Dynamic Internet
connections

Observation of
Internet connections

Request access to
• google.com:80
• g.cdn.com:80

Confirm access to
 google.com:80
 g.cdn.com:80

Allow connection
from <app> to
74.125.39.103:80
Allow Deny

Observed connections
for <app>:
• 74.125.39.103:80
• google.com:80

Internet rules for <app>:
 google.com:80
 g.cdn.com:80

Installation After installation

Figure 5.1: Our approach includes five key functionalities that affect both developers
and users of an application.

The DNS mechanism can be simulated via an abstract lookup function lDNS : D → 2I

that maps a set if IP addresses to each domain name. Using this function, we are able to
get the set of allowed connections from a set of restriction rules via a function u : R→ C
that is defined as follows:

u(Rapp) := {(i, p) | (i, p) ∈ Rapp ∧ i ∈ I ∧ p ∈ P} ∪
{(i, p) | (d, p) ∈ Rapp ∧ d ∈ D ∧ i ∈ lDNS(d) ∧ p ∈ P}

5.2 New key functionalities
The provided definitions restrict the network connections that are allowed by an ap-
plication. However, what is still missing is a way to define, modify, and enforce these
restrictions on the mobile device. In the following, we will present the five key function-
alities of our solution. These functionalities allow the developer and the user to restrict
the outgoing Internet connections per application.
Our modifications affect three stages of an applications lifecycle. Firstly, we modify

the development process and give the developer the possibility to request fine-grained
Internet permissions. Secondly, the user can modify the requested Internet permission
when the application is being installed; and thirdly, the user can modify the Internet
permission of any application at any time after the application has been installed. Fig-
ure 5.1 provides a short example for each of the five refinements and shows where the
different changes apply.

5.2.1 Fine-grained Internet permission requests
Android’s permission design expects that the developer of an application requests all
permissions required to execute the application. Our solution does not change this
approach and leaves the responsibility to the developers, with the result that they must
determine the hosts their application communicates with.

33

Thus, our solution allows developers to define a set of restriction rules, as defined in
Section 5.1. The rules are defined as a list of IP addresses or domain names together
with an optional destination port. If no port is provided, we allow connections to all
possible ports. For most developers the number of hosts is relatively small such that the
effort to define each host separately is negligible. However, developers may increase the
confidence of users into their application by giving the users an insight into the set of
allowed network connections of the application.
The provided restriction rules are automatically enforced by the operating system. In

case the developer decides to request no Internet access or full Internet access, nothing
changes for the developer. Consequently, our solution is totally backwards compatible
for the developer.

5.2.2 Refinement of requested Internet permission
Similar to the extensions we provide to the developer, we want to give the user more
control. First of all, whenever a user installs a new application, it should be possible
to review the hosts the application wants to communicate with. This gives the user
more background information on whether the application is trustworthy or not. As a
by-product, the list of hosts may also reveal whether an application uses advertisements.
Android’s permission system is currently not capable of installing an application with-

out granting it all requested permissions. If the user is not satisfied with the requested
permissions of an application, the only possibility to deny permissions is to cancel the
installation process and to abandon the application. We relax this policy with respect to
the Internet permission and allow users to install applications that request the Internet
permission without allowing the applications to access the Internet. In comparison to
other permissions, revoking the Internet permission should not crash a well programmed
application for several reasons.
Firstly, the Internet permission is not checked explicitly by the Android middleware

and does not raise any security exceptions in case the permission is not present. Secondly,
our solution grants the Internet permission itself in the first place, but denies future
access to the network by filtering out all network packets of the application. Such a
situation is similar to the situation in which the network functionality of the device
is temporarily disabled. No network access is a situation that should be handled by
developers anyway.

5.2.3 Granting and revoking permissions at any time
In addition to the revocation of the Internet permission at the time of installation, we
allow the user to review and manage the Internet access of an application at any time.
Therefore, we provide a flexible tool to manage the permitted Internet connections for
each application. The tool lists all the hosts predefined by the developer and allows to
change the state for each of these destinations separately.
Similar to current personal desktop firewalls, the user can decide whether a specific

connection should be allowed or denied . Further, it is possible to postpone the decision

34

to the time when the connection is actually established.1 Consequently, we allow three
states for each Internet connection: ALLOW, DENY, and ASK. The user can also
define the default behavior for all connections that are not handled by one of the already
defined rules. This approach allows both, blacklisting and whitelisting of specific Internet
connections and thereby gives the user full control over the possible connections of an
application.
Further, we give the user the possibility to create new rules that restrict or extend the

Internet permission of the application. The new rules are again based on the IP address
or the domain name with an optional destination port.

5.2.4 Dynamic Internet Permission requests
Android’s permission system is rather static and demands the decision whether a per-
mission is granted to an application or not before the permission is actually needed.
We enhanced Android’s permission system and allow a dynamic Internet permission
request that asks the user for the permission when the Internet connection is actually
established. The user can enable this dynamic Internet request for each connection of
an application separately.
The desired Internet connection is intercepted by the operating system and the user

receives a notification about the queued connection. The user can then decide whether
to allow this specific request or not. This especially helps the user to identify network
connections that are established in the background and are not triggered consciously by
the user.
The dynamic Internet permission is particularly useful if the possible destinations of

an application are not known in advance. The user can then enable the dynamic Internet
permission for all outgoing connections and decide at runtime of the application whether
a connection is permitted or not. We further allow the user to automatically generate
new firewall rules from these dynamic request and store the decision permanently.

5.2.5 Observation of Internet connections
Ucicia also includes an observation mode that monitors and logs all outgoing network
requests. The mode can be enabled for each application separately and currently logs
the following information about connections:

1. The destination IP address,

2. the used network protocol,

3. the destination port, and

4. the HTTP host (if applicable).

The purpose of the observation mode is to make established connections of an appli-
cation visible to the user. Therefore, the user can request a list of all logged connections.

1Further details about this dynamic Internet requests follow in the next section.

35

We further allow to create new rules from the logged Internet connections that either
restrict or enhance the Internet permission of an application. This is especially useful
because of the logged domain name that is otherwise not visible to the user. The domain
name can give a more descriptive name that helps the user to identify the service an
application is connecting to.

36

6
Implementation

As shown in Chapter 4, the overall goal of our extended permission model is to refine
the network access in Android. To be precise, we allow to define a set of permitted IP
addresses and domain names for each application and to deny the access to all other
destinations. We enforce this refined Internet permission by utilizing the traditional
Linux packet filtering firewall. For each outgoing packet, the firewall determines the
application that wants to send the packet. Afterwards, it compares the destination IP
address to the set of allowed hosts for this application and decides whether it let’s the
packet through or whether it drops the packet.
To configure the Linux firewall, we created an Android application, the UciciaManager.

With this application, users can control the Internet access of each application by defining
several rules that either allow or deny the communication to a specific destination.
Further, users can postpone the decision to the time when the network access actually
takes place. Therefore, the firewall queues the network packet and propagates all required
information to the UciciaManager application. There, the user decides whether the
connection is permitted or not.
We structured this chapter as follows: We first define the prerequisites of our imple-

mentation and provide an architectural overview. Thereafter, we take a closer look at
the different modules. We start with the introduction of the used Linux firewall, then we
present the interaction between the native firewall and the Android framework, and fi-
nally we describe the Android application to configure the system. Afterwards, we show
how we further extended this implementation with a customized application installer
and how we realized dynamic Internet requests.

37

Application Layer
UciciaManager

Linux Kernel

Android Middleware

UcicicaService

ucicia_queue

Package
Installer

Linux firewall
Administration Queue

Rules
DB

Configuration Dynamic

Figure 6.1: Interaction between the different modules. The left half illustrates firewall
configuration, whereas the right half illustrates dynamic Internet requests.

6.1 Prerequisites
To implement our solution, we modified the stock Android firmware that is available
through the AOSP. When we started our implementation, the latest available version of
Android was Gingerbread (version 2.3.7). Nevertheless, we assume that our implemen-
tation can be ported to the new Ice Cream Sandwich release with reasonable effort.
We tested our implementation on Google’s first developer phone, the Nexus One. The

Nexus One, also known as HTC Passion, is shipped with an unlockable bootloader.
Unlocking the bootloader allows to install unofficial firmware images and especially self-
compiled firmwares retrieved from the AOSP repository.
The build configuration we used to compile the firmware was full_passion-userdebug.

This configuration includes all available languages and applications (full), and provides
root access and additional debugging tools (userdebug).

6.2 Architectural overview
The communication between the native Linux firewall and our Android application (Uci-
ciaManager) is realized by two system services. The UciciaService is located in the An-
droid middleware and the ucicia_queue service runs as a standalone native application.
The interaction between different modules of our implementation is illustrated in Fig-
ure 6.1. All modules in our implementation fulfill two different tasks: They are used to
configure the firewall, and they inform the user about queued Internet connections.
The UciciaService stores all defined rules in an internal database and propagates them

to the ucicia_queue service. There, the provided rules are used to update the state of
the firewall. We give the user full control over the defined rules via the UciciaManager

38

application. Additionally, we give the application developer the possibility to ship a set of
predefined rules required by the application. Therefore, we modified the PackageInstaller
of the Android middleware, such that the provided rules are automatically added to the
UciciaService at the time of the application installation.
The dynamic Internet requests are realized by queuing all applicable network pack-

ets and propagating them to the ucicia_queue service. There, we extract all relevant
information (e. g. the destination IP address and the destination port) and forward this
information to the UciciaManager. The decision of the user, whether the packet is ac-
cepted or dropped, is again propagated back to the ucicia_queue service. The service
then informs the firewall about what should happen with the packet. The used term for
this decision is verdict, which we use throughout this work to describe whether a packet
is accepted or rejected.

6.3 Firewall
Each network packet sent from or to the Linux operating system passes Linux’s internal
firewall. The firewall distinguishes between incoming, outgoing, and forwarded packets.
Incoming and outgoing packets are packets that are sent to and from the current machine,
respectively. Whereas forwarded packets are just forwarded from one network interface
of the machine to another network interface. The Linux firewall defines three different
lists of filtering rules, so called chains: INPUT, OUTPUT, and FORWARD. Depending
on the type of the network packet, the packet passes the appropriate chain. [51]
The rules inside these chains are checked one after the other against the inspected

network packet. The filtering rules are, in general, based on properties of the IP, TCP,
and UDP protocols. If one of the rules matches against the packet, the firewall jumps to
the mandatory target that is set for each rule. There exist several predefined targets, but
the most important ones are ACCEPT, DROP, and REJECT. All these three targets
stop further processing of the packet and handle it in different ways:

1. The ACCEPT target hands the packet over to the operating system or to the end
application.

2. The DROP target discards the packet. For the sender it seems like the packet
never reached its destination.

3. The REJECT target also discards the packet, but additionally sends an error
message to the sender of the packet. This error message informs the sender that
the destination is unreachable.

In addition to the three predefined chains, the Linux firewall allows to create new
chains. These chains can then be used as a new target for rules, such that the processing
of the packet proceeds in the new chain. Figure 6.2 provides a short sample configuration
that filters outgoing packets. The rules are checked from top to bottom, such that all
connections to 192.168.12.1 are permitted and all network packets to 192.168.12.2 get
dropped. If the destination IP address of some packet is 192.168.12.3, we proceed to the

39

OUTPUT
Proto source destination target

all anywhere 192.168.12.1 → ACCEPT
all anywhere 192.168.12.2 → DROP
all anywhere 192.168.12.3 → chain_3
all anywhere anywhere → ACCEPT

chain_3
Proto source destination target

TCP anywhere anywhere → ACCEPT
UDP anywhere anywhere → DROP

Figure 6.2: Sample firewall OUTPUT rules with one additional chain.

third rule and jump from there into the user chain chain_3. There, the protocol of the
packet is checked. If TCP is used, we accept the packet, and if UDP is used, we drop it.
In case the packet is neither a TCP nor a UDP packet, we jump back to the OUTPUT
chain and proceed with the fourth rule.

6.3.1 Firewall configuration
The Linux firewall can be configured through the user space iptables program. This com-
mand line tool allows to create new and modify existing chains and filtering rules. The
iptables program is part of the stock Android firmware that is available in the AOSP, but
the available version is slightly outdated and did not fulfill our requirements. Therefore,
we chose a newer version (1.4.7 instead of 1.3.7) from the well-known CyanogenMod1

firmware.
The functionality of the iptables tool can be enhanced by several additional modules.

