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Abstract

Abstract

There exist a lot of cryptographic protocols that claim to fulfill goals such as keeping a message
secret or providing authenticity. Time has shown that even if we assume the cryptographic
principles secure, a protocol can be flawed by design. It is important to use formal meth-
ods to prove the claimed security guarantees of a protocol because intuitive reasoning often
misses important cases. This work addresses the automated verification of safety properties
of cryptographic protocols.

Caspa, the tool we present, is capable of verifying authenticity of participants as well
as the secrecy of messages in a fully automated way for a possibly unbounded number of
parallel sessions. It is based on the notion of causal relations between messages and events in
a protocol introduced in [3]. Caspa offers an easy-to-use graphical interface that allows even
users not familiar with the underlying theory to analyse the security of a protocol.

This work will present the analysis technique as well as the architecture of the tool, focus-
ing in particular on the implementational details that make features as attack reconstruction
possible and the different ways to interact with the program.
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1. Introduction

Section 1

Introduction

1.1 Motivation

Communication is a daily activity in our lives. We talk to people, send emails, write letters,
do phone calls, etc. All these forms of communication follow certain rules. When talking to
someone we meet on the street, we usually start the conversation by greeting him. After-
wards the real conversation by means of exchanging information begins and at the end we
say goodbye to each other. If we write these simple rules down and follow them for every
conversation of this type we do, then we stated a protocol. A protocol defines the ”rules of
conversation” for a specific communication. On the Internet we use protocols for nearly every
action we do without really noticing it: Http when visiting a webpage, ftp when downloading
a file, and smtp for sending emails to name a few.

In the real world we usually can see the person we talk to and thus decide whether it is the
person we think it is and we can check that no one else is eavesdropping on our conversation.
When we talk to other people over the Internet a problem arises. Usually we have now
idea whether the person we are talking to is the one whom he claims to be and we do not
know whether the messages we send are unchanged or kept secret. This issue is addressed
by deploying cryptography into protocols to ensure goals such as keeping a message secret or
authenticating someone. In this case we talk about cryptographic protocols.

In order to standardize protocols and make them available for everyone, they are written
down in some representation. We will introduce a graphical one that is easily comprehensible
for humans and a more technical representation, the common syntax [10], [8], that allows for
machine processing, and use them for the rest of this work.

I: B ->A: {B, n, m}PK(A)
22 A->B: n

protocol in common syntax _ n )
protocol in graphical representation

B

A e{B)nzm}k"A“

The goal of the protocol above is to establish a secure and authentic exchange of the
message m. In other words, after running the protocol, the message m is only known to the
participants A and B and at the end B is convinced that the message was received by A. The
first part of a step in the protocol in common syntax is of the form A -> B:, meaning that A
is sending a message to B. In literature A and B are most often referred to as Alice and Bob
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and we will follow this through the remainder of this work. Other parties are C as the general
attacker and ”man-in-the-middle” and S a (trusted) server. Then, after a colon, follows the
information that is sent in this step. In the graphical representation the parties are the nodes
of a directed multigraph. The edges are communications, content is denoted on the edge. It
points from the originator to the receiver.

The first message sent in the example is a ciphertext, indicated by the curly brackets
around it, that is encrypted with the public key of A, denoted by PK(A) or ka ™. This first
message is called the challenge. The ciphertext contains the identity B, a nonce n, and the
message m. In the second step of the protocol, the response, A returns the nonce received in
step one to B and the protocol is finished. We assume that public keys are known to everyone
without explicit distribution. Moreover we assume that cryptography used in the protocols is
perfect, or at least as good as we want it to be. These are abstractions from the real world,
but we want to reason about the logic of the protocol, not the security of concrete algorithms
or even the question whether concrete algorithms that provide certain guarantees exist at all.
The goal is to decide whether the protocol could fulfill the goals it claims to address under
the assumption that the cryptography involved works. From this assumption follows directly
that only Alice can decrypt the ciphertext received in the first part with her private key that
only she knows. Thus the security of the message m is given. It is sent only once in encrypted
form.

The second goal of the protocol is that B can be sure that A actually received m. At this
point, the nonce n gets important. A nonce is a fresh value, usually a number, that is only
used once. It is generated randomly every time it is used, so no attacker can guess the value
of a nonce. Due to the fact that the nonce n is encrypted together with the message m, only
Alice can decrypt it and so she is the only one besides Bob who knows this value. When Bob
receives the nonce n he can be sure, that Alice was the sender of the response. We say B
authenticates A.

Can we do any better? Protocols are designed to fulfill tasks in the real world. There the
time needed for encryption and decryption and the amount of bytes a message sent over the
Internet consists of are important factors. Additionally we assume that every message sent
in a protocol step contains some information about its origin, so Alice still knows where the
message she receives comes from, even without the explicit use of the identity in step one of
the protocol. So we could try to leave out the identity B in the first step of the protocol.

Our modified example looks as follows:

1: B -> A: {n, m}PK(A)
2. A ->B: n
changed protocol

But now a problem arises. Like in the real world, where we have for example ip-addresses
to determine the origin of a message, we can’t trust this embedded origin information. Mali-
cious parties are able to spoof them as they are with ip-addresses. So A cannot be sure any
longer that the message she receives originates from the party that claims to be the origina-
tor. These dishonest parties could try to inject information like viruses or spyware into the
communication by convincing A to execute the message she believed came from B or just try
to get information out of the conversation of third parties. In our abstraction we denote these
malicious parties as E and call it the environment. Now let us have a closer look at what
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happens if we leave out the explicit origin information.

