
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelorthesis

ArtHook
Callee-side method hook injection
on the new Android runtime ART

submitted by
Marvin Wißfeld
on June 1, 2015

Advisor:
Philipp von Styp-Rekowsky

Reviewers:
Prof. Michael Backes
Christian Hammer

III

Declarations

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,

(Datum/Date) (Unterschrift/Signature)

Acknowledgement

I would like to thank my advisor Phillip von Styp-Rekowsky for many hours of productive
discussion. His feedback has helped me a lot to come up with the results of this thesis.

Thanks goes as well to Prof. Michael Backes and Christian Hammer for reviewing my
thesis.

I would also like to thank everyone who bugged me to continue working on my thesis or
helped in any other way to finish this thesis on time.

V

Abstract

Hooking methods on Android’s Dalvik runtime has become a common technique for
various use cases, including security and privacy extensions. Android 5.0 introduced the
new ahead-of-time compiling android runtime ART. The new runtime can not be used
with current implementations that relied on the internal structure of Dalvik’s just-in-
time compiler.

We thus present ArtHook. ArtHook is an approach to hook methods on ART. It will
allow to hook the majority of method calls without the need to manipulate the Android
operating system and with low performance overhead. We achieve this by rewriting the
machine code of the called method in memory.

VII

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 2

2 ART Android runtime 3
2.1 Introducing ART . 3
2.2 Ahead-of-time compilation . 3
2.3 OAT file format . 4
2.4 Optimization . 5
2.5 Method handling . 6

3 Hooking 9
3.1 Requirements . 9
3.2 Static hooking . 10
3.3 Dynamic hooking . 12
3.4 Approach for ART . 13

4 Implementation 15
4.1 Design decisions . 15
4.2 Callee-side code injection . 15
4.3 Custom executable memory page . 16
4.4 Library design and usage . 17

5 Evaluation 19
5.1 Functionality . 19
5.2 Performance . 19

6 Related Work 23
6.1 Xposed Framework . 23

7 Conclusion 25
7.1 Limitations and future work . 25
7.2 Availability . 26

IX

Chapter 1

Introduction

The Android platform is the most popular operating system on consumer-devices world-
wide. In 2014, roughly the half of all computers, notebooks, tablet and smart phones
sold, shipped with Android installed [1], a stunning total of 1.1 billion devices. Private
data of millions of users is stored using the Android operating system, but the number of
privacy and security mechanisms that are part of Android is outstandingly low. Thus,
researchers developed different security and privacy extensions for Android. Some of
them, like MockDroid [2], require operating system changes. As for most end-users it is
not possible to change the operating system installed on their phones, this solution did
not receive wide-spread support.

The other approach to add features to the operating system is to use method hooking.
Method hooking is a technique used to intercept the call of a certain method at runtime
to change the behavior of the calling application. This is usually done for debugging or
to extend the features of an existing library method. AppGuard [3] uses method hooking
to embed additional privacy and security features into applications.

ART is a new Java runtime targeting the Android platform. A first technical preview
was published with Android 4.4 in 2013 as an alternative to the Dalvik runtime used by
then [4]. It already showed the core improvements that were intended to be included with
the final release, one of them being the ahead-of-time compilation. Most current Java
runtimes use pure byte code interpretation, a just-in-time compiler1 or a combination
of both. The ahead-of-time compiler used in ART creates machine code from the
application byte code before it is executed. For Android applications, this step is done
during installation, but it is also possible to compile directly before the execution or to
provide pre-compiled machine code binaries. With the release of Android 5.0 in 2014,
ART became the new default runtime and Dalvik was removed [5]. It was also extended

1A system that compiles source code or intermediate byte code into machine code in the moment of
its first or repeated usage

1

2 Chapter 1 Introduction

to heavily optimize the resulting machine code, leading to performance improvements
by up to 2.5 times compared to Dalvik in benchmarks [6].

However, the introduction of ART as default runtime for Android 5.0 makes existing
method hooking techniques designed for Dalvik incompatible with the latest Android
versions.

1.1 Contribution

We describe a system to hook methods on the ART runtime introduced and published
with Android 5.0. This technique does not require any modifications to the operating
system and uses callee-site in-memory rewriting to inject the hook. For better under-
standing, we will also give a comprehensive description of the ART runtime.

To the best of our knowledge, no method hooking system for ART, which does not
require modifications of the ART runtime and the operating system, has been described
or developed before.

1.2 Outline

In chapter 2, we present the ART Android runtime including several details that will
become important for the hooking process.

Chapter 3 covers existing method hooking techniques for different platforms and op-
erating systems and outlines why the related work is not portable to ART. Finally it
concludes an idea of how method hooking can be done on ART.

In chapter 4, we describe in detail what our approach of method hooking on ART is and
how we implemented it. We also show an example of how to use the ArtHook library
and discuss different APIs provided by it.

In chapter 5, we analyze how our implementation behaves on a device. We therefore do
a micro benchmark and use a publicly accessible benchmark suite.

Chapter 6 gives a glimpse on another hooking system, which targets the Android ART
platform, but uses a completely different approach.

Finally, chapter 7 outlines, which problems are not solved by our hooking approach and
ideas how it might be possible to come around them.