These modules make it possible to filter packets based on further properties beyond
the traditional protocol information. Our implementation makes use of the owner, the
NFQUEUE, and the mark module. We will first introduce the owner module.

owner module The owner module is part of the iptables tool and allows to filter
packets based on information of the process that sent a packet. The filtering only works
for outgoing packets, because all other network packets obviously do not provide any
information about the sending process. Outgoing packets can be filtered by several pieces
of information of the Unix process that opened the corresponding network socket. This
information includes the UID, the group identifier (GID), the process identifier (PID),
and the session identifier (SID).

6.3.2 The chain design of Ucicia
As we discussed earlier, each Android application is executed with a distinct Unix UID.
We utilize this information to distinguish different network packets, such that we are able
to determine the application that tries to establish a network connection. This approach
enables us to restrict the network communication of each application separately.

1CyanogenMod is a custom firmware that is based on the available Android source code on the AOSP.
The firmware is quite popular because of its wide support for different devices. Further, it provides
several features that are not available in the stock Android firmware.

40

OUTPUT
Proto source destination uid target

all ESTABLISHED all → ACCEPT
all anywhere anywhere 10040 → ucicia_app_10040
all anywhere anywhere 10041 → ucicia_app_10041
all anywhere anywhere 10042 → ucicia_app_10042
all anywhere anywhere 10044 → ucicia_app_10044

ucicia_app_10040
Proto source destination target

all anywhere anywhere → REJECT

ucicia_app_10041
Proto source destination target

TCP anywhere 209.85.148.99:80 → ACCEPT
UDP anywhere 209.85.148.99:80 → ACCEPT
all anywhere anywhere → REJECT

ucicia_app_10044
Proto source destination target

all anywhere 209.85.148.99 → REJECT
all anywhere anywhere → ACCEPT

ucicia_app_10042
Proto source destination target

all anywhere google.com → ACCEPT
all anywhere anywhere → REJECT

Figure 6.3: Ucicia firewall configuration restricting the Internet access of four applica-
tions.

To increase the performance of the Linux firewall, we add a special rule to the top of
the output chain. This first rule in the chain uses the state module and makes use of
the stateful filtering techniques of the Linux firewall. It matches all packets that belong
to an already established connection and automatically accepts them without further
processing any additional rule.
To further reduce the number of rules that are checked when a packet is sent, we

cluster all rules that belong to the same application and place them into their own
chain. The name of the new chain is determined by appending the application’s Unix
UID to the fixed prefix ucicia_app_. For each of these new chains, we place only one
rule into the OUTPUT chain. This new rule in the output chain compares the UID of
the packet with the UID of the application and in case they match, the rule jumps to
the corresponding application chain. Figure 6.3 shows the linkage between the output
chain and the separate application chains. As one can see, a packet send by the UID
10044 is only checked against the rules inside the OUTPUT chain and against the inside
the ucicia_app_10044 chain and ignores all rules inside the other application chains.
The different types of filtering rules for an application are also depicted from Fig-

ure 6.3. Although, the Linux firewall supports a large variety of filtering properties, we
concentrate on a limited subset. The target of all our filtering rules for an application
is either ACCEPT, REJECT, or another chain. Further, we define three types of rules
that are available in an application chain:

1. Host-only rules. These rules are based on the destination host address of a packet.
The destination can either be an IP address or a domain name.

2. Host-and-port rules. In addition to the destination host, they define the destination
port of a packet. For each such rule, we create two filtering rules, one for TCP
and one for UDP.

3. Default rules. The last rule inside an application chain is always a rule that matches
all packets. It states what will happen with the packets that are not handled by
one of the previous rules.

41

(a) Main screen (b) Configuration screen (c) Add rule dialog

Figure 6.4: Screenshots of the user interface of the UciciaManager application.

These three rule types are sufficient to enforce the restricted Internet access as previously
defined in Section 5.1. This can easily be seen by recalling the definition of restricted
Internet access. We defined it as a set of restriction rules that consist of a host name
(IP address or domain name) and a port. We can enforce such a set of restriction rules
Rapp := {(h1, p1), (h2, p2), . . . , (hn, pn)} for an application app with the UID u as follows:

1. We create a new application chain for the UID u,

2. for each tuple (hi, pi) we insert a corresponding host-and-port rule with an accept-
ing target, and

3. we let the default rule reject all other packets.

6.4 Firewall front-end
We give the user the possibility to change the firewall rules through an Android applica-
tion, the UciciaManager. The application itself is only responsible for representing the
stored firewall rules and for modifying them, whereas the rules themselves are stored by
the new system service that we present in the next section. Therefore, the architecture
of the application is quite simple and only consists of three activities.
We added the application to the preinstalled applications of Android such that all

the source code is located in the /packages/apps/UciciaManager directory of the Android
repository. However, to distinguish our changes from the official source code, we did
not adopt Android’s package naming scheme. Instead we use the de.unisb.infsec.ucicia

42

package as the root package for all our changes. Therefore, the following three activities
of the UciciaManager application reside in the de.unisb.infsec.ucicia.manager.config sub-
package.

ListApplicationsActivity The main activity, that is started when the application is
launched, is the ListApplicationsActivity. It lists all installed applications on the device
that requested the Internet permission. To help the user to identify all applications, we
present each application with its official name and its icon. We get the information about
the installed applications, as well as their requested permissions, from the PackageManager,
which is part of the Android framework.
Figure 6.4a shows a screenshot of this application list. As one can see there, several

applications with the same Unix UID are grouped together. The reason for this design
decision is that restricting the access for one of these applications will automatically
influence the permission of all other applications with the same UID. Therefore, we
decided to list these applications with the same UID as only one item. We assume that
a group of these applications possesses the Internet permission as soon as at least one
application requested it.
We use this application list to select the application we want to configure. A click on

the application brings us to the configuration screen for the selected application.

ConfigApplicationActivity The user can control the Internet access of each application
through the ConfigApplicationActivity. At the top of the screen, we again provide the
essential information about the application that is being modified. Below, we placed
the controls to represent and modify the current configuration. We receive the current
configuration of the application from a new system service that we added to the Android
framework. Further details about this service follow in Section 6.5.2.
As depicted in Figure 6.4b, the user can switch the packet filtering either on or off,

where off falls back to the stock Internet permission and allows full Internet access. If
the user decides to activate the packet filtering mode, we present the list of restrictions
that are currently stored for this application. Each listed rule item contains the relevant
information, which is

1. the destination host (located in the first row),

2. the destination port (located in the second row), if applicable,

3. the mode of the rule represented by an icon on the left (where a green tick indicates
an accepted, and a red cross a denied connection, respectively), and

4. the state of the rule that is either built-in (indicated by a small lock icon on the
right) or normal (where no special icon is presented).

The first rule in the list is a special built-in rule, the DEFAULT rule. It is the
equivalent to the catch-all rule we have seen when we talked about the firewall design.
Thus, it represents the default behavior for all packets that do not match any of the

43

ucicia_queue

ucicia_main

Iptables

UciciaQueueService

de.unisb.infsec.ucicia.service

UciciaQueueProxy

UciciaStorage

UciciaService

DB

UciciaManager

UciciaServiceProxy

Figure 6.5: Communication between the different modules of the two Ucicia services.

other rules. The default rule can be used to block the network access of the application
by setting the mode to deny.
We allow users to delete any user-created rule. However, built-in rules can not be

deleted such that the user can always easily restore the initial state of the application.
Further, users can change the mode of all rules (including the built-in rules) and decide
whether to accept a particular connection or to deny it.
New rules can be created through the Android application menu. We handle the

creation of new rules in a separate activity.

AddRuleActivity The user interface of the AddRuleActivity is depicted in Figure 6.4c.
It provides a simple interface that asks the user for the destination host, the port, and
the mode of the new rule. The provided information is used afterwards to create a new
rule via the new UciciaService system service.

6.5 Framework interaction
The architectural design of the framework interaction was influenced by the fact that
some parts of the implementation require root privileges to fulfill their task. Unfortu-
nately, there is no way to run an Android application itself as root. Therefore it was
necessary to implement a native application that is not started by the Android middle-
ware. In return, such native applications can not directly interact with the user through
a UI.
To solve this contradiction, we created two system services: One in the native ap-

plication (ucicia_queue) and one in the Android middleware (UciciaService). The two
services communicate through Android’s Binder IPC mechanism. System services should
not be confused with the Service application component that we presented in the chap-
ter about application development. System services only implement the Binder inter-
face and announce this interface to a special Android component, the ServiceManager.
Other components can contact this service manager to retrieve the Binder interface by
its unique name.
Due to these two services, we can now establish a bidirectional communication between

the native application and the Android middleware. Figure 6.5 outlines the different
modules of the two services and their communication. We protected the communication
between the services by introducing a new permissions (UCICIA_QUEUE). We check the

44

permission explicitly for all calls that arrive through the Binder interface and deny the
access in case the caller does not possess this permission. The protection level of the
permission is set to system such that no third-party application is able to interact with
the services in an unintended manner. In the following, we will have a detailed look at
the native application and the service in the Android middleware.

6.5.1 The native ucicia_queue application
The main task of the ucicia_queue application is to receive firewall configurations from
the UciciaService and to configure the native Linux firewall accordingly. The applica-
tion is located in the /external/ucicia_queue/ directory of the Android repository. The
programming language used for the implementation is C++. We choose C++ mainly
because of the available Binder library that provides several templates to easily create
a new Binder interface.
Our modifications heavily rely on this new service, therefore we have to ensure that

it is always running. To start applications automatically, Android uses the init.rc file
that is located in system/core/rootdir/. This file allows to start the service automatically
at boot time and it further restarts the service in case it may crash. The autostart
mechanism is triggered by the following new line in the init.rc file:
service ucicia / system /bin/ ucicia_queue

To keep the complexity of the application rather low, we structured it into four mod-
ules: The main module, the service module, the firewall module, and the proxy module.

The main module (ucicia_main) The main module contains the main method of the
application, which is called when the application gets started. The only purpose of this
module is to initialize and start the service module.

The service module (UciciaQueueService) The service module contains the code to cre-
ate a new Binder interface. It consists of several helper classes that are required to
register the UciciaQueueService as a system service. New system services are registered
by calling the addService method of the default service manager. The methods expects
an instance of the Binder interface (i. e. the UciciaQueueService object) and an unique
name for this service (in this case “ucicia_queue”).
All incoming calls to the UciciaQueueService are handled in its onTransact method.

The input to the method is an integer number (code) and a Parcel object. The code
distinguishes between different operations provided by the service. The onTransact
method of the UciciaQueueService allows to update the firewall configuration of a specific
application.
All required information to update the firewall is provided in the lightweight Parcel

object. This especially includes the UID of the application and several filtering rules.
After extracting this information, the service module updates the firewall by calling the
appropriate methods of the firewall module.

45

apps

_id INTEGER

uid INTEGER

enabled INTEGER

defaultVerdict INTEGER

observed INTEGER

rules

_id INT

uid INTEGER

destination TEXT

port INTEGER

verdict INTEGER

validity INTEGER

1..*1

Figure 6.6: Database model used by the storage module.

The firewall module (Iptables) The Iptables class provides several methods to change
the state of the Linux firewall. It abstracts from the different configuration switches of
the iptables tool by providing specialized methods. The methods transform the given
arguments into the appropriate iptables commands.
We use the native system() call to execute the appropriate iptables commands. Calls

to the iptables binary require root privileges. Therefore, the ucicia_queue application
has to be started by the root user. A list of all calls to the iptables tool is available in
Appendix A.

The proxy module (UciciaServiceProxy) We created the simple UciciaServiceProxy class
to access the UciciaService in the Android middleware. It provides the same methods as
the middleware service and handles all the IPC tasks. Therefore, the class requests the
Binder object of the second service from the service manager and encapsulates all given
arguments in a Parcel object2 that is afterwards transmitted to the service.

6.5.2 The UciciaService in the Android middleware
The UciciaService is the counterpart to the ucicia_queue service and resides in the
Android middleware. Together with the ucicia_queue service, it is the link between the
native Linux firewall and the Android framework and is responsible for the management
of all filtering rules. The source code of the UciciaService is separated into two modules
of the Android framework: The core functionality of the service itself is part of Android’s
service module3 and the functionality that allows to interact with the service through
the API is part of Android’s core module4.
The service is divided into several modules: A storage module to store the config-

urations, a proxy module to communicate with the ucicia_queue service, the Binder
service itself, and a manager module that allows other Android components to easily
communicate with the service.

The storage module (UciciaStorage) All defined rules are stored and managed by the
UciciaService. To store the different configurations of all installed applications, the

2A Parcel object is a lightweight object that allows to transmit a sequence of scalar values between
processes.

3Located in the frameworks/base/services/ directory.
4Located in the frameworks/base/core/ directory.