In the first step we still send m and the nonce n encrypted with the public key of A but
we leave the identity B out. This opens the door for an attack. E now can intercept this first
message, change its origin to be him and then forward it to A. Alice is now convinced that
the protocol has been initiated by E whereas B thinks he is talking to A. A then decrypts the
ciphertext and returns n to E. E forwards it to B and the protocol run is finished. The goal of
authenticity is broken. Alice is convinced, she has a protocol run with E and B is convinced
to have a protocol run with A. However the message m remains secret. E has interfered with
the protocol run but still knows nothing about m. So what is the problem about E breaking
authenticity? This will get clear when we take a look at the following example for a possible
usage of this protocol.

Consider A as some institution that sends confidential information out to people if it
receives a request via the Internet using our protocol. The message m specifies what kind of
information is requested. The attacker does not learn m but still A would send any information
to him because he was the originator of the request. So even without revealing the message
m this breach of authenticity renders our protocol insecure.

Here we reach the borders of intuitive reasoning. Even this small change, that looks
harmless on first sight, breaks one of the goals of the protocol. If we consider bigger protocols
with even four, five or more steps, it gets much more complicated. An attacker can try to
use messages from one protocol session in each other. We will demonstrate this on a second
example, the Needham Schroeder Symmetric Key protocol [14]. The goal of this protocol is
to exchange a symmetric key between Alice and Bob using a trusted server S with mutual
authentication between A and B. In this protocol a special operation dec is used. This op-
eration decrements a nonce. This is possible as we have seen that nonces are usually numbers.

1: A ->8: A, B, na

2: S -> A: {na, B, Kug, {KAB’ A}KBS}KAS
3: A ->B: {Kps, A}Kps

4: B -> A: {Ilb}KAB

5. A -> B: {dec(ub) }Kpp

Needham Schroeder symmetric key protocol

Both parties, A and B, have a preshared key with the trusted server S, namely Ks and Kgs.
In the first step of the protocol Alice sends her identity, the identity of the person she wants
to communicate with and a nonce to the server. The server then creates a session key for the
parties that are willing to communicate and creates a message designated for the intended
communication partner B. He returns this message, encrypted with his shared key with B,
the session key, the nonce of Alice and the identity of the intended communication partner,
B, all encrypted with his shared key with A. The encrypted pair of the session key and A’s
identity can only be decrypted by the designated communication partner B. Thus a malicious
originator cannot change or modify the content of this package in order to get B talking to
someone else. Alice now forwards this package to Bob. He then knows, after decrypting it,
that it is Alice who started the conversation by her identity and receives the session key for
their further communication. Again the fact that S is a trusted server is important. The
ciphertext Bob receives in step 3 is encrypted with the key he shares with the server. So
Bob is convinced that the server really got a request that Alice wants to communicate with

3
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him. B then sends A a nonce encrypted with the freshly distributed session key. Thus Alice
knows that Bob received her request and got the session key out and she is convinced that
she is really talking to Bob. In order to convince Bob that she is the one whom she claims
to be, by proving to know the session key, she decrements the nonce received from Bob and
returns it to him, encrypted with the session key. This change in the content is important
because without this an attacker could just mirror the message sent in step 4 to Bob breaking
the mutual authentication. After receiving the decremented nonce in the last step of the
protocol, B is also convinced that he is talking to Alice. Both now share a session key and
authenticated each other.

However this protocol suffers from a weakness. We have to assume that an attacker can
record every step of the protocol. He may not be able to decrypt anything, but he can try
to insert it in a parallel or later protocol session. Furthermore a session key, as Kug in this
example, could become compromised after the session and thus should never be used twice,
as the name indicates. A session key could get lost by means of social engineering or weak-
nesses on the machine it is used, or maybe it is just a weak key that is only strong enough
for a certain amount of time. As soon as this happens the authentication of the protocol
can be compromised. Step 3 of the protocol contains the session key and the initiator of the
conversation, but no freshness information like a timestamp or a nonce. A malicious party
can resend step 3 of the protocol to Bob in a later or parallel session, after compromising the
session key:.

1: A ->S: A, B, na

2: S -> A: {na, B, Kug, {KAB: A}KBS}KAS
3: A -> B: {KAB R A}KBS

3a: E -> B: {KAB , A}KBS

4a: B -> E: {nb}Kpp

Sa: E -> B: {dec(nb) }Kap
Needham Schroeder symmetric key protocol attack

In step 4a Bob would send the message to Alice but E intercepts it. Intercepting messages
and simply dropping them is something we assume an attacker can always do. At the end of
this modified protocol run, Bob is convinced he is talking to Alice but in fact he is talking
to the attacker. Since the attacker compromised the session key, he is now able to decrement
the nonce sent by Bob and thus send him the correct response in 5a. After the protocol run,
B could use the now shared session key Kyp for further communication, so in the latter case B
would communicate with E as he would be a trusted party.