Chapter 2

ART Android runtime

The ART runtime is different from previous Java virtual machines in several ways.
Thus, in this chapter, we analyze the reasons that resulted in the development of this
new runtime and how the process of ahead-of-time compilation works. We well also
describe the file format used internally and how method calling is done.

2.1 Introducing ART

The former Java runtime used on Android, Dalvik was originally developed as a full-
featured Java runtime for resource constrained devices. This was needed, as by then,
smart phones came with a considerably less powerful single-core CPU and down to a
10th of the memory of current smart phones. However, as the market shifted, Dalvik
was extended on all edges by adding better support for multi-core CPUs or just-in-time
compilation.

Later the developers of Android decided, that their Java runtime should be rethought
completely, leading to the development of ART and finally the deprecation of Dalvik.
The new Android runtime was build with modern processors, multi-tasking and efficient
garbage collection in mind. This results in less CPU usage, longer battery times and
performance increases.

2.2 Ahead-of-time compilation

The main feature introduced with ART that distinguishes it as a completely new runtime
is the ahead-of-time compilation. During installation an application is compiled to "quick
compiled" code, which consists of native processor instructions [5]. This results in per-
formance improvements, as during runtime, no code has to be compiled or interpreted.

3

4 Chapter 2 ART Android runtime

Due to the fact that the processor is the main power sink in modern smart phones,
performance improvements also result in less power consumption and thus longer battery
life. Furthermore there is also measurable less memory pressure1 due to not using just-in-
time compilation. The main drawback of this approach is that the compilation increases
application installation time and the compiled code requires more disk space. For this
reason, it is possible to compile ART in a mode for devices with limited storage that uses
the ahead-of-time compiler only for the system framework (boot classpath). Although
applications are only interpreted, this is still a performance improvement compared to
Dalvik, as most execution time actually passes in the system framework.

The handling of the boot classpath is optimized to reduce start-up time. This is done
by compiling the classes in boot classpath and pre-initializing them. The pre-intializing
process includes the creation of constants and the configuration of memory entry points.
The result is stored in a file called boot.art that is mapped into memory during boot.
As pre-initialized classes need more disk space, this does not happen for all classes, but
only for those used frequently2.

The Dalvik executable (DEX) is a special file format that contains machine instructions
for the Dalvik virtual machine. ART still handles DEX (Dalvik executable) files.
Android applications do not need to be altered to run on ART and thus the first
compilation steps of Java source code are the same as before: Java source code is
compiled to JVM byte code using the java compiler javac, which is then translated to
Dalvik byte code using dx. These processor intensive and target platform independent
tasks happen during application creation, the resulting DEX file is released to users as
part of the Android package (APK) file. When the Android package is installed on a
system running ART, the ART compiler dex2oat compiles Dalvik byte code from DEX
files into native, platform-dependent machine code.

2.3 OAT file format

OAT files are special ELF3 files storing the compiled code for the ART runtime, the
original Dalvik byte code, string and class tables as well as ART specific meta data.
Although the ELF format is used, tools usually used with this format will not be able
to handle OAT files, as ELF sections are not used as usual.

1Modern operating system uses virtual memory that may not only represent volatile memory, but
also file system entries. As these do not inevitably reside in physical memory, the operating system
can assign more virtual memory than physical memory exists and no free physical memory does not
necessarily mean that no new memory can be allocated. The term memory pressure is used instead of
memory usage to address this.

2A list of these classes is provided during the Android build process and is stored inside the resulting
image at /system/etc/preloaded-classes.

3ELF: Executable and Linking Format, a common standard file format storing compiled code [7]

Chapter 2 ART Android runtime 5

oatdata

oatexec

ELF container

.oat file

OatQuickMethodHeader

[native instructions]

*(mapping table)
frame info
code size

OatHeader

OatFile

OatDexFile[]

Status
Type

Code pointer

OatClass

Figure 2.1: The OAT file format.
Some details have been collapsed or left out for increased readability.

The native code is stored in an ELF object oatexec that is mapped to an executable
memory area at runtime, meta data and Dalvik byte code are stored in an object
oatdata.

The oatdata object (see Figure 2.1) is a structure build around the original DEX file
format to add ART specific meta data. While most OAT files are based on a single
DEX file, the file format also supports the inclusion of more than one, which is used
by the boot classpath and newer Android packages using the multidex feature, which is
natively supported by ART.

The oatexec object contains the native code instructions for each method in no par-
ticular order. The OatQuickMethodHeader is stored directly before the entry point of
each method and is only reachable by following the entry point. This header contains
information on the method including its size in bytes and the influence the method has
on the runtime (e.g. used registers and stack frame size) as well as a pointer to a table
that maps the native code to the corresponding Dalvik byte code. This mapping is used
to provide full stack traces on Exceptions including line numbers.

2.4 Optimization

Beside the ahead-of-time compilation, heavy optimizations are also an important reason
for the performance increases introduced with ART. Some of the optimizations which
affect method calling and hooking are also used on other platforms and compilers, others
might be new.