46

UciciaService makes use of a SQLite database. We abstracted from the underlying
storage technique by creating the UciciaStorage class that provides standardized methods
to store and retrieve such configurations.
We store all data in two different database tables; their database model is illustrated

in Figure 6.6. The apps table stores the configuration of each application and the firewall
rules linked to an application are stored in the rules table. Each of these tables contains
a unique key that is stored in a separate _id column. Further, each table contains a
uid column. In this column, we store the applications UID, so that we are able to link
configurations and corresponding applications.
To exchange stored data, we created several lightweight data transfer objects: AppSet-

ting, UciciaRule, Validity, and Verdict. The AppSetting class and the UciciaRule class
represent a row of the apps table and of the rules table, respectively. The Validity enu-
meration is a Java enum that describes the state of the filtering rule, which is either
user-defined (Validity.ALWAYS) or built-in (Validity.BUILDIN). Additionally, the Verdict
enum describes the type of the rule and determines whether a connection is allowed
(Verdict.ALLOW) or not (Verdict.DENY). The name of the Verdict enum corresponds to the
verdict that the Linux firewall uses to decide on an inspected network packet (e. g. AC-
CEPT or REJECT).

The proxy module (UciciaQueueProxy) We again created a lightweight proxy module
that provides the same methods as the ucicia_queue service and handles the necessary
Binder communication.

The service module (UciciaService) The service module contains the main function-
ality and the programming logic of the Android service. It uses the storage module
to store all configurations persistently and updates the state of the Linux firewall via
the proxy module. The firewall front-end application accesses this module to read and
update the stored filtering rules of the applications. The communication between this
service and the Android application is again realized via the Binder interface.
Since the UciciaService is part of the Android framework, we made use of the An-

droid Interface Definition Language (AIDL) to define the Binder interface of the service
module. Therefore, Android’s build system translates the IUciciaService.aidl file in the
frameworks/base/core/java/ directory into a Java stub class. The data exchange is again
realized by using our custom AppSetting, UciciaRule, Validity, and Verdict structures.
To exchange them via the Binder interface, all of them have to implement the Parcelable

Java interface and we transmit these objects by marshaling their information into scalar
types.
Like several other core Android services, our service is started by Android’s system

server. The com.android.SystemServer initializes the UciciaService and adds its instance
to the ServiceManager, such that the service is available via its unique name (i. e. “uci-
cia_service”). Consequently, the UciciaService is part of Android’s system process.
All changes to the Linux firewall only persist as long as the device is running and all

rules are lost as soon as the device is rebooted. Therefore, the service module contains

47

a broadcast receiver that waits for the system event that is sent after the boot process
finished (Intent.ACTION_BOOT_COMPLETED). As soon as the boot process finished, we configure
the Linux firewall and add all necessary rules to restrict the Internet access.

The manager module (UciciaServiceManager) The Android framework contains system
services that are available to all applications via the Android API. For each of those
system services exists a proxy object that communicates with the actual service through
the Binder interface. Thereby, the proxy object provides an API to easily access the
service.
We implemented the UciciaService as a system service, such that the UciciaManager

application can easily interact with the new service. The Context class of the Android
framework allows to retrieve a handle to such a system service via the getSystemService

method. We modified the implementation of this method in the ContextImpl class and
added a new proxy object, the UciciaServiceManager, that communicates with the Ucici-
aService.
The manager module consists of the UciciaServiceManager, several helper classes, and

several AIDL interfaces. Since the manager is available to all applications, its source
code is located in the frameworks/base/core/java/ directory. The UciciaServiceManager is
available to all applications that run on the device since it is part of the core Android
module. Therefore, the new service leads to a change in the official Android API5.

6.6 Application Package Installation
In addition to the manual firewall configuration that we provided in the last two sec-
tions, we modified the application development and the application installation process.
Instead of requesting full Internet access, our modifications allow a developer to request
fine-grained Internet permission. Further, users can install applications, that request
the Internet permission, without granting them the requested Internet permission.

6.6.1 Rules definition in the AndroidManifest.xml file
It was of great interest for our solution to involve the developers into the definition of the
appropriate firewall rules, because they have more technical background and they can
better decide which Internet connections are actually mandatory to run the application.
We therefore enhanced the format of the AndroidManifest.xml file with respect to the

permission requests. We decided to add a new restriction attribute to the uses-permission

tag in order to make the Internet permission request more fine-grained. In order to re-
quest full Internet access, developers can still request the Internet permission without
using any restriction; but they can also limit the request to a limited subset of des-
tinations by requesting fine-grained access to each destination separately. Figure 6.7
compares the two approaches and provides an example for a restricted Internet permis-
sion request.

5Consequently, a make update-api is required to build the new firmware.

48

<uses−permis s ion android:name=" android . permis s ion .INTERNET" />

(a) Full Internet access.

<uses−permis s ion android:name=" android . permis s ion .INTERNET"
a n d r o i d : r e s t r i c t i o n=" goog le . de " />

<uses−permis s ion android:name=" android . permis s ion .INTERNET"
a n d r o i d : r e s t r i c t i o n=" goog le . com" />

<uses−permis s ion android:name=" android . permis s ion .INTERNET"
a n d r o i d : r e s t r i c t i o n=" g . cdn . com" />

(b) Restricted Internet access.

Figure 6.7: Comparison between request of full and restricted Internet permission.

The format of the Android manifest file is defined in the attrs_manifest.xml file in the
frameworks/base/core/res/res/values directory. We note that a modification of this file
implies an update of the Android API. Such API changes have to be explicitly confirmed
when compiling the new firmware6, since they may introduce incompatibilities with older
devices. Nevertheless, we assume that our API change is rather small and should not
hinder our solution from being included in the official Android source code.
To read the new attribute, we modified the PackageParser class and store the list of

defined restrictions for each permission. We use this information when the application
is actually installed on the device.
The PackageManagerService is responsible for the actual installation of the application.

We extended this framework service such that our UciciaService is notified about new
applications and their defined restrictions at the end of the installation process. This
allows us to create the appropriate firewall rules if the application requested the Internet
permission. In case the developer requested restricted Internet access only, we create
one accepting filtering rule for each provided restriction and deny the access to all other
destinations by setting the default target to deny. We mark all extracted rules as BUILDIN,
such that we can distinguish them from user generated rules. We later especially use
this distinction to inform the user about which rules have been defined by the developer.
However, if the developer did not specify any restriction and therefore requested full
Internet access, we do not enable the firewall for this application and don’t add any new
rules.

6.6.2 Revocation of the Internet permission
In order to give the user more control over the Internet connections on the device,
we modified the stock application installer of Android. The default installer lists all
requested permissions of an application and marks dangerous permissions with an ad-
ditional icon. The user should use this information to decide whether to install the
application or not.

6One has to run make update-api in order to successfully compile the new firmware.

49

(a) Full Internet access (granted) (b) Restricted Internet access (revoked)

Figure 6.8: Modified package installer showing full and restricted Internet access.

Android permissions are grouped into different categories. Consequently, the Internet
permission is grouped together with several other network related permissions. We
modified the default grouping behavior of Android for the Internet permission and always
show this permission in a separate category. All restrictions provided by the developer are
then grouped in this new category. We think that this grouping allows the user to easily
retrieve the desired information about the requested Internet permission. Figure 6.8
shows two screenshots of the modified package installer: One shows a request of full
Internet permission and the other one shows a request of restricted Internet permission.
We modified the UI of the installation process and give the user the possibility to

revoke the requested Internet permission. With a click on the Internet permission, the
user can toggle between granted and revoked. Depending on the user’s choice, the post-
installation process generates appropriate firewall rules that either allow or deny Internet
access for an application.
There are several different components of the Android framework that are involved in

the installation process of an application: First of all, all stock permissions of the Android
framework are defined in a specific AndroidManifest.xml file; secondly, the PackageInstaller

is called when a new application is being installed on the device; thirdly, the package
installer uses the AppSecurityPermissions class to generate the view that represents all
requested permissions of an application; and finally, the PackageManagerService performs
the actual installation of an application.
In order to handle the Internet permission separately, we added a new permission

50

group, named RESTRICTED_INTERNET7, to the AndroidManifest.xml file of the Android frame-
work8. Further, we modified the AppSecurityPermissions class to generate a customized
permission list. We manually change the group of the Internet permission from the offi-
cial NETWORK group to our new RESTRICTED_INTERNET group. This allows us to emphasize the
Internet permission by showing it in its own category and to list all defined restrictions
as part of the permission view, as seen in Figure 6.8b. To revoke the requested Internet
permission, we allow users to click on the Internet permission, which toggles between a
granted and a revoked Internet permission.
The PackageInstaller application handles the installation of new applications and

guides the user through the installation process. The main duty of the package installer
is to let the user confirm requested permissions of an application explicitly. Therefore, it
receives the appropriate permission view from the AppSecurityPermissions class and asks
the user whether to proceed with or cancel the installation. If the user confirms the
installation, the package installer triggers the installation of the application by calling
the PackageManagerService. We only had to slightly modify the package installer, such
that the information about the Internet permission revocation is also transmitted to the
package manager.
In addition to the restrictions we extract from the AndroidManifest.xml, we also pass

the user’s decision, whether to grant the requested Internet permission or not, to the
PackageManagerService. If the user grants the Internet permission to the application, the
Linux firewall is configured as before. However, in case the permission request is revoked,
the target of all filtering rules is changed to deny. This includes the developer-defined
rules as well as the default rule with the result that all network access of the application
is blocked.

6.7 Dynamic Internet permission
In addition to the static Internet permission that is granted before the permission is
actually needed, we wanted to make the Internet permission more dynamic. Therefore,
we further enhanced our solution and give users the possibility to postpone the decision
as to whether a network connection is allowed or not, to the time when the connection
is actually established.
This dynamic Internet permission requires several modifications related to our solu-

tion and to the stock Android firmware. We reconfigured the Linux firewall, such that we
are able to queue all network packets. Further, we let the ucicia_queue service inspect
all those network packets and extract information about the connection and about the
application that wants to establish the connection. The identification of the source appli-
cation of a network packet required slight modifications of the Linux kernel. Finally, the
extracted information about the network connection is forwarded to the UciciaManager
application that asks a user whether the connection is allowed or not.

7The full group name is de.unisb.infsec.ucicia.perm-group.RESTRICTED_INTERNET.
8The file is located in the frameworks/base/core/res directory of the repository.

51

6.7.1 Firewall modifications
To implement the dynamic filtering approach, we needed to intercept outgoing network
packets, to add them to a queue, and to ask the user if the connection is allowed or not.
Usually, the firewall filtering is handled by the Linux kernel according to the defined
filtering rules. However, the Linux firewall allows to transfer network packets from the
kernel to the user space. This can be achieved by an additional firewall module, the
NFQUEUE module.

NFQUEUE module The NFQUEUE module adds a new rule target to the Linux fire-
wall. In addition to the default ACCEPT and REJECT target, we can set the target of
a filtering rule to NFQUEUE. All network packets that match a filtering rule with this
target are added to a queue and can be further processed by a user space program. The
network packets can be added to several different queues by setting an optional 16-bit
queue number. If no queue number is specified for a rule, the packets is handled by the
default queue with the queue number 0. The user space program can afterwards listen
to one or several of those queues.
In order to create such filtering rules, we recompiled the iptables program with the

enabled NFQUEUE module. The module enhances the supported arguments of the
iptables program, such that the target switch supports the NFQUEUE target, and an ad-
ditional queue-num switch is available to set the desired queue for the filtering rule (e. g.
iptables -j NFQUEUE --queue-num 42).

6.7.2 Kernel modifications
The NFQUEUE module allows to inspect the content of each queued network packet
(e. g. the destination IP address or the source port) in a user space application. However,
the owner information about a packet is not available when handling packets in the
user space. In order to provide meaningful information about the queued connection
to the user, we need to determine the application that wants to establish the Internet
connection. Therefore, we need to know the UID of the application that wants to send
a packet.
To retrieve this information in the user space program, we had to slightly modify

the nfnetlink_queue module of the Linux kernel. The appropriate kernel for the Google
Nexus One device is available under the name msm. Unfortunately, the official Android
repository on kernel.org was not available9 when we tried to get the kernel source code.
Therefore, the Kernel source code was retrieved from an unofficial mirror on github10.
The latest available version of the Kernel (version 2.6.35.7-59465) was used to implement
the required modifications.
We modified the net/netfilter/nfnetlink_queue.c file that is part of the Linux kernel and

extract the UID from the file handle of the network socket. The extracted UID is stored
together with the other information about the network packet. To retrieve the stored

9The Linux Kernel Archives was offline due to an hacking attack.
10https://github.com/android/kernel_msm

52

UID, we further modified the corresponding include/linux/netfilter/nfnetlink_queue.h

header file and added a new attribute that identifies this new property of a network
packet.