The protocol was proposed in 1978 and it took three years until the attack was found
by Denning and Sacco [9] and this is still a protocol of moderate complexity. In the first
example we saw that leaving a single identity out can give an attacker the option to change
the meaning of a message without even breaking its secrecy. The second one made it clear
that even a protocol that looks secure can break down if we take parallel sessions into account.
Moreover we noticed that it took years to discover the weakness in the latter example. So we
have to have formal methods for analyzing protocols in order to be able to handle these huge
amount of completely different possible weaknesses of protocols.

4
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1.2 Analysis techniques

First of all the bad news: analyzing safety properties of cryptographic protocols is undecidable.
Intuitively this is because of the fact that an attacker could run arbitrary many protocol
sessions in parallel at the same time to attack one single session. In order to decide whether the
protocol is safe or not, we would have to use a machine that takes into account an unbounded
number of protocol sessions in finite time. There exists no such machine. However we can still
reason about cryptographic protocols and make statements about their security with certain
restrictions. In general there are two approaches to this problem, dynamic analyses and static
analyses.

Dynamic analyses try to explore every possible state of a protocol by running it. These
techniques are also called model-checking or state-space exploration. If it is possible to cover
every possible state when model-checking, this technique can actually proof or disproof se-
curity of the checked model. When talking about hardware, that has a finite set of states,
this works fine, given that we have enough resources to explore every state. For analyzing
protocols this does not hold. As mentioned, an attacker could use arbitrary many protocol
sessions in parallel to attack one. This cannot be modeled with a finite state set. We can still
try to cover as many states as our resources allow. If a flaw is found we can often exactly
determine where it occurred and how. However, if no flaw was found, this can either mean
we did not spend enough resources on searching, or there is none. So dynamic analyses can
proof weaknesses and give hints on the security of a protocol.

Static analyses on the other hand do not actually run the protocol. Here we reason about
an abstraction of the actual protocol semantics, i.e., we abstract away from exactly these
aspects of protocols that make them undecidable. As result we do not have to explore an
infinite state space any more.

The drawback is that we lose precision due to the abstraction. Everything that can be
proven in the abstraction holds in the real model too but the opposite does not hold. If we
cannot deduce the security of a protocol in our model, this can either be a real flaw or it may
be that the abstraction is too unprecise to analyze it correctly. However with static analyses
we can actually prove a protocol secure by proving it secure in the abstraction.
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Section 2

Causality-based abstraction

Caspa implements a static analysis called causality-based abstraction introduced in [3]. The
idea behind this technique is to capture the causality between events and messages sent in
a protocol. Basically this is done in two steps: First the protocol is translated into a causal
graph €. This is a finite directed graph that models the causal relations occurring in a
protocol. The nodes or abstract processes represent states the protocol can be in. These
processes are so-called p-spi processes. If we follow the edges from a given node v up to a
source of the graph we can see which states must have occurred in order for a session to reach
this state. We talk about a trace set or path. There can be more than one path for a given
node v. The second step of the technique is to check all these trace sets capturing the causal
relations needed to reach a specific state separately for their safety. It is sufficient for a path
to be safe if there is at least one safe trace in the set, but for a node v to be safe all pathes
that lead there must be safe.

One of the major benefits of causality-based abstraction is that arbitrary many protocol
sessions are abstracted into one finite graph. This gives us the possibility to decide whether
our model is safe or not. So if we can prove a protocol safe with this technique, it is safe,
even if run with unboundedly many sessions in parallel.

2.1 p-spi calculus

In order to be able to translate our protocol into a causal graph we have to represent it in a
dialect of the p-spi calculus from [6, 7]. It is derived from the spi-calculus introduced in [1].
While the spi-calculus is appropriate for the analysis of authentication protocols, the extension
introduced in p-spi associates principal identities with processes, binds keys to their owners
and contains authentication-specific constructs. As mentioned above, every node represents a
process. The source of the graph is a process representing the whole protocol. Such a process
is a chain of instructions that are processed one by one, e.g. begin authentication - read
a nonce - end authentication. Two processes running at the same time are called threads.
In order to go from one process to another we have to reduce it. Reducing here means
abstractly executing the first instruction in the chain and moving on to the resulting process.
One possible reduction is called intra-thread reduction and can be done without interacting
with another thread. The other one is called inter-thread reduction. This, means that in
order to reduce a process, input from another process is needed. In this way communication
is modeled. Intra- as well as inter-thread reduction can cause a split into several threads.

7



2.1. p-spi calculus

A
beginl (A, B,m)

{B,n,m}kji B

endl (B, A, m)

init := new(m).new(n).out({B, n, m | pubkey(A)}).in(n).end(1 n B A m).0;
resp := in({B, x, z | seckey(A)}).begin(l x A B z).out(x).0;

newkey(A) . (B |> init || A |> resp)

Figure 2.1: Protocol with authentication assertions

The former if we reach a parallel-instruction, the latter if there is more than one possible
communication for an in-instruction.

Now we will present the example from the first chapter, translated into the p-spi calculus.
Afterwards we will see the grammar of the dialect introduced in [3] in a slight variation
suitable for automated processing by Caspa.