Method inlining is an optimization already used by some compilers under certain condi-
tions. Short methods (e.g. single return statements) are inlined into the calling method,
reducing the need to jump through memory. Thus reducing memory usage and increasing
the effectiveness of CPU caches. While the concept is known to compilers it is usually

6 Chapter 2 ART Android runtime

1 class ArtMethod {
2 Class declaringClass ;
3 ArtMethod [] dexCacheResolvedMethods ; // These caches are used when
4 Class [] dexCacheResolvedClasses ; // resolving methods , classes or
5 String [] dexCacheStrings ; // strings from the dex file index
6 long entryPointFromInterpreter ;
7 long entryPointFromJni ;
8 long entryPointFromQuickCompiledCode ;
9 long garbageCollectorMap ;

10 int accessFlags ;
11 int dexCodeItemOffset ;
12 int dexMethodIndex ;
13 int methodIndex ;
14 }

Figure 2.2: Fields in the ArtMethod class.

not used with dynamically linked methods if not explicitly expressed by the user (e.g.
using the inline keyword in C/C++).

An important optimization specific to ART is the usage of direct jumps. Calls of methods
inside the framework are replaced by direct jumps to the corresponding position in
memory and thus method lookup is no longer needed for this calls. This is possible, as
boot.art is always mapped to the same location in virtual memory. When boot.art

changes due to a system update, the jumps in OAT files are updated using the tool
patchoat. It is not necessary to recompile the complete byte code. If a method is
loaded at runtime and therefore the call cannot be converted to a direct jump, a fallback
routine is added, that will resolve the method call in the moment of its first occurrence.

Another optimization related to hooking is the method merging used with ART. Methods
that share the same native code representation are merged into a single entry point in
the oatexec object. While this has no side-effects on the intended program flow, it
does mean that any modification to the native code of a method can have side-effects to
another method, if it shares the same code.

2.5 Method handling

At runtime, methods on ART are represented by an ArtMethod (Figure 2.2) object.
This object keeps references to the declaring class, string tables and the corresponding
DEX method as well as pointers to relevant call entry points. When Java Native
Interface (JNI) calls, reflection or unoptimized calls from compiled Java code occur, the
corresponding ArtMethod is used to resolve the relevant entry point. There are three
types of entry points, one for each call source. Usually the entry point for compiled
Java code is the only one directing to the method itself4. The other two entry points
are "bridges" between the different application binary interfaces (ABI) of JNI, reflection

4In native methods, the JNI entry point is pointing to the real method and compiled code entry point
is a bridge.

Chapter 2 ART Android runtime 7

and ART. If a method is not yet initialized, as it is in the boot classpath but not in the
list of pre-initialized classes, the entry points will point to an initializer method. This
way, each class is automatically initialized once a method inside it is called.

ART quick compiled code uses its own calling convention derived from the platform
specific calling convention. It uses the first register for a pointer to the ArtMethod of the
called method and an additional register for a pointer to the Thread object corresponding
to the executing thread, that is used to access the thread-local memory. Everything else
is the same as the native calling convention, with a pointer to the this-object being the
first argument of non-static methods.

Chapter 3

Hooking

The technique of method hooking evolved over years to support different use cases and
operating systems. In this chapter, we will present some approaches on method hooking
and analyze if and how they can be implemented on ART. At the end we will present a
solution that fulfills our requirements.

3.1 Requirements

Before analyzing existing approaches on method hooking and what problems might occur
when using them, we define a set of requirements our approach should fulfill.

• No operating system changes: As Android does not allow normal users to
modify the operating system and we do not want to restrict the advantages that
come with method hooking to a limited number of devices and users, the hooking
approach should not require the user to modify his operating system in advance.

• Runtime, on-device hooking: The hooking itself should happen on the target
device and should not require additional computers. User interaction should in
no case be required and it should be possible to apply and remove the hook at
runtime.

• Handle direct jumps: Calls to Android system libraries residing in boot.art

are done using direct jumps. These represent the majority of method calls, thus
direct jumps should be handled correctly.

• Support reflection API: According to Felt et al., more than the half of Android
applications use Java reflection [8]. For reasons of backward-compatibility, Android
developers often use reflection to call methods that are not available on all versions.
Furthermore some applications use reflection to use hidden system APIs. To be a
portable, the solution should support the reflection API.

9

10 Chapter 3 Hooking

a:

o();

b:

o();

o:

h:

(0)
a:

h();

b:

h();

o:

h:

(a)

Modification Call flow

a:

o();

b:

o();

o:

h:

(b)

h();

a:

o();

b:

o();

o:

h:

(1)
a:

o();

b:

o();

o:

h:

(c)

Figure 3.1: Hooking approaches
(0) before rewriting (a) caller-side rewriting, (b) callee-side rewriting

(1) before call diversion (c) call diversion

• Hook inner calls: The hooking should not be limited to calls to shared libraries,
but should also apply to calls to methods inside the application itself.

3.2 Static hooking

The term "static hooking" usually applies to hooking approaches that inject the hook
before the application, in which they are applied, is executed. This usually happens by
modifying the machine code instructions of the application permanently (on disk) or by
changing the environment.

3.2.1 Injecting shared libraries

One static approach is the modification of the runtime environment in a way, that
a custom shared library is injected. When shared libraries are linked dynamically, a
custom library can provide an implementation for a method usually implemented by the
system, e.g. inside the libc standard library.

The Linux dynamic linker1 allows the user to modify the paths in which it searches for
dynamic libraries using the LD_PRELOAD environment variable. Additionally, the linker

1A dynamic linker is a tool used to ensure that dynamically linked libraries (e.g. DLL files) can be
accessed from executables that use them.