6.7.3 ucicia_queue modifications
We extended the functionality of our ucicia_queue service and added a new module,
the UciciaQueue module. This module registers itself to handle all network packets of
the queue with the queue number 1. For each packet, we extract the most important
information (e. g. the destination IP address, the destination port, and the Unix UID)
and forward it to the UciciaService in the framework. After a user made the decision as
to whether an connection is allowed or not, we tell the Linux firewall the verdict for the
network packet (which is either ACCEPT or REJECT).
In order to communicate with the Linux firewall, we included two additional libraries

into the Android firmware. We need them to develop the UciciaQueue module.

libnetfilter_queue The libnetfilter_queue library provides an API to create new user
space programs that listen to queued packets of the Linux firewall. We added the latest
version (i. e. version 1.0.0) of the library to the source tree of the Android operating
system and compiled it as a shared system library.
Further, we slightly modified the library and added a new function that returns the

UID of the application that tried to send the queued network packet.

libnfnetlink The libnetfilter_queue library requires the libnfnetlink library. Therefore,
we added the latest version (i. e. version 1.0.0) of the library to the Android firmware.
The library provides the required low-level functionality for netfilter related communi-
cation between kernel and user space.

UciciaQueue module

The ucicia_main module initializes the UciciaQueue module at startup and afterwards
executes the module in a separate thread. The additional thread enables us to handle
incoming network packets and request from the framework service simultaneously. The
UciciaQueue module uses the libnfnetlink_queue library to receive all queued network
packets for the queue number 1. For every packet, the handle_packet callback function is
called. There, we extract the following information for each queued packet:

1. The UID of the application that has sent the packet,

2. the unique ID of the packet,

3. the destination IP address,

4. the used transport protocol (e. g. TCP or UDP), and

5. the destination port (for TCP and UDP connections only).

53

We transmit this data to the framework service, such that the user can decide whether the
queued Internet connection is accepted or not. As soon as the user made the decision, we
call the nfq_set_verdict function of the queue library. This function determines whether
the packet is accepted or dropped. To identify the corresponding network packet, the
method expects the unique ID of the packet in addition to the verdict argument.
While the application waits for the user’s decision, it may happen that more packets

with the same destination (i. e. the same UID, IP address, and port) arrive. To limit
the communication overhead between the native service and the framework, we only
send one notification per distinct connection. For all similar packets, we only store their
unique ID and process them as soon as the user decided about the connection.
To store the information about the packets, we created a new Connection class that

stores the UID, the IP address, and the port together with the unique IDs of all corre-
sponding network packets. We further created two lookup maps to easily retrieve those
connection objects from a given (uid, ip, port) tuple and from a given packet ID: We use
the tuple map whenever a new packet is queued and check whether we already notified
the user about this specific connection. If the packet belongs to a new connection, we
notify the user and otherwise, we store the unique ID of the packet together with the
known connection. Whenever the user sends the decision about a queued connection,
the ID map is used to retrieve all collected packets that belong to the same connec-
tion. Afterwards, we set the verdict of all those packets and let the Linux firewall either
ACCEPT or REJECT those packets.
We further use the connection object to temporarily save the decision of the user.

This allows us to reuse the decision in a predefined time window without asking the user
again. We therefore choose a time window of 30 seconds and assume that this does not
weaken the security of our approach, since the connection has been established anyway.

6.7.4 UciciaService and UciciaManager modifications
The standard way of notifying the user on Android is to use the notification system.
Any application can send its messages to the notification service and the notifications
are placed into the status bar at the top of the screen. The user can then click on
the notification to handle the event. The notification system allows to gain the user’s
attention without interrupting the current task.
Therefore, we also use this notification system to inform the user about pending

Internet requests. As soon as the user decides to handle the requests, we present a
list of all queued Internet connections and allow to accept or deny them through a
simple UI. In order to show the notifications, we forwards all requests that arrive in
the UciciaService to the UciciaManager application and trigger the notification there.
Further, we created a new activity, the VerdictActivity, that provides the UI to accept
and deny the pending Internet requests.
The communication between the native ucicia_queue service, the UciciaService, and

the UciciaManager application is handled as follows: Firstly, the UciciaService provides
a new Binder method (i. e. confirmRequest) that is called by the ucicia_queue service
and that transmits all information about the queued Internet connection to the Android

54

(a) Notification bar (b) Notification screen (c) VerdictActivity

Figure 6.9: Screenshots of the dynamic Internet permission notification and of the user
interface to allow and deny a queued Internet connection.

framework. Secondly, the UciciaService accepts so called UciciaListeners that get noti-
fied whenever a new request arrives; the UciciaManager application is such a listener.
Thirdly, the UciciaService provides a second Binder method (i. e. verdictRequest) that is
called by the UciciaManager. This call includes the user’s decision about the Internet
connection and is propagated to the native ucicia_queue service and consequently to
the Linux firewall.
To make the UciciaManager application capable of receiving requests in the back-

ground, we added a new service component, the NotificationService, to the application.
We start the service directly after the device booted successfully. The service implements
the UciciaListener interface and registers itself as a listener of the UciciaService when-
ever the notification service is started. Consequently, the NotificationService is notified
about all queued Internet requests. Whenever the notification service receives a request,
it adds a notification to the notification service. Figure 6.9a and 6.9b show the status
and the notification bar for this notification.
If the user clicks on the notification, the new VerdictActivity is started. It requests

the list of all pending requests from the UciciaService and provides the UI to handle
each request separately. Figure 6.9c shows the interface of the activity. The look of the
activity mimics a default dialog, such that the transparent background lets users see the
previous action. For each request, the activity provides one accept and one deny button.
Further, users can choose how long the decision stays valid. Either an connection is
accepted once, temporary, or always; where the later two automatically create a filtering
rule in the Linux firewall that accepts connections with the same UID, IP address, and
port. However, the temporary rule only stays valid until the next reboot of the device.

55

6.8 Observation mode
The definition of appropriate filtering rules is quite difficult if one tries to limit the
Internet access of an unknown application. We therefore added an observation mode
that logs and reveals all Internet requests of an application. After enabling this mode,
users can retrieve a list of all logged Internet requests of an application. Consequently,
users can check this list to decide whether to trust the application or not. In addition,
we give users the possibility to create appropriate rules from the logged requests.
The required modifications are quite similar to those of the dynamic Internet permis-

sion in the last section. We again use the queuing possibility of the Linux firewall to
inspect the desired network packets and extract the important information about the
connection. The gathered information is afterwards forwarded to our service in the An-
droid middleware and finally stored in a database. We further had to change the design
of the firewall rules to ensure that we definitely log all desired network packets.

6.8.1 Firewall modifications
To log each network packet of an application, we have to route it through our user space
program before it is finally accepted or rejected by the firewall. Therefore, we add a
new filtering rule at the top of the output chain before any other rule may decide on
the network packet. The rule queues the packet such that we can process it in the
ucicia_queue application. After extracting all required information, we want to handle
the packet as before. In order to do that, we reinsert the packet again into the firewall.
Unfortunately, a queued packet can not be insert right after the chain that queued it;

it can only traverse the whole output chain again from the beginning. However, this can
lead to infinite loops, if the packet is reinserted again and again. The libnetfilter_queue
library allows to mark a reinserted packet with an integer number. We use this mark in
the observation rule such that we queue the packet only in the first iteration and proceed
with the other rules in the second run.

mark module The mark module allows to check the mark of a network packets. For
any filtering rule in the output chain, one can use the --mark switch to check the assigned
mark of the packet. The default mark value of each packet is 0, but it can be changed
to an arbitrary 32-bit integer value by the verdict2 function of the libnetfilter_queue
library, when a packet is reinserted into the firewall.

Modified chain design of the firewall To support the observation mode, we had to
modify the chain design of the firewall. We created a distinct chain that contains all
rules related to the observation mode. The name of the new chain is ucicia_app_observe.
In order to inspect each network packet, we added a new rule to the top of the output
chain. The rule checks the mark of the network packet and proceeds with the new
ucicia_app_observe chain if the mark is unchanged and hence still set to 0. In all other
cases, we proceed with the next rule in the output chain.

56

apps

_id INTEGER

uid INTEGER

enabled INTEGER

defaultVerdict INTEGER

observed INTEGER

requests

_id INTEGER

uid INTEGER

protocol INTEGER

ip INTEGER

port INTEGER

host TEXT

access INTEGER

rules

_id INT

uid INTEGER

destination TEXT

port INTEGER

verdict INTEGER

validity INTEGER

1..* 1 1..*1

Figure 6.10: Enhanced database model with an additional table to store all observed
requests.

If the observation mode of an application is enabled, a new rule is added to the
ucicia_app_observe chain. This rule checks the UID of the packet and forwards all packets
with the same UID as the application into a distinct queue (i. e. with the queue number
2).
We assume that the number of applications with an enabled observation mode is low,

such that it is no problem that each packet passes the ucicia_app_observe chain, since it
does only contain a limited number of additional rules.

6.8.2 ucicia_queue modifications
All observed packets are stored in queue number 2, so we added a second callback
function observed_packet in the native ucicia_queue application that receives all packets
of this queue. Like for the dynamic Internet permission, we extract all the important
information about the connection (i. e. the UID, the protocol, the IP address, and the
port) out of the packet, but we also try to extract the HTTP host address.
In general, a HTTP request is send over TCP on port 80; therefore, we extract the

content of each such network packet and try to extract the Host field from the HTTP
header. For all HTTP requests to a domain name, the host field contains the domain
name that is otherwise not available after the DNS resolution. After we extracted all
the important information, we send it to the UciciaService.
For all the observed packets, we don’t have to wait for any user decision, such that we

can immediately reinsert the packet into the firewall. We do so via the verdict2 function
of the libnetfilter_queue library and the NF_REPEAT target. We additionally mark the
packet as being already processed by setting its mark to the value 1. This ensures, that
the packet does not enter the ucicia_app_observe chain again.

6.8.3 Database model modifications
In order to log all the observed requests of an application, we modified the database
model and added a new requests table. Figure 6.10 shows that the new table contains
several columns to store all the available information about a network connection. This
includes network related information like the transport layer protocol, the destination
IP address, the destination port, and the HTTP host name, but also the UID to identify
the application, and the date and time of the access.

57

Figure 6.11: Observed requests of the Browser application.

6.8.4 UciciaService and UciciaManager modifications
To receive the information about an application, we added a new Binder method that
allows the native ucicia_queue service to transmit the information to the framework.
This enables us to easily store all the observed requests in the database. Further, we
added an additional Binder method that allows to retrieve a list of all observed Internet
connections for a specific application.
The ObservedRequestsActivity of the UciciaManager uses this method to present the

gathered information to the user. It list all the connections chronologically and gives the
user the possibility to check which connections an application tries to establish. Each
of the item in the list can be used to create a new firewall rule based on the provided
information. This helps the user to create new rules based on the domain name instead
of the IP address that is normally not visible to the user. Figure 6.11 provides an excerpt
of such a connection list.

58

7
Performance Evaluation

We measured the performance of our implementation in order to estimate whether user-
controller Internet connections are feasible on Android devices. For our estimation, we
concentrated on the network performance only and did not measure any other perfor-
mance criteria, like CPU load, memory consumption, or energy consumption.
Therefore, we measured the network throughput of our solution with several scenarios

and compared the results to the standard behavior of Android. We expected that the
overhead of our implementation is low if the network packets are directly handled by
the Linux firewall and are not handled in the Android framework. In these cases, the
overhead of our solution should correlate with the overhead by the Linux firewall and
we expect that the firewall can efficiently handle the network traffic on the phone.
For the dynamic Internet approach, packets are passed to the user space application

and the dynamic request also involves interaction with the framework. However, we
kept the framework interaction to a minimum and only conduct one request for each
distinct connection. After the user decided on the connection, further network packets
are handled by the native user space application only. We expect that the user space
application should not slow down the network throughput tremendously.

7.1 Methods and tools
In general, smartphones support two types of network connections: Connections over
Wi-Fi and connections via mobile broadband. We analyzed the network throughput of
the Wi-Fi network in our experiment. The reasons for choosing the Wi-Fi network are
quite obvious: Firstly, the Wi-Fi network is in general faster than mobile broadband
connections and therefore does not limit the connection in advance. Secondly, we have
more control over Wi-Fi connections, since we can define the used hardware and influence
the quality of the connection.