The first line describes the actions done by the initiator of the protocol, Bob. Assigning
this part of the protocol to the label init and later on using this label instead of the whole
first line allows us for a clean way of writing of protocols. So Bob first creates the names m
and n with the new-instruction. The abstraction does not differentiate between nonces and
messages, both are names and are unguessable by an attacker. All names used have to be
introduced by a new-instruction because the only entities known to the participants at the
beginning are public keys, their secret keys, symmetric keys, and identities. The latter have
not to be introduced by new. A name that is not introduced by a new-instruction is free and
hence known to the attacker. If the same new happens to be visited more than once, for
instance by an attack in a parallel session, the new name gets a-renamed and is treated as
being different from the one already introduced. This enlarges the graph dramatically as we
will see later on, but makes our analysis much more precise. There are protocols we could
not analyze without a-renaming.

Free names are abstracted to EPS when the protocol is read. EPS abstracts every message
the environment can invent by itself including every identity possible and public knowledge.

Bob then sends his identity, m and n encrypted with the public key of Alice. The whole
ciphertext enters the knowledge of the environment. The environment contains everything
that is public knowledge and thus everything that an attacker could deduce.

The second thread, labeled with resp for response, begins with the reading of a ciphertext
encrypted with the public key of A. There are variables in this in-instruction that will bind to
the input read. Caspa only considers messages that fit the pattern of the in, e.g. if a triple
encrypted with the secret key of Alice is read then only an encryption of a triple with her
public key will be considered a match. As mentioned above communication has no specific
target so the environment simply tries to plug everything into this in-instruction that fits the
pattern. This includes of course the correct message sent by B, but also every triple that can
be constructed out of the knowledge the environment has learned so far, including EPS.

It is necessary for the environment to exploit all possible matches for an in in order to
show that no maliciously crafted message inserted instead of the honest one leads to an unsafe
path and thus can break authenticity or secrecy of the protocol. So only if the environment

8



2. Causality-based abstraction

Name
a = I, J, A, B, E identities
| n, m messages
| symkey (I, J) symmetric keys
I pubkey (I) public-keys
| seckey (J) secret-keys
| epsilon environment messages
Process
P, Q = new(n) .P
| newkéy(I) .P Term
| in(M) .P
M, N n= a names
| out (M) .P | %, 9, z variables
|  Dbegin(i n A I M).P | ’ M, - fuples
| end(in A I M.P | qu |’u} ciphertexts
| Al>P
| P |l Q
| 0?

Notation: u ranges over names and variables

Table 2.1: Grammar of the p-spiCalculus as accepted by Caspa

creates all possible matchings for this in, including the honest communication, we can be
sure that we can analyze the protocol correctly.

In the example a possible match for the in is the ciphertext sent by B. So the nonce n will
be bound to the variable x and the message m to the variable z. This is denoted by labeling
the names with the variables yielding ny and m,. If a labeled message is then send out again
and bound to a new variable, the old labeling is overwritten.

The next instruction, the begin-assertion, is one of the extensions of the p-spi calculus.
This denotes the beginning of the authentication of Alice on the reception of m using the
nonce n with Bob. The numbers indicate what begin corresponds to which end. Afterwards
A sends out the nonce n and then the thread stops with 0, the stop-instruction. In the other
thread Bob expects the n as response and on receiving n proceeds with the end-instruction
corresponding to the begin in the resp-thread authenticating Alice receiving m in a session
using nonce n. The identities in this end are swapped compared to the begin. The first one is
the party acting, i.e., starting or finishing an authentication and the second one is the party
interacted with. Then this thread reaches its end, too.

The third line describes how the threads, now assigned to labels for easier use, work
together. A |> resp denotes that Alice starts the process resp and B |> init that Bob
executes init. This happens in parallel indicated by | between the two statements. |> is
another extension of p-spi associating principals with processes. Before the two threads start,
the public key of Alice enters public knowledge by the newkey-instruction.

The full grammar of the dialect of the p-spiCalculus used in Caspa is summarized in Table
2.1.

Everything starting with a capital letter will be seen as an identity by Caspa, while E

IFor the sake of readability Caspa will explicitly not accept parentheses around tuples.
2 Although we write 0, we say Stop.
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77 5,70

denotes the adversary. Strings starting with the small letters ”x”, ”y” and ”z” indicate vari-
ables and everything else starting with a letter is a message. The message epsilon abstracts
every message generated by the environment, i.e., identities, public keys, and attacker keys.
Caspa uses EPS in the graph and & in the traces to denote epsilon.

2.2 Causal graph generation

The top node of the graph is always a node containing the process representing the whole
protocol. The first part of the process is then examined and children added accordingly.
As mentioned above there are two types of causalities, namely intra-thread and inter-thread
causality. For every process q.P where q is not an in-instruction we have intra-thread causal-
ity. Let v be the node representing q.P then we create a new node as child of v with process
P. There are some processes that are treated specially, i.e., parallel execution, principal and
stop. For parallel execution two children, one for every process, are added. Principal results
in a child P and stop is the last node without any children. Reducing in- nodes requires a
message that matches the pattern. There can be more matches than the one intended by the
protocol run. The environment will plug in everything that fits. For every possible message
a child is created with a special link in between, a synchronization point, indicating the com-
munication and connecting the sources of the message with the in-node and the resulting
child. We will revisit them when we explain the edges in the next paragraph. Now consider
the process in(x, y).P as an example. Only the message m entered the knowledge of the
environment so far. So there would be four possible matches for this in-node, namely (m, m),
(m, &), (&, m), and (&, &), resulting in 4 new nodes. This is the reason why a-renaming can
have a heavy impact on the size of the graph as mentioned above. Suppose the message m
would be recreated resulting in m’. Then the possible matches would grow from four to nine
and thus further enlarge the graph. This growth is exponential.