Chapter 3 Hooking 11

provides a function dlsym, that can be used to retrieve a method with the same name
from another library, allowing a hook to call the original function. This approach is
often used for debugging or to analyze an application, as it is easy to apply and does
not require deep insight in the application.

On Java runtimes, it is often possible to modify the classpath before an application
is started and thus load different classes that contain the hooked methods. However,
Android does not allow arbitrary classpath modifications, making this approach unusable
for ART. Additionally this approach would only work for calls to shared libraries, but
we announced the need to hook calls inside the application.

3.2.2 Static caller-side rewriting

The idea of the caller-side rewriting approach is to modify each call of the hooked method
(see Figure 3.1(a)). This is done by finding all calls of the hooked method and either
replacing them with calls to the hook, or surrounding it with additional code. The
problem that normally occurs here, is that it is not possible to distinguish between calls
and other code in some cases. Caller-side rewriting can also significantly increase code
size and thus impact performance, as the same code has to be added multiple times.

When modifying Android DEX files, it is rather easy to find the calls, as one only has to
search for a corresponding method invocation instruction2 in the DEX byte code, which
is unique for every method. This approach was implemented by AppGuard [3] to modify
applications before they are installed. However, as Backes et al. already mentioned, this
approach does not work at runtime, which we stated as one requirement before.

3.2.3 Static callee-side rewriting

It’s also possible to apply a hook by modifying the called method itself, which is called
callee-side rewriting (see Figure 3.1(b)). This is done by moving the normal method
code to a new location, and inserting the hook where it was before. While this approach
does not suffer from the problems described for the caller-side rewriting, it is not feasible
as a general purpose approach. Most operating systems, including Android, do not allow
modifying system libraries. This would be a requirement for static callee-side rewriting
to be used with calls to system libraries, which usually are of high interest when doing
instrumentation.

2invoke-static, invoke-virtual or invoke-direct for static, virtual or direct methods respectively

12 Chapter 3 Hooking

3.3 Dynamic hooking

In contrast to static hooking, the term "dynamic hooking" is used for mechanisms that
can dynamically apply a hook at runtime. This is extremely useful if the decision to
hook a method is based on the runtime environment. Dynamic hooking happens in
volatile memory only.

3.3.1 Call diversion

Call diversion (see Figure 3.1(c)) is often used as a dynamic hooking approach. It
makes use of the method table used by dynamic linkers in modern operating systems.
Calling a method will cause the system to look up the methods position in memory using
the method table before jumping to the memory location. On these operating systems,
hooks can easily be injected by manipulating the entry in the lookup table corresponding
to the hooked method.

Von Styp-Rekowsky et al. described how to use call diversion on Dalvik [9]. The Dalvik
virtual machine uses a virtual method table internally, which holds a reference to each
method’s byte code. By manipulating this reference, each call to a method can be
redirected.

On ART, most method calls do not use the virtual method table, although it still exists
as a fallback mechanism for methods that could not be resolved during compilation.
Instead the majority of methods are invoked by direct jumps, which call diversion can
not handle. As we listed the support of direct jumps as a requirement before, call
diversion can not be used to fulfill them.

3.3.2 Dynamic callee-side rewriting

Static callee-side rewriting is not feasible for the majority of operating systems because
they do not allow to modify system libraries. Dynamic callee-side rewriting is based on
the same idea, but circumvents this issue by modifying the in-memory copy of system
libraries instead of the originals. As these are loaded into the private address space of
the application using them, most operating systems grant the application write access
to the in-memory copy (or provide means to do so).

A dynamic callee-side rewriting approach for Windows was described by Hunt et al. in
1999 [10]. Their implementation "Detours" provided one of the first dynamic hooking
approaches that caused low performance and memory footprint.

Chapter 3 Hooking 13

3.4 Approach for ART

For ART, we found a dynamic callee-side rewriting approach to provide the most
sophisticated results. By changing the prologue of the method being hooked, we redirect
the call to another method leaving most of the original method intact. As the compiled
method is the only one being called on ART, whether the source of the call being a direct
jump, reflection or JNI, this approach promises good results without high performance
impact. However, we are not able to handle the method inlining optimization when
using callee-side rewriting. As the original method is no longer called if it was inlined,
it is not possible to modify the result of the method call by changing the method in
memory. But as method inlining only happens for extremely short methods that only
consist of static return values, we found this problem to be negligible.

Chapter 4

Implementation

To verify our findings and for further evaluation, we implemented the approach as a
library called "ArtHook". This chapter will cover further details on this implementation.

4.1 Design decisions

We accomplished our approach of callee-site rewriting with focus on portability. Non
accessible fields and methods are used as few as possible and JNI is only used to call
operating system methods like mmap. Our implementation is compatible with 32-bit
ARM and Thumb-21 instructions, which are the most common instruction sets used on
Android devices. To reduce the possibility for side-effects in a future version of ART,
all native code injected does not modify the memory. Additionally we also wanted our
library to provide an API, that allows developers to easily apply a hook.

4.2 Callee-side code injection

To inject code into the callee, the corresponding native code section needs to be writable.
By default it is mapped to the virtual memory readable and executable, but not writable.
We bypassed this issue by using the mprotect method of the Linux operating system,
which is able to remove the protection from the corresponding memory page.