59

In our experiments, we measured the average network throughput (or in short average
throughput). The average throughput states how much data can be transmitted in a
specific time. Assuming we commit x bits and the transfer takes t seconds, the average
throughput is x/t bit/sec [38]. It is worth mentioning, that a kilobit consists of 1000 bits
instead of 1024 bits. Consequently, a throughput of 1 Mbit/s (or 1 Mbps) refers to
1, 000, 000 bit/sec.
In order to measure the network throughput, we had to set up the required hardware

and software. In the following, we will describe how we connected the different hardware
devices and which software tools we used for the performance measurement.

7.1.1 Hardware setup
In order to measure the network throughput, we had to send data from the phone to
another location in the network. The other location in the network needs to be capable
of measuring the number of received bits in a specific time. Further, we have to ensure
that the Wi-Fi communication of the phone is the slowest link in the connection chain.
This demand leads to the following test set-up for our performance measurement. It
consisted of three devices:

1. The Nexus One developer phone (with our custom firmware),

2. a wireless router (Speedport W 701V, Deutsche Telekom AG), and

3. an average notebook.

We connected the Nexus One via a 802.11g Wi-Fi connection to the router. The
802.11g transmits up to 54 Mbit/s of raw data. However, the actual average throughput
may be lower because of the overhead of the used protocols (e. g. TCP).
In order to avoid that the connection from the router to the notebook is the bottle

neck in the communication, we connected the notebook via a cabled Ethernet connection
to the router. We therefore used a 100 Mbit/s (100BASE-TX) connection. The data
rate of this connection is almost twice as big as the wireless communication and should
therefore not slow down the speed of the communication between the phone and the
notebook.

7.1.2 Applied software
In order to determine the average throughput of the smartphone, we had to send data
from the phone to another location in the same network and measure the number of
transmitted bits in a specific time window.
We used several tools that help us to set up the connection between the phone and

the network target and to measure the number of transmitted bits per seconds.

Wifi Analyzer

We have to make sure that the wireless network connection does not influence the result
of our measurement. Therefore, we measured the signal strength of the device, in order

60

to position the device and the router in an opportune position. A high signal strength
ensures that the throughput of the wireless connection is as high as possible.
The Wifi Analyzer application is freely available in the Android Market and contains

several tools to analyze the Wi-Fi environment. We used version 2.5.16 of the application
to measure the signal strength of the router that the phone was connected to.
We arranged the router and the phone in such a way that we get the highest possible

signal strength between these two devices. We achieved a signal strength of about
−20 dBm, which was the highest value the application could represent. We do not treat
this value as absolutely correct, however we assume that the represented strength is a
good indicator to keep the signal strength as high as possible.

Iperf

We measured the average network throughput of the phone with the iperf application1.
Iperf can be used to measure the performance of TCP and UDP connections.
In order to measure the network throughput between two applications, the iperf ap-

plication has to run on both machines. One machine runs as the server and the other
machine connects to this server as a client. After the client connected to the server,
the client starts sending data to the server for a specified interval. At the end of the
measurement, the server calculates the average network throughput.
We run the iperf tool in server mode on the used notebook. The iperf tool has been

run on the Ubuntu 11.04 Linux distribution. Further, we used the latest available version
2.03 of the iperf tool.

iPerf for Android

The Android Market contains a porting of the iperf application for Android2. The
application consists of a precompiled iperf binary for ARM and a minimalistic user
interface. For our measurement, we used version 2.03 of iPerf for Android, which we
downloaded from the official Android Market.

7.2 Scenarios
We created several test scenarios that simulate different configurations of our user-
controlled Internet connections. These scenarios simulate several installed applications
with restricted Internet access and lead to several rules in the Linux firewall. In our
experiment, we simulated several extreme cases, for example, that one application con-
tains a large amount of rules or that a large amount of applications with restricted
Internet access is installed on the device. These extreme cases allow us to estimate the
performance decrease caused by our implementation.
The general firewall design of all scenarios is applicable in Figure 7.1. The design is

similar to the firewall design that we presented in Section 6.3.2. However, the rules are
1Official website available at http://iperf.sourceforge.net/.
2Available at https://market.android.com/details?id=com.magicandroidapps.iperf.

61

http://iperf.sourceforge.net/
https://market.android.com/details?id=com.magicandroidapps.iperf

OUTPUT
observe

ESTABLISHED

...
app_n

app_1

iPerf iPerf

app_n

app_1

observe

app_1_1
...

app_1_m
default_1

app_n_1
...

app_n_m
default_n

observe_iPerf

iPerf_1
...

iPerf_i
default_iPerf

Figure 7.1: Firewall design for our test scenarios.

arranged in a way that allows us to measure the performance in a controlled manner. The
design simulates the configuration of n applications plus the iPerf application. Thereby,
each of the application chains contains m rules plus a default rule. The chain of the
iPerf application contains i rules plus its default rule. Our experiments also include
measurements for the observation mode of our solution. To inspect all network packets
of the iPerf application, a corresponding rule is added to the observe chain. We also test
the impact of the established rule that automatically accepts all network packets that
belong to a connection that has already been accepted by the firewall. To measure the
performance, we add the ESTABLISHED rule before the first application rule into the
OUTPUT chain.
Currently, our Ucicia implementation does not allow to automatically create a large

amount of rules and is only configurable through the user interface. Therefore, we did
not configure the firewall through our tool. Instead, we configured the Linux firewall
manually via a separate bash script. However, the design of the rules is identically equal
to the rules that can be created through the UI.
We compare the network throughput of five different scenarios:

1. Baseline,

2. several applications,

3. several rules,

4. dynamic Internet connection, and

5. observation mode.

For (2), (3), and (4), we tested the performance with and without the established
rule. We refer to these scenarios without the established rule as (2a), (3a), and (4a) and
to those with the established rule as (2b), (3b), and (4b). For (5) we conducted three

62

different cases (5a), (5b), and (5c), to narrow down the performance bottleneck that we
observed in our first measurement. In total, we examined ten different test cases.

7.2.1 Baseline
To simulate the behavior of the stock Android firmware, we emptied the Linux firewall
completely. Without any firewall rules, our firmware behaves like the stock Android
firmware and, therefore, we should not have any impact on the performance of the
network connection. We use this scenario as the baseline of our experiment, such that
we treat the network throughput of this scenario as the highest possible value and use
it to compare it against other measurements.
For the sake of completeness, the iptables configuration of this scenario (and therefore

of the empty firewall) is available in Appendix B.1. We extracted this report via the
iptables -S command that prints out the current firewall configuration.

7.2.2 Several applications
Our first test scenario tested the performance when several applications with restricted
Internet access are installed on the device. We simulated 200 applications with each
having 21 filtering rules in its chain, but without any further rules for the iPerf applica-
tion (i. e. n = 200, m = 20, and i = 0). The observation mode was disabled, such that
the observe chain of the firewall was empty.
The UID of the applications ranged from 100 to 299. We created 20 accepting port

rules for each application and set the default rule of the chain to reject all packets. The
IP addresses of the accepting rules ranged from 209.85.148.10 to 209.85.148.19 and we
used every address twice, once for TCP and once for UDP. The destination port was in
each of the twenty cases set to port 80, the default port for HTTP connections.3
The chain for the iPerf application did not contain any further rules except for the

default rule. The default rule was an accepting rule, such that the application is able
to send out packets to the iperf server. We tested this scenario twice, first without the
established rule and second with the established rule to compare the impact of this rule.
The chain design is available in Appendix B.2.

7.2.3 Several rules
In the second test scenario, we tested the performance of the firewall in case each packet
has to be compared against many IP based rules. We created 400 rules for the iPerf
application and did not add rules for any other application (i. e. n = m = 0 and i = 400).
We again left the observe chain untouched and tested the scenario twice with and without
the established rule.

3We note here that the number of rules for the applications should not have any impact on the perfor-
mance, since they should not be checked by the firewall anyway. Only the 200 rules in the OUTPUT
chain are checked for an outgoing packet of the iPerf application. However, we wanted to create a
realistic scenario and therefore also created those rules.

63

The IP addresses of the rules ranged from 209.85.148.10 to 209.85.148.209 and we
again created one TCP and one UDP rule for each IP address. For each of the rules,
the destination port was set to port 80 and the target of the rules was set to reject the
connection.
Consequently, for each outgoing packet of the iPerf application, the Linux firewall has

to compare it against 400 rules before the packet is finally accepted by the default rule
of the iPerf application. The chain design is available in Appendix B.3.

7.2.4 Dynamic Internet connection
The third test scenario tested the performance of the dynamic Internet mode.Therefore,
we queued all network packets of the iPerf application and handled them in the uci-
cia_queue user space application of our implementation. Normally, the user has to
manually approve this connection via the UI. In order to test the performance automati-
cally, we modified the framework service and automatically accept all incoming requests.
This approach simulates the user interaction and ensures that we do not measure the
delay that is introduced by the interaction with the UI.
In this scenario, we do neither have any application rules nor any additional rules for

the iPerf application (i. e. n = m = i = 0). The only important rule is the default rule
of the iPerf application that queues all packets and lets them handle in user space. We
again did not have any observation rule and we tested the scenario with and without
the established rule. The chain design is available in Appendix B.4.

7.2.5 Observation mode
The last test scenario tested the observation mode of our implementation. We added an
observation rule for the iPerf application, set the default rule of the iPerf application to
accepting, and enabled the established rule. There are no further rules defined, neither
for additional applications nor for the iPerf application (i. e. n = m = i = 0). The chain
design is available in Appendix B.5.

7.3 Evaluation
For each of the ten test cases, we conducted three measurements to measure the network
throughput. We measured the number of transmitted data for 60 seconds. This time
window should be large enough to compensate any variation in the wireless communi-
cation. We started the server on the notebook without any further configuration by
running:
iperf -s

On the client side, we established a TCP connection to the server for 60 seconds and
let the client output intermediate results each five seconds. Consequently, we started
the iPerf client with the following arguments:
iperf -c 192.168.178.20 -i 5 -t 60

64

0

5

10

15

20

25 23.47
22.47

23.47
22.23

23.40

21.20

23.47

0.50

9.33

22.17

(1) Baseline
(2a) Several applications
(2b) Several applications (w/ ESTABLISHED)
(3a) Several rules
(3b) Several rules (w/ ESTABLISHED)
(4a) Dynamic Internet connection
(4b) Dynamic Internet connection (w/ ESTABLISHED)
(5a) Observation mode
(5b) Observation mode (w/o SQL)
(5c) Observation mode (w/o Framework)

M
bi

ts
/s

ec

Figure 7.2: Measured average network throughput for each of the ten test cases.

We measured the performance of each test case three times and averaged over these
three values. However, the dispersion between the values was not very high, except for
the test case (5a) in which we measured 548, 468, and 479 kbit/s.

7.3.1 Interpretation
The results of our experiment are depicted in Figure 7.2. For the baseline of our exper-
iment, we measured an average network throughput of 23.47 Mbit/s. We can see that,
except for the observation mode, the average throughput stayed above 21 Mbit/s for all
our measurements.
One important fact, we observed during our measurements is, that the decrease of

the average throughput is negligible if we enable the established rule. Consequently,
communications that transfer a large amount of data (e. g. file downloads) are not slowed
down by our firewall approach.
If we do not enable the established rule, the average throughput decreases by about

1 Mbit/s for the scenario (2a) and (3a), and by about 2.2 Mbit/s for the dynamic Internet
connection (4a). These test cases without the established rule represent the situation
where several small connections are established and all network packets pass through
the whole firewall chain. We can see that even for the dynamic Internet connection
(in which case all packets are handled in user space), the average throughput does not
decrease dramatically. We only loose about 5 to 10 percent of the network throughput.
However, the decrease for the observation mode was tremendous and lead to an av-

erage throughput of 0.5 Mbit/s. We tried to locate the cause for this large decrease
and conducted a second measurement (5b). In this experiment, we disabled the con-
nection to the database in order to check whether the database access slows down the
communication. Without the database access, we measured an average throughput of
9.33 Mbit/s. In a last measurement (5c), we further disabled the communication to the
Android framework, such that packets are only handled in the native application. This
lead to an average throughput of 22.17 Mbit/s, which is almost the maximal achievable
throughput.
This leads us to the assumption that handling of network packets in the user space

65

does not lead to drastic performance problems. However, the communication with the
Android framework should be kept at a minimum. Both, dynamic Internet connections
and the observation mode communicate with the framework, but we only see a drastic
decrease for the observation mode. This difference is due to the caching of the user’s
decision for the dynamic Internet connection. The caching approach allows us to reduce
the communication with the framework. Consequently, the dynamic Internet connection
achieves a much better performance.
We conclude that our implementation of user-controlled Internet connections does

not raise any performance issues that affect the every-day use of the mobile device. Our
experiments show that a drastic decrease of the performance is limited to the observation
mode. However, we assume that the performance could be raised to an acceptable level
by accessing the database directly within the native application in order to avoid the
current framework communication.