While nodes represent states of the protocol, the edges represent the causality between
them. Intra-thread causality is represented by a single edge pointing from the predecessor
node to the successor. For inter-thread causality, things are slightly more complicated. As
mentioned above there exists a synchronization point linking the in-node, the sources of the
message matching the pattern and the successor of the in-node together. The point as well
as the links to the sources are labeled. The former with the actual message matching the
pattern and each of the latter with the integer-component. Intuitively the integer-component
determines which component of a message necessarily belongs to one single session. This is
important as the following example shows. Consider the name n sent out over the network. If
this name now matches two different in-nodes we cannot be sure that the name in both nodes
was taken from the same session as we abstract away from different sessions run in parallel.
This is addressed by the integer-component. Another example for an integer-component is a
ciphertext where the environment does not know the key. Without the key the content of this
message has to originate from the same protocol session, the one the ciphertext originates
from.

2.3 Analysis - secrecy and authenticity

After constructing a causal graph we can begin the analysis. The two properties we want to
prove are secrecy and authenticity. The first is relatively easy to check. A name n is secret

10
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1:(in(?x).0 | new(n).out(n).0)

AN

3:new(nl).out(nl).0

l

in(?x).0 4 : out(nl).0

J N

(5 Com(EPS x) (7 Com(nl x7(4, 1))

I

Figure 2.2: Example of a causal graph

if it never enters the knowledge of the environment at any point. Usually this goal is only
intended for some names occurring in a protocol, e.g. secret keys or specific messages. In our
example the message m is secret but the nonce n is not. m is only sent encrypted and the secret
key of A never leaks. n however is returned in plain by A and thus enters the environment.

To check authenticity we have a little bit more work to do. First of all authenticity cannot
be checked if there are no begin- and end-assertions annotated in the protocol. If so, there
has to be one matching begin in every path leading to one single end. Intuitively, whenever
a party finishes authentication with another party, the latter initiated it beforehand. The
environment however must not use assertions because then every protocol can be rendered
insecure. Consider for example the null process 0, that, by itself, is perfectly secure. However,
the protocol 0 || E |> end(1 EPS E A EPS) .0 would not be safe. Moreover we do not want
to check whether the environment can authenticate with an honest principle.

Now we have to take a closer look on paths as we need them for checking authenticity.
A path is a set of causally related traces needed to reach a designated node v in the graph
%. A trace is what one usually calls path when talking about graphs. It is one single way
from the source to v. To clarify this concept we introduce a small example. Figure 2.2 is
the causal graph for the protocol in(x).0 || new(n).out(n).0. The superscripts at the
synchronization points denote the origin node of the integer component by the first number
and the positional index it was sent at by the second number. All nodes in our graph have a
unique id, so a number is sufficient for determining the origin. We see these ids in Fig. 2.2
in front of the protocols of the nodes. This indexing is important when proving equality of
names later on. The numbers behind newly created messages originate from a-renaming.

As an example for trace and path generation we will compute the paths for the Stop-node,

11



2.3. Analysis - secrecy and authenticity

new (nl) :: out (nl) = iNeom (nl?ﬂ’cl), nl(x)>

{ new (nl) :: out (nl) }

{ in(&w) }

Figure 2.3: Paths of Stop for causal graph 2.2

the one with the id 6. When creating the paths for the node, we start with the node and
follow the graph up towards the source. In the following we will refer to the nodes by their
id for better readability. Node 6 has three parents, namely 5, 4 and 7. These nodes are
causally unrelated so we will have at least three paths. The only parent of 5 is 2 whose only
parent is 1, the source of the graph. This gives us our first trace 1-2-5-6. There is no causal
relation in any of the nodes of this trace so this is already the first path consisting only of a
single trace. This trace is sufficient for reaching the Stop-node. Following the node 4 directly
yields the trace 1-3-4-6 as is again a direct path as there is no branching here either. The last
parent of node 6 is 7. This node represents a synchronization point. It has two parents, an
in and a corresponding out. So there is a causal relation and we have to follow both parents
resulting in two traces needed to reach the top via node 7. The one is 1-3-4-7-6 and the other
1-2-7-6. Both of them form the third path and as there is no more branching on the way up
we got all paths for the node 6. In general, whenever there is a synchronization point, the
number of traces in one path increases because more than one trace is needed to reach the
child, whenever we have a branch that is not the result of a communication, the number of
paths increases. An exception is the communication where everything sent is created by the
environment. In this case no out-node is required to reduce the in. For every other inter-
thread causality there is one trace denoting the reduction of the in-process and one trace for
every out-process used. The resulting paths for node 6 are depicted in Fig. 2.3.

Paths are not only a formal construct for analyzing the authenticity of our protocols, they
can also give hints towards the cause of possible flaws. Caspa will output the path leading to
a break of authenticity as well as all pathes created. Following the traces in the path, it can
be checked whether it is an actual flaw and if so, at what point of the protocol and how it
occurred.