The first bytes of the hooked method contain the prologue which sets up the stack and
stores the processor state in it, which is later recovered once the method returned. We
backup the prologue machine code and replace it with machine code that causes a jump.

1Most ARM processors support two instruction sets: 32-bit ARM instructions and mixed 16/32-bit
Thumb-2 instructions.

15

16 Chapter 4 Implementation

0x0: f000f8df ldr.w pc , [pc] Instruction to load the memory content at
the program counter into pc

0x4: b3d9d001 The jump target address loaded by the
instruction above

Figure 4.1: Code injected into the prologue of the callee.
This example uses Thumb-2 machine code.

0x00: c014f8df ldr.w ip , [pc , #20] Load the address of an ArtMethod
object into the ip register

0x04: 4560 cmp r0 , ip Compare the address with the
ArtMethod called

0x06: 8009 f040 bne.w 0x1c If it does not equal , jump to next
0x0a: 4801 ldr r0 , [pc , #4] else load the address of the

ArtMethod of the hook into r0
0x0c: f004f8df ldr.w pc , [pc , #4] and jump to corresponding code
0x10: 7458 a588 The address of the ArtMethod object

of the hook
0x14: b3db6cfd The address of the code of the hook
0x18: 7458 d1f8 The address of the ArtMethod object

of the hooked method (for comparison)
[...] Repeat above for merged methods
0x1c: 5 c00f5bd Execute the original prologue of the
0x20: c000f8dc hooked method
0x24: f000f8df ldr.w pc , [pc] Jump into the original code after
0x28: 73 b40cbd the prologue

Figure 4.2: Code of generated memory pages
This example uses Thumb-2 machine code.

Unfortunately, most instruction sets including ARM and Thumb-2 do only allow to use
branch instructions, which are normally used to jump to a different part of the memory.
We work around this restriction by building a jump instruction out of two parts (see
Figure 4.1). The first part contains the instruction to load the memory of the second
part into the register that holds the program counter (pc). The second part is not an
actual instruction, but the address of the jump target. By writing an address into pc,
we actively manipulate the control flow, without using the branch instructions.

4.3 Custom executable memory page

The target of the jump injected into the callee is a memory page specifically created
for each method body. This means that if two methods are merged and thus share the
same body (which is a possible optimization), there will be a single memory page for
both. This is needed, as the callee-side code injection will apply to all methods sharing
the same body.

This memory page contains routines to determine the actual method called from a
merged method by analyzing the ArtMethod object reference, which is stored in the first
register (r0) according to the calling convention. By comparing r0 with the address
location of the ArtMethod object of the hooked method, we can determine the hook that

Chapter 4 Implementation 17

should be executed. As the ARM processor does not allow to compare a register with
the memory, we use the Intra-Procedure-call scratch register (ip) to temporarily store
the address for comparison. According to the ARM calling convention, the ip-register
does not give any guarantees to preserve its value after a method call. We can therefore
modify it without causing side-effects.

If this procedure found a method call to be hooked, the corresponding hook is executed.
To stay compatible with the calling convention and to allow the runtime to generate
valid stack traces, we first update r0 to point to the ArtMethod object of the hook
and secondly update the program counter, using the same method as described for the
callee-side code injection. As we did not touch the stack, no cleanup is required after the
hook exits, which allows us to keep the link register which contains the return address
as it was originally. These steps are repeated for every hook applied to a method body,
which might be more than one.

If no corresponding hook can be found, we execute the original prologue (which we
backed up before) and modify the program counter to continue execution of the original
machine code right after the modified prologue. This does not only allow us to handle
merged methods correctly, it also provides an easy way to call the original method from
everywhere if we want to. By creating a clone of the ArtMethod object, we can create a
Java reflection Method object, which behaves the same, but resides in a different memory
address. Due to this difference, the comparison will fail and thus the invocation of the
clone will execute the original method.

4.4 Library design and usage

As we wanted our library to be easy to use, we put a lot of the logic code into the
background to provide developers with a very small API. As the logic code requires
some input from the developer, we use Java reflection and annotations to provide them.

To implement a hook, the developer needs to define the hook as a static method and
annotate it with the Hook annotation. The method needs to define an object which
will become the this object as first parameter and the method parameters afterwards.
The Hook annotation takes a string as a parameter that defines the method that should
be hooked. The string is build up from the package name, class name and method
name, for example java.util.ArrayList->add. If the method is overloaded, the
actual implementation will be automatically choosen by the parameter types of the
hook. Every hook declared in a class this way can be applied dynamically by calling
ArtHook.hook(Class) with the hook defining class as a parameter. Alternatively, it
is possible to hook Methods directly by calling ArtHook.hook(Method, Method) with
original and replacement Method object as parameters.