66

8
Related work

The open source character of Android make it an interesting target for current mobile
security research. The source code of almost1 all security relevant features of Android is
available at the Android Open Source Project. This availability of the source code allows
to modify the operating system and to test the modifications on one of the available
developer phones. Further, the documentation of Android contains detailed information
about the system design and about the applied security model.
In addition to the official documentation, there exist several works [24, 15, 45] that

address the security model of Android in depth from the viewpoint of a developer.
Further research related to mobile security on Android can be categorized into works
that concentrates on detecting malicious behavior and into works that concentrates on
enhancing Android’s security model.

Malicious Behavior Detection
Enck et al. [22] implemented a Dalvik decompiler that allows to recover the Java source
code of an Android application. Using the recovered source code, they analyzed 1100
applications from the Android Market and inspected them for malicious behavior. De-
compiling the source code allowed them to use existing code analysis tools and to inspect
some parts of the application manually. Enck et al. did not find any evidence for ma-
licious behavior in the inspected applications. However, privacy sensitive information
(e. g. the IMEI that uniquely identifies the phone) are misused by many applications.
The official Android API allows third-party developer to interact with the underlaying

hardware. The access to these interfaces is in general protected by Android’s permission

1Some of the Google related applications (e. g. the Android Market application) are not open sourced
and therefore, can not be inspected in detail.

67

system. Felt et al. [25] analyzed which permissions are required to access the different
interfaces of the API; whether the official API documentation reflects these requirements;
and whether developers follow the principle of least privilege. By using automated testing
techniques they identified 1207 methods in the API that are protected by a permission
check and created a permission map that assigns each API call the required permissions.
In contrast to their findings, only 78 methods of the API are documented as requiring
a permission. Felt et al. built a static analysis tool Stowaway that identifies each call
to the Android API. By using the generated permission map, Stowaway then extracts
the minimum number of required permissions for an application and compares it to the
requested permissions of the application. In their study, Felt et al. applied Stowaway to
940 applications of the Android Market and identified 35.8 % of the applications to be
overprivileged. But 95 % of these applications requested only four or less unnecessary
permissions, so that Felt et al. conclude that developers try to follow the principle of
least privilege, but are often not able to do so.
Grace et al. [34] analyzed the firmware of eight Android phones from different manu-

facturers. They used static analysis techniques to reveal capability leaks that allow to
circumvent the permission model of Android. These capability leaks allow applications
to perform potential dangerous actions without holding the appropriate permission by
exploiting flaws in the preinstalled applications. The results of Grace et al. show that
phones with more preinstalled applications tend to contain more capability leaks and
consequently leak up to eight of the stock permissions.
SCanDroid [29] uses data-flow analysis to identify potentially malicious applications

by analyzing the source code of applications. It can track the flow of privacy sensitive
information and detects if information leaves the application in an unintended manner
(e. g. over the network). Similarly, TaintDroid [21] tracks the information-flow of An-
droid applications in realtime on the device. This realtime tracking allows to inspect
applications even if the source code is not available.
Enck et al. [23] analyzed different security threats on mobile devices with respect to

the permissions that are required in order to execute the malicious behavior. From their
analysis, they extracted several rules that identify dangerous combinations of permission
requests. Instead of analyzing the information-flow of an application, their tool (Kirin)
denies the installation of potentially malicious applications by comparing the requested
permissions against the extracted rules. As an example, one of these rules states that
an application is not allowed to request the GPS permission (ACCESS_FINE_LOCATION) in
combination with the INTERNET permission and the permission to automatically start at
boot time (RECEIVE_BOOT_COMPLETE). This rule protects the user from location tracking
applications that send the current location to a remote server. Whenever a new appli-
cation gets installed the requested permissions of the application are extracted from its
AndroidManifest.xml. Then, Kirin compares these permissions with the global security
rules and cancels the installation in case one of the rules is violated.
Schlegel et al. [48] introduce Soundcomber, a stealthy and context-aware Trojan for

Android. Soundcomber requests the permission to access the microphone of the device,
but simultaneously avoids requesting the Internet permission. Since requesting only
one permission is not assumed to be dangerous, the protection techniques of Kirin can

68

not defend against this type of Trojan. However, the Trojan listens to specific phone
calls and tries to extract credit card information directly on the phone. Afterwards,
Soundcomber utilizes other third-party applications (e. g. the browser) to transmit the
extracted information to a remote server. Further, Schlegel et al. present several covert
channels that can be used to stealthy transmit the data to an allied application that
requested the required Internet permission.
Davi et al. [18] present privilege escalation attacks on Android that allow a non-

privileged application to access a resource by utilizing a privileged application. They
showed that an application can send SMS messages without requesting any permissions
by exploiting a vulnerability inside another application. Bugiel et al. [14] introduce
XManDroid to mitigate against these privilege escalation attacks by analyzing the tran-
sitive permission usage in realtime. Their approach also defends against the covert
channels used by the Soundcomber Trojan.

Enhancement of Android’s security model
Barrera et al. [11] analyzed the top 50 free applications from each of the 22 categories in
the Android Market. They used a specific algorithm to visualize the permission requests
of the 1100 sample applications. Their study revealed different characteristics about
used permissions in Android. Several combinations of permissions are often requested in
common (e. g. read_contacts and write_contacts). Further, the majority of the tested
applications requested the Internet permission which lead to the conclusion that the
Internet permission of Android does not provide sufficient fine-grained access to the
Internet.
Mueller and Butler [41] proposed a more flexible implementation of Android’s per-

mission model, named Flex-P. By default users have only two possibilities to influence
the permissions that are granted to an application: They either install the application
and give it all requested permissions or they decide to not install the application at
all. The modified permission model allows users to revoke requested permissions at the
time of installation, as shown in Figure 8.1a. Additionally, users are able to change the
granted permissions at any time to either give the application more permissions or the
revoke already granted permissions. But since the permission model assumes that all
requested permissions get granted at install-time, an application with less permissions
than requested may crash.
There also exists several applications in the Android market that allow to revoke

permissions. The revocation of the permission happens after an application has been
installed, because hooking into the installation process requires modifications in the
firmware. One of these applications is the LBE Privacy Guard 2. In addition to accepting
and revoking permission of an application, the LBE Privacy Guard allows to postpone
the decision to the point where the permission is actually required. Every time the
application requires a specific permission the user gets informed and needs to grant the
permission dynamically. Figure 8.1b shows that this works for a subset of the default

2https://market.android.com/details?id=com.lbe.security

69

(a) Flex-P (b) LBE Privacy Guard (c) Apex

Figure 8.1: Different approaches to extend the Android permission system.

permissions; for example, the permission to get the current location via GPS or the
permission to read and write to the SMS conversation database.
Apex [42] extends the Android permission model with user-defined runtime constraints.

Therefore, Nauman et al. modified the default permission check in the Android operat-
ing system and added a framework to evaluate context aware constraints. Figure 8.1c
shows the extended permission assignment. As an example they implemented two sim-
ple constraints. The first one allows to restrict the number of times a resource is used
per day, which is, for example, useful to limit the number of send SMS. The other one
allows to restrict the use of a permission to a specific time window of the day. For
example, accessing the GPS sensor is not allowed between 10 p.m. and 7 a.m. while the
user is sleeping. As long as an application does not violate these constraints it works
as desired, but it may crash if any of the constraints is violated. These fine-grained
constraints also have a rather large impact on the execution time of a permission check.
As a consequence the check whether an application is allowed to send an SMS increases
from 34 ms to 103 ms.
A even more contextual extension of the Android permission model is CRePE [17].

CRePE introduces a context-related security policy that grants and revokes certain per-
missions based on the context of the device. This, for example, allows to enable the
Bluetooth interface when the user is at home, but automatically disable it as soon as the
device is not within a defined environment. In addition, CRePE respects rules defined
by trusted third parties, so that, for example, the camera functionality is automatically
disabled inside a museum.
Another approach by Zhou et al. [56], named TISSA, concentrates on protecting pre-

defined personal information on the phone; this includes the current location, the phone
identity (IMEI), the contact list, or the call log. All these personal information is by

70

default protected by several different permissions. But as seen before, revoking any of
these permissions may lead to an unstable version of an application. TISSA allows to
restrict the access to the personal information within four different levels: Trusted allows
the application to access the real data as before; Anonymized returns an anonymized
version (e. g. a random location within a predefined radius of some kilometers); Bogus
returns some fake and maybe random data (e. g. a randomly generated identification
number of the phone); and Empty pretends that the requested information is not avail-
able or empty (e. g. an empty contacts list). Since no exception is thrown because of
missing permissions and since the returned information looks totally valid, a crash of
an application—not allowed to access the real privacy sensitive information—is rather
unlikely. But TISSA can only protect predefined personal information. If an application
requests to enter some login credentials or other data directly, there is no chance for
TISSA to protect this information.
MockDroid [12] and AppFence [36] pursue a similar goal and provide shadow data

instead of the actual information. In addition to providing fake data, AppFence includes
and extends the functionality of TaintDroid and blocks network connections containing
private data. To test the impact of AppFence, Hornyack et al. used a semi-automatic
approach to compare the behavior of 110 popular permission-hungry applications run-
ning on the stock Android firmware with the behavior on their modified firmware. They
found that their modifications do not cause side effects in 66 % of the tested applications.
This results show that the majority of the applications can be executed with shadowed
private information.
The mentioned extensions of the permission model protect the system from malicious

applications. In contrast, Ongtang et al. [44] introduce Saint, an application-centric
extension of Android’s security model. Saint allows an application to define additional
constraints that define whether access from other applications is allowed or not. These
runtime constraints can help to mitigate against the privilege escalation attacks that
we mentioned above. However, application developers has to take care to define the
appropriate constraints, which, for example, ensure that location information is only
leaked to applications that requested the ACCESS_LOCATION permission themselves.
Another paper by Fragkaki et al. [26] has just been released in late November. Their

goal is to build an abstract model of Android’s permission system. Analyzing this model
allows to reveal design and implementation flaws in the existing system. Thereupon,
Fragkaki et al. propose an extended permission model that mitigates against privilege
escalation attacks, undesired information flow, and allows fine-grained runtime delega-
tion of permissions.

71

9
Conclusion

In this work, we refined Android’s permission model in order to support fine-grained
Internet permission requests. The refined permission model allows application developers
to request the Internet permission based on the destination of outgoing connections. We
further give the user more control over the requested Internet permissions and allow
him to reject the Internet permission without canceling the installation. This makes it
possible to install applications in a sandbox that does not allow Internet connections.
In addition, we make the Internet permission more dynamic, such that the user can
postpone the decision about the permission request until a connection with the Internet
is actually established.
To demonstrate the refined permission model in practice, we modified the stock An-

droid firmware and implemented user-controlled Internet permissions in Android. By
using the Linux firewall, we enforce the refined permission model and therefore allow
the user to grant fine-grained Internet permissions. We tested our implementation on a
Nexus One developer phone and a performance analysis of our implementation showed
that the decrease in the average network throughput is low.

Limitations The underlying network infrastructure causes some limitations regarding
the fine-grained Internet permission. On the one hand, all network communication is
based on IP addresses in order to identify the source and destination of a connection.
On the other hand, domain names are in general used to look up the IP address of some
service via a human-readable name. Especially for web hosting services several domain
names point to the same IP address and different persons provide their service on the
same server. Consequently, by granting an application access to such an IP address that
hosts several services, the application is able to access all of them and there is no way
to further distinguish those services on the network layer. However, we assume that

72

security critical services are hosted on a dedicated server that is only controlled by the
provider of the service.

Future work Regarding the dynamic Internet permission, a future goal would be to
improve the expressiveness of the dynamic Internet request by determining the domain
name of outgoing requests in a reliable manner. The domain name of a connection
helps to better identify the destination of the connection, because everybody using the
Internet is more used to enter domain names instead of IP addresses. The domain name
of an IP address could be determined by some sort of reverse DNS lookup that either
uses the existing reverse lookup techniques of DNS or provides a similar lookup table
directly on the mobile phone.
Another future goal would be to expand the current fine-grained Internet permission

model to other built-in permissions. Especially the CALL_PHONE and the SEND_SMS permis-
sion would profit from a further refinement. Fine-grained permission requests based on
the phone number would give the user more insight into the purpose of the permission
request and they would make it obvious whether an application tries to contact costly
premium services or not.