The description of trace finding is close to the implementation in Caspa. Real traces are
not represented by numbers but by actions. Actions are abstractions for the events that take
place in the real protocol. An out-node for example is transformed into an out-action that
represents a principal sending a message over the network. Neither parallel execution nor Stop
are represented by actions. Moreover, when computing the traces for a node v the traces are
computed up to this node, so the action for v is not part of the trace. A special case are in-
nodes followed by a synchronization with out-nodes. Then the in-node is transformed into an
in-action representing the event that something is received and an incom-action that follows
the out-action of the corresponding out-node. The incom contains the integer component as
first element and the message matching the pattern as second component. The indexing is
the same as we have seen in the causal graph above.

12



2. Causality-based abstraction

However there is one more thing that has to be checked before we can prove authenticity.
The names appearing in a causal graph do not necessarily originate from one single session,
but when arguing about authenticity the names in the corresponding assertions have to. In
order to proof the graph cycle-invariant we have to proof that we do not lose equality of
names, i.e., that names, which are equal when running through a cycle once, still are equal
when running through it several times. This is important to consider as the abstraction only
visits each cycle once. Only if the graph is cycle-invariant we perform a check for authenticity.

Proving two names in a causal net equal is done using a deduction system. Intra-thread
reduction has no impact on the equality. As there are no new names introduced all equalities
before the reduction still hold afterwards. When it comes to inter-thread reduction it gets
more difficult. We mentioned above that integer components guarantee origination from one
single session. So names from integer components are the only ones that can be proven equal
for inter-thread causality, as names, that are not from integer components and lost equality,
can still become equal to a name appearing earlier in a trace, if they are pattern matched.

Once proven cycle-invariant we can check the graph for authenticity. In order to do so
we compute the paths for every end-assertion in it. We consider a graph providing weak
authenticity if it is cycle-invariant and in every path for every end-assertion exists at least
one trace containing a matching begin-assertion. It provides strong authenticity if there is
exact one matching begin-assertion in every path.
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Section 3

Architecture

We decided to write Caspa in Ocaml [13], a functional programming language with object
oriented and imperative extensions. This gives us the power of implementing most of the
definitions ”as is” as functions but we can also use object oriented principles for implementing
own graphs or trees for example. Moreover we have the typical features of functional languages
like compile time type checking and a minimum of runtime errors. Especially when it comes
to mathematical definitions functional languages tend to produce very readable and clean
code in comparison to imperative languages.

We split the source code into logical groups of functions gathered in compilation units.
Every such module got its own file together with an interface definition. We tried to follow the
Ocaml implementation in this as much as possible for optimal re-usability and compatibility
of the functions we wrote.

The implementation of Caspa follows closely the technique presented in [3]. First the pro-
tocol will be translated into a graph, then the paths and path sets are computed. Afterwards
secrecy and authenticity are checked. We will follow this line in the description of the archi-
tecture as well. Due to the fact that Caspa reached a complexity that makes it impossible to
be presented completely here, we will focus on the key algorithms, i.e., graph generation and
path generation. Additionally we will explain the three extensions Thread Coloring, Secrecy
Tracking and Attack Reconstruction, which improve the usability of the output of Caspa for
further analysis greatly with only a minimal computational overhead.

Another interesting part of Caspa is the way users can interact with it. We will discuss
this in detail in the next chapter.

3.1 Graph generation

The first problem was the representation of the graph in the program. We decided for an object
oriented approach using a class representing the nodes. This gives us complete flexibility for
inserting, deleting and exchanging nodes in the graph. The node itself stores every important
information, e.g. the protocol it represents, and in addition we gave the node some useful
functions like one for printing itself. A special attribute of nodes worth mentioning separately
is their id. Whenever a new node is created, it automatically receives a unique id. Using
this id we can easily identify and compare nodes in the graph. When we output the graph
the nodes are annotated with their id. As in the Ocaml implementation we hide the concrete
implementation by a module with functions that operate on nodes. Only these functions are
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used throughout Caspa. This allows for exchanging the implementation of the nodes without
changing any project using them. Edges are modeled implicitly by the predecessor links in
the nodes. Every node has got a reference to its parent nodes. This is sufficient as the trace
generation works ”bottom-up” as we will see in section 3.2. The complete graph is stored as
a list of the nodes it contains.

The second problem was the question how to create the graph. Our first approach was
a depth first search. We examined one branch of the protocol until we reached the Stop-
node. Whenever we encountered a communication, everything that could be used for further
reduction, was examined. This was easily implementable as a recursive function, moderate
in memory consumption but for bigger protocols with lots of communication this algorithm
needed an ever increasing amount of time because of the large computational overhead. The
approach we finally chose can be compared to a breadth first search. We compute one
reduction step at a time for all branches that may exist. This needs some more space to
store the state we are in and some imperative programming constructs like loops, but on the
other hand it terminates and Ocaml gives us the flexibility to use such structures by default.

Implementation

After the protocol is parsed, Caspa has to build a graph from it. This is implemented in
the algorithms build new_graph (Fig. 3.1) and step (Fig. 3.3). First we create the level list
and initialize it with a node containing the whole protocol. Additionally an empty list for
the in-nodes is created and the environment reset. An in-node in this context is a node
containing a protocol beginning with an in-instruction. In the rest of this work we will refer
to such nodes as in-nodes. The main part of this function is a loop running as long as there
are nodes to reduce in the level or there are new in-nodes added. Inside the loop the step
function for the current level is called. As long as there are new in-nodes added there might
occur new branches in the graph so we have to investigate them and of course as long as
there are still nodes to reduce too. This implements the closure operator on graphs from [3].
Intuitively we continue as long as there are changes.