18 Chapter 4 Implementation

1 public class MyApplication extends Application {
2 @Override
3 public void onCreate () {
4 super . onCreate ();
5
6 // initialize the hook (s) on Application creation
7 ArtHook .hook(MyApplication . class);
8
9 // Call a hooked method

10 new SipAudioCall (this , null). startAudio ();
11 }
12
13 @Hook (" android .net.sip. SipAudioCall -> startAudio ")
14 public static void Sip_startAudio (SipAudioCall call) {
15 Log.d(" Debug ", "This hook is invoked ");
16
17 // Call the original method
18 OriginalMethod .by(new $() {}). invoke (call);
19 }
20 }

Figure 4.3: Example illustrating the functionality of the hooking library

Another interesting part of the API is calling the original method. We provide multiple
different means to do so, as we found that easy solutions might cause problems in some
rare cases. These are implemented in a dedicated class OriginalMethod, which contains
methods to retrieve pointers to original methods as well as the possibility to invoke them.
Once an OriginalMethod object is accessible, its invoke (or invokeStatic respectively)
method can be used to invoke the original method.

We provide an API to retrieve the original method based on the current stack state.
This is done by searching the stack trace for a method that is annotated with @Hook

and using that as a base to find the the original method. This can be done by calling
OriginalMethod.byStack(). The caveat of this method is that it is not able to handle
method overloading, as Java stack traces do not contain the information required to
distinguish two methods with the same name. Another approach that does not require
to explicitly name the method inside itself is the use of an anonymous inner class. The
reflection API has a reference to the holding method for each anonymous inner classes,
making them usable as anchors as well. OriginalMethod.by(new $() {}) provides
exactly this behavior.

Both of these approaches share a common issue: they make heavy use of reflection.
Reflection is known to be rather slow in some cases. Additionally this will make it
impossible to hook the reflection API itself, as it would cause a recursion loop. We
provide an easy way to call the original method that does not have this issue. It
requires the method to be annotated using @BackupIdentifier, which takes a single
unique string as parameter. The original method can than be invoked by calling
OriginalMethod.by(String) with this unique string as parameter. This is also possible
when applying the hook manually using ArtHook.hook(Method, Method, String).

Chapter 5

Evaluation

5.1 Functionality

To prove correctness of our approach as implemented by the ArtHook library, we used
it in a sample application. In this application we tested all different kinds of methods
to prove that it works correctly.

After it was tested intensively in our test environment, the ArtHook library was inserted
into the latest version of AppGuard [3], which uses it to dynamically apply a security
policy in monitored applications. The inclusion of ArtHook did not cause greater
problems and since AppGuard 2.3, ArtHook is part of a release grade software.

5.2 Performance

Beside functionality, performance plays an undeniable importance when hooking meth-
ods, especially when an applications with real-time routines is hooked. We thus also
analyzed performance implications caused by ArtHook. We executed these tests on a
real device, specifically the second generation "Nexus 7" tablet, which comes with a
1.5GHz quad-core processor.

5.2.1 Micro benchmark

We started our performance measurement by doing a micro benchmark. The idea of
this benchmark is to analyze the time needed to call a certain method. In our case, the
target method was empty, because our measurement should focus only on the hooking.
We measured a test environment overhead of a few nanoseconds per call for the test
loop. Depending on the time required for the operation tested, we repeated it between

19

20 Chapter 5 Evaluation

Testcase Time
Applying all hooks in a class automatically ~9ms/hook
Applying hooks manually ~7ms/hook
Test environment overhead ~0.000002ms/call
Call an empty method ~0.000009ms/call
Call an empty hook ~0.000010ms/call
Call a hook that uses preFetchedMethod.invoke() 0.002ms/call
Call a hook that uses OriginalMethod.by("ident").invoke() 0.008ms/call
Call a hook that uses OriginalMethod.by("ident") 0.004ms/call
Call a hook that uses OriginalMethod.by(new $() {}).invoke() 0.561ms/call
Call a hook that uses OriginalMethod.by($.class).invoke() 0.560ms/call
Call a hook that uses OriginalMethod.byStack().invoke() 0.831ms/call

Figure 5.1: Micro benchmarks of different features of ArtHook

10 thousand and 10 million times to receive a good average and measurable results. The
results of the micro benchmark are listed in Figure 5.1.

At first, we analyzed the hooking process itself. The memory allocation and modification
done during the hooking is native code. It also contains several context switches into the
kernel. This resulted in a raw hooking time of about 7ms per hooked method. Additional
2ms are required to analyze a class and the hooks stored inside if the easy API with
@Hook is used. Although the overhead of 7ms is quiet heavy, it can be considered
negligible for most users, given that the number of hooks applied will not exceed a few
hundred in most cases.

Secondly, we wanted to know what the performance overhead caused by the redirection
instructions, that are added to the method, is. As these are only a few additional
machine instructions, we expected it to be very low. The benchmark results confirm
this expectation: The additional time required by a hooked method call compared to a
normal method call was about one nanosecond.

And finally we analyzed the call of the original method from inside a hook. As described
in section 4.4, we provide different means to call the original method. As some of
them make more use of the reflection API than others, we expect to see differences in
performance. The invocation of a method via reflection takes about 200 times longer
than without reflection.

This however first requires to have a reference of the method object. Looking up a
method based on the @BackupIdentifier annotation and calling it, will take a total
8µs per method call. Calling a method based on an anonymous inner call takes about a
half millisecond and traversing the stack to obtain a reference requires even more time.