73

Bibliography

[1] ABI Research. Android Overtakes Apple with 44% Worldwide Share of Mobile App
Downloads. Oct. 24, 2011. url: http://www.abiresearch.com/press/3799-
Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+
Downloads (visited on 10/28/2011).

[2] Android Open Source Project. Android Security Overview. url: http://source.
android.com/tech/security/index.html (visited on 11/18/2011).

[3] Android Open Source Project. Notes on the implementation of encryption in An-
droid 3.0. url: http : / / source . android . com / tech / encryption / android _
crypto_implementation.html (visited on 11/19/2011).

[4] Android Project. Android 3.0 Platform Highlights. url: http : / / developer .
android.com/sdk/android-3.0-highlights.html (visited on 12/13/2011).

[5] Android Project. Android Interface Definition Language (AIDL). url: http://
developer . android . com / guide / developing / tools / aidl . html (visited on
10/18/2011).

[6] Android Project. Platform Versions: Current Distribution. url: http://developer.
android . com / resources / dashboard / platform - versions . html (visited on
11/06/2011).

[7] Android Project. What is Android? url: http : / / developer . android . com /
guide/basics/what-is-android.html (visited on 10/18/2011).

[8] Apple Inc. App Store Review Guidlines. url: http://developer.apple.com/
appstore/guidelines.html (visited on 07/25/2011).

[9] Michael Backes, Sebastian Gerling, and Philipp von Styp-Rekowsky. “A Local
Cross-Site Scripting Attack against Android Phones”. 2011.

[10] Hugo Barra. Android: momentum, mobile and more at Google I/O. May 10, 2011.
url: http://googleblog.blogspot.com/2011/05/android-momentum-mobile-
and-more-at.html (visited on 07/25/2011).

[11] David Barrera, Hilmi Günes Kayacik, Paul C. van Oorschot, et al. “A methodol-
ogy for empirical analysis of permission-based security models and its application
to android”. In: Proceedings of the 17th ACM Conference on Computer and Com-
munications security. CCS ’10 (Chicago, IL, USA, Oct. 4–8, 2010). Ed. by Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov. ACM, 2010, pp. 73–84.

74

http://www.abiresearch.com/press/3799-Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+Downloads
http://www.abiresearch.com/press/3799-Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+Downloads
http://www.abiresearch.com/press/3799-Android+Overtakes+Apple+with+44%25+Worldwide+Share+of+Mobile+App+Downloads
http://source.android.com/tech/security/index.html
http://source.android.com/tech/security/index.html
http://source.android.com/tech/encryption/android_crypto_implementation.html
http://source.android.com/tech/encryption/android_crypto_implementation.html
http://developer.android.com/sdk/android-3.0-highlights.html
http://developer.android.com/sdk/android-3.0-highlights.html
http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.apple.com/appstore/guidelines.html
http://developer.apple.com/appstore/guidelines.html
http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html
http://googleblog.blogspot.com/2011/05/android-momentum-mobile-and-more-at.html

[12] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, et al. “MockDroid: trad-
ing privacy for application functionality on smartphones”. In: Proceedings of the
12th Workshop on Mobile Computing Systems and Applications. HotMobile ’11
(Phoenix, AZ, USA, Mar. 1–2, 2011). To appear. ACM, 2011.

[13] Dan Bornstein. 2008 Google I/O Session Videos and Slides. Dalvik VM Internals.
url: https://sites.google.com/site/io/dalvik-vm-internals (visited on
10/18/2011).

[14] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, et al. XManDroid: A New An-
droid Evolution to Mitigate Privilege Escalation Attacks. Tech. rep. TR-2011-04.
Technische Universität Darmstadt, 2011.

[15] Jesse Burns. Developing Secure Mobile Applications for Android. An Introduction
to Making Secure Android Applications. Tech. rep. iSec Partners, Oct. 2008.

[16] Rich Cannings. An Update on Android Market Security. Mar. 5, 2011. url: http:
/ / googlemobile . blogspot . com / 2011 / 03 / update - on - android - market -
security.html (visited on 11/04/2011).

[17] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. “CRePE: Context-Related
Policy Enforcement for Android”. In: Information Security. 13th International
Conference, Revised Selected Papers. ISC 2010 (Boca Raton, FL, USA, Oct. 25–28,
2010). Ed. by Mike Burmester, Gene Tsudik, Spyros S. Magliveras, et al. Vol. 6531.
Lecture Notes in Computer Science. Springer, 2011, pp. 331–345.

[18] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, et al. “Privilege Escala-
tion Attacks on Android”. In: Information Security. 13th International Conference,
Revised Selected Papers. ISC 2010 (Boca Raton, FL, USA, Oct. 25–28, 2010). Ed.
by Mike Burmester, Gene Tsudik, Spyros S. Magliveras, et al. Vol. 6531. Lecture
Notes in Computer Science. Springer, 2011, pp. 346–360.

[19] Michael DeGusta. Android Orphans: Visualizing a Sad History of Support. Oct. 26,
2011. url: http : / / theunderstatement . com / post / 11982112928 / android -
orphans-visualizing-a-sad-history-of-support (visited on 11/06/2011).

[20] Scott Delap. Google’s Android SDK Bypasses Java ME in Favor of Java Lite and
Apache Harmony. Nov. 12, 2007. url: http://www.infoq.com/news/2007/11/
android-java (visited on 10/18/2011).

[21] William Enck, Peter Gilbert, Byung-gon Chun, et al. “TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones”. In: 9th
USENIX Symposium on Operating Systems Design and Implementation. OSDI ’10
(Vancouver, BC, Canada, Oct. 4–16, 2010). Ed. by Remzi H. Arpaci-Dusseau and
Brad Chen. USENIX Association, 2010, pp. 393–407.

[22] William Enck, Damien Octeau, Patrick McDaniel, et al. “A study of Android
application security”. In: Proceedings of the 20th USENIX Security Symposium.
USENIX Security ’11 (San Francisco, CA, USA, Aug. 8–12, 2011). 2011.

75

https://sites.google.com/site/io/dalvik-vm-internals
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://theunderstatement.com/post/11982112928/android-orphans-visualizing-a-sad-history-of-support
http://theunderstatement.com/post/11982112928/android-orphans-visualizing-a-sad-history-of-support
http://www.infoq.com/news/2007/11/android-java
http://www.infoq.com/news/2007/11/android-java

[23] William Enck, Machigar Ongtang, and Patrick Drew McDaniel. “On lightweight
mobile phone application certification”. In: Proceedings of the 16th ACM Con-
ference on Computer and Communications security. CCS ’09 (Chicago, IL, USA,
Nov. 9–13, 2009). Ed. by Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis.
ACM, 2009, pp. 235–245.

[24] William Enck, Machigar Ongtang, and Patrick Drew McDaniel. “Understanding
Android Security”. In: IEEE Security & Privacy 7.1 (2009), pp. 50–57.

[25] Adrienne Porter Felt, Erika Chin, Steve Hanna, et al. “Android permissions de-
mystified”. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications security. CCS ’11 (Chicago, IL, USA, Oct. 17–21, 2011). Ed. by Yan
Chen, George Danezis, and Vitaly Shmatikov. ACM, 2011, pp. 627–638.

[26] Elli Fragkaki, Lujo Bauer, and Limin Jia. Modeling and Enhancing Android’s Per-
mission System. Tech. rep. CMU-CyLab-11-020. CyLab, Carnegie Mellon Univer-
sity, 2011.

[27] Clemens Fruhwirth. New methods in hard disk encryption. 2005.
[28] F-Secure. Warning On Possible Android Mobile Trojans. Jan. 11, 2010. url: http:

//www.f-secure.com/weblog/archives/00001852.html (visited on 12/05/2011).
[29] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Automated Se-

curity Certification of Android Applications. Tech. rep. CS-TR-4991. Department
of Computer Science, University of Maryland, College Park, 2009.

[30] Gartner Inc. Gartner Says Android to Become No. 2 Worldwide Mobile Operating
System in 2010 and Challenge Symbian for No. 1 Position by 2014. Sept. 10,
2010. url: http://www.gartner.com/it/page.jsp?id=1434613 (visited on
10/18/2011).

[31] Gartner Inc. Gartner Says Android to Command Nearly Half of Worldwide Smart-
phone Operating System Market by Year-End 2012. Apr. 7, 2011. url: http :
//www.gartner.com/it/page.jsp?id=1622614 (visited on 10/18/2011).

[32] Gartner Inc. Gartner Says Sales of Mobile Devices Grew 5.6 Percent in Third
Quarter of 2011; Smartphone Sales Increased 42 Percent. Nov. 15, 2011. url:
http://www.gartner.com/it/page.jsp?id=1848514 (visited on 12/12/2011).

[33] Google Inc. Android Market: Publish. url: http : / / market . android . com /
publish/ (visited on 07/25/2011).

[34] Michael Grace, Yajin Zhou, Zhi Wang, et al. Detecting Capability Leaks in Android-
based Smartphones. Tech. rep. TR-2011-15. North Carolina State University, 2011.

[35] Dianne Hackborn.OpenBinder. url: http://www.angryredplanet.com/~hackbod/
openbinder (visited on 10/18/2011).

76

http://www.f-secure.com/weblog/archives/00001852.html
http://www.f-secure.com/weblog/archives/00001852.html
http://www.gartner.com/it/page.jsp?id=1434613
http://www.gartner.com/it/page.jsp?id=1622614
http://www.gartner.com/it/page.jsp?id=1622614
http://www.gartner.com/it/page.jsp?id=1848514
http://market.android.com/publish/
http://market.android.com/publish/
http://www.angryredplanet.com/~hackbod/openbinder
http://www.angryredplanet.com/~hackbod/openbinder

[36] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, et al. ““These Aren’t the Droids
You’re Looking For”: Retrofitting Android to Protect Data from Imperious Ap-
plications”. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications security. CCS ’11 (Chicago, IL, USA, Oct. 17–21, 2011). Ed. by Yan
Chen, George Danezis, and Vitaly Shmatikov. ACM, 2011.

[37] Kaspersky Lab. ZeuS-in-the-Mobile for Android. June 12, 2011. url: http://
www.securelist.com/en/blog/208193029/ZeuS_in_the_Mobile_for_Android
(visited on 12/13/2011).

[38] James F. Kurose and Keith W. Ross. Computer networking : a top-down approach.
5th ed. Pearson Education, 2010.

[39] Lookout. Security Alert: Fake Netflix App Aids Phishing. Oct. 13, 2011. url: http:
//blog.mylookout.com/2011/10/security-alert-fake-netflix-app-aids-
phishing/ (visited on 12/06/2011).

[40] McAfee Labs. McAfee Threats Report: Second Quarter 2011. Aug. 23, 2011. url:
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-
2011.pdf (visited on 11/04/2011).

[41] Kurt Mueller and Kevin Butler. Poster: Flex-P: Flexible Android Permissions.
2011.

[42] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. “Apex: extending An-
droid permission model and enforcement with user-defined runtime constraints”.
In: Proceedings of the 5th ACM Symposium on Information, Computer and Com-
munications Security. ASIACCS ’10 (Beijing, China, Apr. 13–16, 2010). Ed. by
Dengguo Feng, David A. Basin, and Peng Liu. ACM, 2010, pp. 328–332.

[43] Network Working Group. RFC 1034: DOMAIN NAMES - CONCEPTS AND FA-
CILITIES. 1987. url: https://tools.ietf.org/html/rfc1034 (visited on
12/06/2011).

[44] Machigar Ongtang, Stephen McLaughlin, William Enck, et al. “Semantically Rich
Application-Centric Security in Android”. In: Proceedings of the 2009 Annual Com-
puter Security Applications Conference. ACSAC ’09 (Honolulu, HI, USA, Dec. 7–
11, 2009). IEEE Computer Society, 2009, pp. 340–349.

[45] C. Enrique Ortiz. Understanding security on Android. Enhance application security
with sandboxes, application signing, and permissions. 2010. url: http://www.ibm.
com/developerworks/opensource/library/x-androidsecurity/index.html
(visited on 12/18/2011).

[46] Kyle Randolph. Inside Adobe Reader Protected Mode – Part 1 – Design. Adobe
Systems Inc. Oct. 5, 2010. url: http://blogs.adobe.com/asset/2010/10/
inside- adobe- reader- protected- mode- part- 1- design.html (visited on
11/03/2011).

[47] William Sallings and Lawrie Brown. Computer Security: Principles and Practice.
1st ed. Pearson, 2008.