For practical reasons it can occur that the level list still contains a node, but there are
no changes any longer. This is not considered an error if the last node remaining in the list
is the Stop-node. Therefore the condition of the while loop performs an additional check for
the head of the level list not being the Stop-node.

a-renaming

An interesting detail you can see in the code listing 3.1 is the use of the get_alpharenamed
method on the protocol to create the top node. Basically the author of a protocol can use the
same name, e.g. m, in every thread he creates, but this would make it impossible for Caspa to
distinguish where a message actually came from. To circumvent this problem we a-rename the
protocol, i.e., we ensure that every new-instruction creates a syntactically unique name. This
gives the author the freedom to re-use names in every thread. The actual implementation of
get_alpharenamed inspects the first process in a given protocol and if it is a new-instruction
the message is padded with a unique number and the rest of the protocol is capture free
a-renamed accordingly. The method is applied whenever we add a new node to the graph.
This becomes especially interesting when we encounter a path in the graph containing
a new-instruction several times. If the pathes behind the new-node are identical up to a-
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let build_new_graph protocol = (
let in_nodes = ref [] in
let top = new node (check_restricted protocol;
get_alpharenamed prot) true in
let level = ref [top] in
let old_in_size = ref 0 in

(reset_environment ();
nodelist := [topl;

level := step in_nodes !level;
while List.length !level > 1 || List.length !in_nodes > !old_in_size
|| try protocol_compare ((List.hd !level)#get_protocol) Stop != 0 with
_ —> false
do
level := step in_nodes !level
done;

)

Figure 3.1: Main loop for graph generation

renaming, no renaming will take place, but if they are different there will be a new new-node
created and then a-renamed. This, however, enlarges the graph, but is essential to analyze
protocols correctly, because in this case the messages are from different sessions and thus
should be different in the graph. Fig. 3.2 shows an example of a simple protocol that creates
a message after receiving one and then sends them both out. An attacker can feed the message
created back into the protocol which yields a different run with a different message created.
This new message can again be used as input. In the first run we send out the Epsilon
message received together with the first created message. In the second run it is the newly
created message together with the second created message. Afterwards every run would be
semantically the same, i.e., last message together with new message. Therefore no more
new-nodes are created and thus no new branches introduced.

Step Function

The step function computes the actual reduction for every node in the current level list. It
iterates over all nodes in the list provided as argument and checks for every node whether
it is an in-node or not. In the former case, it is added to the in-node list and all possible
reductions for this in-node at this point of the program are added to the result. The next
level is exactly the list returned by the step function. The in-node list is given as reference
and changed in place.

In the latter case, we have to consider several possibilities. If the first instruction is a
Stop, then it is simply discarded. If it is a sequence not beginning with an out-instruction,
the node is simply reduced by adding the result of calling threads on the second part of the
sequence to the result. If it is neither an out nor one of the aforementioned cases, the result
of threads on the whole protocol of the node is added to the result. threads called on a
protocol computes all pathes introduced by it.
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| 1: in(?x).new(n).out(n, x).0 ‘

2: Com(EPS x) 14: Com(n2 x"(12, 2))

| 3:new(nl).out(nl, EPS x).0 |

4 : out(nl, EPS x).0

nl x~(4, 1)

(5 : Com(nl x™(4, 1))) (9 : Com(nl x™(8, 2)))

N

| 6 : new(n2).out(n2, nl x).0 | ml x~(8, 2)

8 : out(n2, nl x).0

2 x7™(12, 2)

n2 x~(8, 1)

10 : Com(n2_x"(8, 1))

| 11 : new(n2).out(m2, n2_x).0

12 : out(n2, n2_x).0

n2 x~(12, 1)

13: Com(n2_x"~(12, 1))

Figure 3.2: a-renaming in loops

Whenever we reach a sequence starting with an out-instruction new information becomes
available to the environment, because everything sent enters its knowledge. This reflects
the Dolev-Yao model where the attacker can listen on any channel. The method that adds
something to the environment tries to break it down to the smallest possible term, e.g. by
breaking cipher or splitting tuples. In addition the newly added terms are used to possibly
break every cipher learned so far. This ensured that the environment contains everything
that could be deduced by an attacker as well as the honest communication. In practice we
make a distinction between primitives the environment cannot break, like ciphertexts where
the key is missing, and atomic parts like messages or names. The first are stored in a separate
list, which makes the matching later on easier.