Chapter 5 Evaluation 21

Test Reference Hooks applied Hooks applied, original method pre-fetched
Canvas 58.38 57.87 -0.8% 58.46 +0.1%
Text 58.10 58.44 +0.5% 58.37 +0.4%
Circle 59.33 20.24 -65.9% 56.28 -5.1%
Circle2 31.18 29.61 -5,0% 30.19 -3.2%
Rect 6.44 3.72 -42.2% 6.21 -3.6%
Arc 14.54 9.21 -36.7% 14.00 -3,7%
Image 31.26 13.76 -56.0% 29.83 -4.5%
Average -41.2% -4.0%

Figure 5.2: Benchmark results of 0xbench 2D. Values in frames per second.
The average given does not consider the tests "Canvas" and "Text".

5.2.2 0xbench 2D

To analyze how ArtHook performs in larger scale, we used it with 0xbench. 0xbench

is an open-source Android benchmark suite covering several test-cases like 2D- and 3D-
graphics floating-point arithmetic and native JavaScript performance. Most test-suites
do not make use of enough Java method calls, to show a significant difference when
hooked or not.

0xbench 2D uses the Android canvas API to draw screen contents in real-time. By
hooking into the canvas API we thus have substantial influence on the test result.
Additionally this benchmark covers an API that is used often by applications to draw
screen contents and requires a lot of method calls.

For the benchmark, we hooked into 6 drawing entry points in the Android canvas API
and additionally in the View.onDraw method, which is called whenever the screen is
redrawn. Hooking into a method here means that we inject a hook that does nothing
but calling the original method. One benchmark run (which includes 7 tests) takes
about 330 seconds and involves of about 270.000 calls to the methods we targeted. The
results of the benchmark are presented in Figure 5.2.

When we started the benchmarking, we noticed that the results of two tests ("Canvas"
and "Text") are not useful for us. As Android uses vertical synchronization when drawing
screen contents to reduce tearing artifacts, the maximum volume of frames generated
is capped at 60 FPS (frames per second). As a result, the number of frames generated
with and without hooking does not differ when using these two tests. We therefore did
not use them for the following analysis. As the results of the other tests sometimes
fluctuated by a few frames (although 0xbench already averages them), we ran every test
5 times and took the average of them.

At first, we did the benchmark by using an anonymous inner class to call the original
method. The result was a performance decrease of about 41% on average. This is an
expectable result considering that our micro benchmark showed that the method calls
involved in the test will take up about 135 seconds.

22 Chapter 5 Evaluation

We then repeated the benchmark using a hooking method that does not lookup the
original method every time, but fetches it one time and uses it afterwards. As seen in
the micro benchmark, this reduces the amount of work drastically. In the 0xbench 2D
benchmark, the performance loss was reduced from 41% down to 4% when using cached
original methods.

Chapter 6

Related Work

We presented related work in form of hooking approaches in chapter 3. This chapter
introduces a different approach on hooking as well as a well-done use case in a single
project: The Xposed Framework.

6.1 Xposed Framework

The Xposed Framework [11] is a modification of the Android operating system, that
allows modules to inject hooks into any application or system service. This makes
it a powerful, extensible and easily-usable modification framework, resulting in high
popularity within users that use non-default operating systems on their smart phone.

6.1.1 Xposed on Dalvik

Xposed was originally developed for Dalvik on Android 4.0 and was later extended
to work on Android versions up to 4.4. The framework is inserted in the system by
modifying app_process, the executable called whenever a new Java process is started.
It adds a new library to the Java classpath and modifies the start-up, so that the
framework can be initialized and modules can be loaded. The actual hooking is done
by doing call diversion. Dalvik’s Method-object that exists for each method is the entry
point: It allows to do arbitrary modifications to the method. Xposed modifies the
method and marks it as native. Further calls of the method will no longer be directed to
its original body but the entry point marked inside the Method-object, which is modified
as well to point to a global native method. All calls of the method will then be directed
to this native handler, which itself forwards the call to the actual hook.

23

24 Chapter 6 Related Work

6.1.2 Xposed on ART

At the time of writing, a technical preview of the Xposed Framework for ART and
Android 5.0 has been released. As it was for Dalvik, the Xposed version for ART relies
on modifications of the operating system. But instead of only extending it, Xposed also
modifies it. The most effective change is the modification of the ART compiler dex2oat.
The compiler is modified to disable the optimizations direct calls and method inlining.
This way, all calls will require to lookup the methods entry point in the ArtMethod

object. At this point, Xposed for ART behaves like its counterpart for Dalvik: The
method is marked as native and the corresponding entry points are modified. Due to
the strong integration with the operating system and as patching the binary operating
system is hardly possible in most cases, Xposed for ART currently lacks portability,
reducing the number of users drastically.

Although Xposed provides a hooking mechanism for ART, it works on a basis of modify-
ing the underlying operating system, making it less usable for wide-spread application.
The capability to hook other processes however is worth the lack of portability.

Chapter 7

Conclusion

In this thesis we presented a method hooking system for the new Android runtime ART.
By using callee-side in-memory method rewriting, we were able to address the special
requirements of the runtime environment caused by the ahead-of-time compilation and
optimizations introduced with it. We also provided an overview of ARTs behavior and
binary files. We developed the ArtHook library, which provides the described hooking
mechanism with an easy API to developers for debugging and security purposes.