77

http://www.securelist.com/en/blog/208193029/ZeuS_in_the_Mobile_for_Android
http://www.securelist.com/en/blog/208193029/ZeuS_in_the_Mobile_for_Android
http://blog.mylookout.com/2011/10/security-alert-fake-netflix-app-aids-phishing/
http://blog.mylookout.com/2011/10/security-alert-fake-netflix-app-aids-phishing/
http://blog.mylookout.com/2011/10/security-alert-fake-netflix-app-aids-phishing/
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q2-2011.pdf
https://tools.ietf.org/html/rfc1034
http://www.ibm.com/developerworks/opensource/library/x-androidsecurity/index.html
http://www.ibm.com/developerworks/opensource/library/x-androidsecurity/index.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html

[48] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, et al. “Soundcomber: A Stealthy
and Context-Aware Sound Trojan for Smartphones”. In: Proceedings of the Network
and Distributed System Security Symposium. NDSS 2011 (San Diego, CA, USA,
Feb. 6–9, 2011). The Internet Society, 2011.

[49] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World. 1st ed.
Wiley, 2004.

[50] Justin Shapcott. Updates, or lack thereof, on the Android Update Alliance. An-
droid and Me. Aug. 30, 2011. url: http://androidandme.com/2011/08/news/
updates-or-lack-thereof-on-the-android-update-alliance/ (visited on
11/06/2011).

[51] R. Spenneberg. Linux-Firewalls mit Iptables & Co. Die Linux-Security-Box. Addison-
Wesley, 2006.

[52] Symantec. Will Your Next TV Manual Ask You to Run a Scan Instead of Ad-
justing the Antenna? Oct. 13, 2011. url: http://www.symantec.com/connect/
blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-
antenna (visited on 12/06/2011).

[53] Technology Review. How Android Security Stacks Up. Apr. 1, 2010. url: http:
//www.technologyreview.com/printer_friendly_article.aspx?id=24944
(visited on 11/03/2011).

[54] The Chromium Projects. Sandbox. url: http://dev.chromium.org/developers/
design-documents/sandbox (visited on 11/03/2011).

[55] Alberto Vildosola. Google partners with manufacturers and carriers to speed up
Android updates. Android and Me. May 10, 2011. url: http://androidandme.
com/2011/05/uncategorized/google-partners-with-manufacturers-and-
carriers-to-speed-up-android-updates/ (visited on 11/06/2011).

[56] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, et al. “Taming Information-Stealing
Smartphone Applications (on Android)”. In: Trust and Trustworthy Computing.
4th International Conference on Trust and Trustworthy Computing. TRUST 2011
(Pittsburgh, PA, USA, June 22–24, 2011). Ed. by Jonathan M. McCune, Boris
Balacheff, Adrian Perrig, et al. Vol. 6740. Lecture Notes in Computer Science.
Springer, 2011, pp. 93–107.

78

http://androidandme.com/2011/08/news/updates-or-lack-thereof-on-the-android-update-alliance/
http://androidandme.com/2011/08/news/updates-or-lack-thereof-on-the-android-update-alliance/
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.symantec.com/connect/blogs/will-your-next-tv-manual-ask-you-run-scan-instead-adjusting-antenna
http://www.technologyreview.com/printer_friendly_article.aspx?id=24944
http://www.technologyreview.com/printer_friendly_article.aspx?id=24944
http://dev.chromium.org/developers/design-documents/sandbox
http://dev.chromium.org/developers/design-documents/sandbox
http://androidandme.com/2011/05/uncategorized/google-partners-with-manufacturers-and-carriers-to-speed-up-android-updates/
http://androidandme.com/2011/05/uncategorized/google-partners-with-manufacturers-and-carriers-to-speed-up-android-updates/
http://androidandme.com/2011/05/uncategorized/google-partners-with-manufacturers-and-carriers-to-speed-up-android-updates/

Appendices

79

A
Iptables commands

Creation of observation chain
iptables -N ucicia_app_observe
iptables -I OUTPUT 1 -m mark --mark 0 -j ucicia_app_observe
Creation and removal of observation rules for an application
iptables -A ucicia_app_observe -m owner --uid -owner <uid > -j NFQUEUE

--queue -num 2
iptables -D ucicia_app_observe -m owner --uid -owner <uid > -j NFQUEUE

--queue -num 2

Creation of the ESTABLISHED rule
iptables -I OUTPUT 1 -m state --state ESTABLISHED -j ACCEPT

Creation and removal of new application chain
iptables -N ucicia_app_ <uid >
iptables -X ucicia_app_ <uid >
iptables -F ucicia_app_ <uid >

Creation and removal of corresponding rule
for application chain in OUTPUT chain
iptables -A OUTPUT -m owner --uid -owner <uid > -j ucicia_app_ <uid >
iptables -D OUTPUT -m owner --uid -owner <uid > -j ucicia_app_ <uid >

Filtering rules of an application
iptables -A ucicia_app_ <uid > -j <target > [--queue -num 1] [-d

<destination >] [-p <tcp/udp > --destination -port <port >]
Default rule of an application
iptables -A ucicia_app_ <uid > -j <target > [--queue -num 1]

80

B
Iptables configurations

B.1 Baseline

Behavior of built -in chains
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

B.2 Several applications

Behavior of built -in chains
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

Creation of custom chains
-N ucicia_app_10049
-N ucicia_app_100
-N ucicia_app_101
...
-N ucicia_app_299
-N ucicia_app_observe

Initialization of OUTPUT chain
-A OUTPUT -m mark --mark 0x0 -j ucicia_app_observe
Next line only present when testing with ESTABLISHED rule
-A OUTPUT -m state --state ESTABLISHED -j ACCEPT
-A OUTPUT -m owner --uid -owner 299 -j ucicia_app_299
-A OUTPUT -m owner --uid -owner 298 -j ucicia_app_298
...
-A OUTPUT -m owner --uid -owner 101 -j ucicia_app_101

81

-A OUTPUT -m owner --uid -owner 100 -j ucicia_app_100
-A OUTPUT -m owner --uid -owner app_49 -j ucicia_app_10049

Default rule of iPerf application
-A ucicia_app_10049 -j ACCEPT

20 ip rules + 1 default rule for application 100
-A ucicia_app_100 -d 209.85.148.10/32 -p tcp -m tcp --dport 80 -j ACCEPT
-A ucicia_app_100 -d 209.85.148.10/32 -p udp -m udp --dport 80 -j ACCEPT
-A ucicia_app_100 -d 209.85.148.11/32 -p tcp -m tcp --dport 80 -j ACCEPT
-A ucicia_app_100 -d 209.85.148.11/32 -p udp -m udp --dport 80 -j ACCEPT
...
-A ucicia_app_100 -d 209.85.148.19/32 -p tcp -m tcp --dport 80 -j ACCEPT
-A ucicia_app_100 -d 209.85.148.19/32 -p udp -m udp --dport 80 -j ACCEPT
-A ucicia_app_100 -j REJECT --reject -with icmp -port - unreachable

...

20 ip rules + 1 default rule for application 299
-A ucicia_app_299 -d 209.85.148.10/32 -p tcp -m tcp --dport 80 -j ACCEPT
-A ucicia_app_299 -d 209.85.148.10/32 -p udp -m udp --dport 80 -j ACCEPT
-A ucicia_app_299 -d 209.85.148.11/32 -p tcp -m tcp --dport 80 -j ACCEPT
-A ucicia_app_299 -d 209.85.148.11/32 -p udp -m udp --dport 80 -j ACCEPT
...
-A ucicia_app_299 -d 209.85.148.19/32 -p tcp -m tcp --dport 80 -j ACCEPT
-A ucicia_app_299 -d 209.85.148.19/32 -p udp -m udp --dport 80 -j ACCEPT
-A ucicia_app_299 -j REJECT --reject -with icmp -port - unreachable

B.3 Several rules

Behavior of built -in chains
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

Creation of custom chains
-N ucicia_app_10049
-N ucicia_app_observe

Initialization of OUTPUT chain
-A OUTPUT -m mark --mark 0x0 -j ucicia_app_observe
Next line only present when testing with ESTABLISHED rule
-A OUTPUT -m state --state ESTABLISHED -j ACCEPT
-A OUTPUT -m owner --uid -owner app_49 -j ucicia_app_10049

400 ip rules + 1 default rule for iPerf application
-A ucicia_app_10049 -d 209.85.148.10/32 -p tcp -m tcp --dport 80 -j

REJECT --reject -with icmp -port - unreachable
-A ucicia_app_10049 -d 209.85.148.10/32 -p udp -m udp --dport 80 -j

REJECT --reject -with icmp -port - unreachable
-A ucicia_app_10049 -d 209.85.148.11/32 -p tcp -m tcp --dport 80 -j

REJECT --reject -with icmp -port - unreachable
-A ucicia_app_10049 -d 209.85.148.11/32 -p udp -m udp --dport 80 -j

82

REJECT --reject -with icmp -port - unreachable
...
-A ucicia_app_10049 -d 209.85.148.209/32 -p tcp -m tcp --dport 80 -j

REJECT --reject -with icmp -port - unreachable
-A ucicia_app_10049 -d 209.85.148.209/32 -p udp -m udp --dport 80 -j

REJECT --reject -with icmp -port - unreachable
-A ucicia_app_10049 -j ACCEPT

B.4 Dynamic Internet connection

Behavior of built -in chains
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

Creation of custom chains
-N ucicia_app_10049
-N ucicia_app_observe

Initialization of OUTPUT chain
-A OUTPUT -m mark --mark 0x0 -j ucicia_app_observe
Next line only present when testing with ESTABLISHED rule
-A OUTPUT -m state --state ESTABLISHED -j ACCEPT
-A OUTPUT -m owner --uid -owner app_49 -j ucicia_app_10049

Default rule of the iPerf application that queues all packets
-A ucicia_app_10049 -j NFQUEUE --queue -num 1

B.5 Observation mode

Behavior of built -in chains
-P INPUT ACCEPT
-P FORWARD ACCEPT
-P OUTPUT ACCEPT

Creation of custom chains
-N ucicia_app_10049
-N ucicia_app_observe

Initialization of OUTPUT chain
-A OUTPUT -m mark --mark 0x0 -j ucicia_app_observe
-A OUTPUT -m state --state ESTABLISHED -j ACCEPT
-A OUTPUT -m owner --uid -owner app_49 -j ucicia_app_10049

Observation mode rule for iPerf application
-A ucicia_app_observe -m owner --uid -owner app_49 -j NFQUEUE --queue -num

2

Default rule of the iPerf application that queues all packets
-A ucicia_app_10049 -j ACCEPT

83

	Introduction
	Motivating example
	Contribution
	Outline

	The Android operating system
	Android version history
	Android system architecture
	Linux kernel
	System libraries
	Android runtime
	Application framework
	Application layer

	Application Development
	AndroidManifest.xml
	IPC / Binder
	ICC / Intents
	Application components

	Application Deployment
	Android application stores

	The Android security model
	Attacker model
	Protection techniques
	Application sandboxing
	Permission model
	Application signing
	Centrally managed application deployment
	Android version updates
	Password protection
	File system encryption

	User-controlled Internet connections in Android (Ucicia)
	Basics
	Network communication
	Access control mechanism

	Refined attacker model
	Ucicia: A high-level overview

	Permission model refinement
	Definitions
	IP addresses, domain names, and ports
	Outgoing connections
	Restriction rules

	New key functionalities
	Fine-grained Internet permission requests
	Refinement of requested Internet permission
	Granting and revoking permissions at any time
	Dynamic Internet Permission requests
	Observation of Internet connections

	Implementation
	Prerequisites
	Architectural overview
	Firewall
	Firewall configuration
	The chain design of Ucicia

	Firewall front-end
	Framework interaction
	The native ucicia_queue application
	The UciciaService in the Android middleware

	Application Package Installation
	Rules definition in the AndroidManifest.xml file
	Revocation of the Internet permission

	Dynamic Internet permission
	Firewall modifications
	Kernel modifications
	ucicia_queue modifications
	UciciaService and UciciaManager modifications

	Observation mode
	Firewall modifications
	ucicia_queue modifications
	Database model modifications
	UciciaService and UciciaManager modifications

	Performance Evaluation
	Methods and tools
	Hardware setup
	Applied software

	Scenarios
	Baseline
	Several applications
	Several rules
	Dynamic Internet connection
	Observation mode

	Evaluation
	Interpretation

	Related work
	Conclusion
	Bibliography
	Appendix Iptables commands
	Appendix Iptables configurations
	Baseline
	Several applications
	Several rules
	Dynamic Internet connection
	Observation mode