7.1 Limitations and future work

The hooking approach presented is not able to handle calls of inlined methods. We
found that it will be possible to hook these methods by using dynamic caller-side
rewriting. This however is likely to have a large performance impact which is not
desirable. Dynamic caller-side rewriting can thus only be an extension of an existing
hooking approach, but should not be used stand-alone.

During the evaluation we noticed that our easy API has significant performance dis-
advantages compared to a more direct usage of the hooking methods. This is partly
addressable by caching the method resolution inside the hooking library. However,
additional API improvements might be needed.

The ArtHook library currently only support 32-bit ARM CPUs. Our implementation
also makes use of a few singularities inside the ARM calling convention and instruction
set, which might or might not be portable to other CPUs. The latest Android version
supports 64-bit ARM processors, 32- and 64-bit x86 processors and 32-bit MIPS pro-
cessors, with support for 64-bit MIPS processors being planned for a future release. To
be portable and future-proof, ArtHook should support all of these processors and the
instruction sets provided by them.

25

26 Chapter 7 Conclusion

The approach used within the Xposed Framework to hook into remote processes is
a nice feature. Although it might require permissions normal users do not reach, it
also increases the set of possible features. In combination with such a framework, an
application like AppGuard would no longer need to ask the user about updates or force
him to uninstall, but can dynamically apply its policies.

7.2 Availability

The ArtHook library is freely available. Its latest version including sample code can be
found in source form at https://github.com/mar-v-in/ArtHook.

https://github.com/mar-v-in/ArtHook

Bibliography

[1] Gartner Inc., “Gartner says tablet sales continue to be slow in 2015.” at http:

//www.gartner.com/newsroom/id/2954317, January 2015.

[2] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: Trading privacy
for application functionality on smartphones,” in Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications, HotMobile ’11, (New York, NY,
USA), pp. 49–54, ACM, 2011.

[3] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-Rekowsky,
“Appguard: Enforcing user requirements on android apps,” in Proceedings of the
19th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’13, (Berlin, Heidelberg), pp. 543–548, Springer-Verlag,
2013.

[4] Android Open Source Project, “Introducing ART.” at http://source.

android.com/devices/tech/dalvik/art.html, now available at https:

//web.archive.org/web/20131104002414/http://source.android.com/

devices/tech/dalvik/art.html, November 2013.

[5] Android Open Source Project, “Configuring ART.” at https://source.android.

com/devices/tech/dalvik/configure.html, March 2015.

[6] B. Carlstrom, A. Ghuloum, and I. Rogers, “The ART runtime.” at Google
I/O 2014, now available at https://www.google.com/events/io/io14videos/

b750c8da-aebe-e311-b297-00155d5066d7, June 2014.

[7] TIS Committee, “Tool interface standard (TIS) executable and linking format
(ELF) specification, version 1.2.” at http://refspecs.linuxbase.org/elf/elf.

pdf, May 1995.

[8] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions
demystified,” in Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, (New York, NY, USA), pp. 627–638, ACM,
2011.

27

http://www.gartner.com/newsroom/id/2954317
http://www.gartner.com/newsroom/id/2954317
http://source.android.com/devices/tech/dalvik/art.html
http://source.android.com/devices/tech/dalvik/art.html
https://web.archive.org/web/20131104002414/http://source.android.com/devices/tech/dalvik/art.html
https://web.archive.org/web/20131104002414/http://source.android.com/devices/tech/dalvik/art.html
https://web.archive.org/web/20131104002414/http://source.android.com/devices/tech/dalvik/art.html
https://source.android.com/devices/tech/dalvik/configure.html
https://source.android.com/devices/tech/dalvik/configure.html
https://www.google.com/events/io/io14videos/b750c8da-aebe-e311-b297-00155d5066d7
https://www.google.com/events/io/io14videos/b750c8da-aebe-e311-b297-00155d5066d7
http://refspecs.linuxbase.org/elf/elf.pdf
http://refspecs.linuxbase.org/elf/elf.pdf

28 BIBLIOGRAPHY

[9] P. von Styp-Rekowsky, S. Gerling, M. Backes, and C. Hammer, “Idea: Callee-
site rewriting of sealed system libraries,” in Proceedings of the 5th International
Conference on Engineering Secure Software and Systems, ESSoS’13, (Berlin,
Heidelberg), pp. 33–41, Springer-Verlag, 2013.

[10] G. Hunt and D. Brubacher, “Detours: Binary interception of win32 functions,” in
Proceedings of the 3rd Conference on USENIX Windows NT Symposium - Volume
3, WINSYM’99, (Berkeley, CA, USA), pp. 14–14, USENIX Association, 1999.

[11] “Xposed module repository.” at http://repo.xposed.info.

http://repo.xposed.info

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 ART Android runtime
	2.1 Introducing ART
	2.2 Ahead-of-time compilation
	2.3 OAT file format
	2.4 Optimization
	2.5 Method handling

	3 Hooking
	3.1 Requirements
	3.2 Static hooking
	3.3 Dynamic hooking
	3.4 Approach for ART

	4 Implementation
	4.1 Design decisions
	4.2 Callee-side code injection
	4.3 Custom executable memory page
	4.4 Library design and usage

	5 Evaluation
	5.1 Functionality
	5.2 Performance

	6 Related Work
	6.1 Xposed Framework

	7 Conclusion
	7.1 Limitations and future work
	7.2 Availability