This realization of the environment is a nice implementational trick. Due to the fact that
it contains the honest communication as well as everything deduceable, the reduction yields
the intended result as well as every possible communication.
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let step in_nodes level = List.fold_left (fun a b ->
if is_in_node b then
(in_nodes := b :: !in_nodes;
(reduce_in b) @ a)
else
match b#get_protocol with
Sequence(Qut(t), p) —>
(insert_E_env (t2gt (output t (b#get_id))) (b#get_id);
reduce_ins_with_out in_nodes b @
create_nodes b (threads p) @ a)
| Sequence(_, p) -> create_nodes b (threads p) @ a
| Stop -> a
| _ -> create_nodes b (threads b#get_protocol) @ a
)
[1 level

Figure 3.3: The step function

Reducing In-nodes

The actual reduction of in-nodes is identical, whether it was caused by new knowledge entering
the environment or the in itself. First, all terms matching the structure of the in-instruction
are computed. A structural match in this sense means every term that fits exactly the
datastructure of the term expected by in in Caspa, e.g. identity A matches identity B but
identity A does not match name m. The term inside the in-node and all possible matches are
then passed to the bind_abs procedure, which is a faithful implementation of bindgs from
[3]. Here it is checked, whether the two terms really match and if so, the integer components
and a replacement function are returned. The replacement function represents the actual
binding from variables to names. As clarification, the application of bind_abs on the two
terms in(x) and out(n) results in a function that replaces x by n. In the main loop the
according communication-nodes, annotated with the integer components, are added, linking
together the in-node, the corresponding out-nodes and the reduced node. The reduced nodes
are added as result to the new level-list. The communication-nodes never enter the level as
they are only auxiliary constructs we utilize during trace generation.

Thread Coloring

As mentioned above we extended the analysis by features that improve the usability of the
output of Caspa. One example is the optional coloring of different threads in the graph.
Optional in the sense that the user can choose which graphs should be generated. The
section about the Interface explains this further.

During the graph generation every node that is created gets a color assigned. The first
node in the graph is neutral, i.e., white, and every node created inherits the color of his
parent. As soon as a parallel-instruction is reached, each thread executed in parallel gets
assigned a color. This allows for quickly distinguishing the different threads even in huge
graphs and proved to be a great help when analyzing them by hand. Currently we chose six
different colors because the number of visually easily distinguishable colors is restricted and
even if a protocol has more than six threads alternating but repeating colors still improve the
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1:(in(?x).0 | new(n).out(n).0)

[5 : Com(EPS_X)j [7: Com(nl x7(4, 1))]

Figure 3.4: Example from Fig. 2.2 with colored threads

readability.

On the implementational side we utilized the create node function depicted in Fig. 3.5
that actually creates the node object and inserts it into the graph. If the call to threads for
the current node returned a list with length greater than one, the create node method is
given a flag that indicates that it should use new colors.

Fig. 3.4 shows the example from 2.2 with different threads colored. Note that commu-
nication nodes, depicted with rounded corners, can not get a color assigned because of the
current Graphviz implementation which does not allow for specially shaped nodes together
with colored filling. To address this, they get a colored border indicating to which thread
they belong. We consider them belonging to the thread the corresponding in-node originates
from.

Secrecy Tracking

Another interesting feature added is the secrecy tracking. So far we could only identify
whether a name got public by entering the knowledge of the environment or not. However a
more useful information would be to know where the information became public and why. To
keep track of this information we added a hashtable that stores names as keys and a list of
node-ids. Whenever new information is added to the environment during graph generation,
this hashtable is updated too. There are two cases to consider. For a single name sent out
plain, this is a simple mapping of the name that got public to the id of the node that sent it
out. The second case occurs whenever the environment can break a ciphertext with the newly
added knowledge or a newly added ciphertext can be broken with information already present.
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let create_node parent prot’ newcolor =
let prot = get_alpharenamed prot’ in

try

(
check_restricted prot;
let x = findnode !'modelist prot in
(x#add_parent parent; None)

)

with Not_found -> let x = new node prot true in
(Printf.printf "created new node with protocol: ";
print_prot_chan prot stdout;
Printf.printf "\ni!";
nodelist := x :: !nodelist;
x#add_parent parent;
if newcolor then
x#set_fillcolor (get_next_color ())
else
x#set_fillcolor (parent#get_fillcolor ());
Some (x)

Figure 3.5: The create_node function

In this case the names inside the ciphertext are all inserted separately into the tracking table
together with a list of node-ids, consisting of the node sending the broken ciphertext and the
id of all nodes that are required to break it.

To clarify the technique, consider the following example: as part of a protocol we have
two processes, out({ m | n }), i.e,, m is sent out encrypted with n, and out(n). When
the second process is transformed into a node in the graph, n enters the environment. Let
this node have the id y and the node for the first process the id x. The tracking table is
extended by an entry n —> [y]. As soon as the ciphertext from the first process is sent, the
environment can use n to break it and thus m enters it too and the tracking table is extended
by m -> [x, y]. x as m was sent there and y because there the information got known that
was needed to brake the ciphertext.

Due to the fact that the code for secrecy tracking is added to the code that adds knowledge
to the environment, building the graph is sufficient to collect all secrecy information for all
names in the protocol. But on the other hand, not every name in a protocol has to be kept
secret. It is quite reasonable that some names are sent out in plain. To filter, which names
should be kept secret, we extended the protocol syntax to allow the protocol designer to define
the names he expects to be secret. Section 4.2 explains the syntax of the file format for Caspa
in detail.

Checking the secrecy property now is a straight forward task. We request the list of
names that should be secret from the parser and then perform a lookup for each of them in
the tracking table. If it is not contained therein, it is kept secret, but if the lookup succeeds
we not only know that the name got public, we also get a list of nodes that were involved
in the release of it. We further utilize this by offering a separate version of the graph, called
secrecy graph, that highlights all such nodes in red.

Example - We will demonstrate this feature using the protocol introduced in Fig. 2.1,
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®e0e % CASPA gui

@M @@ @ ®
current protocol :

SECRETS := m; m
Salice := in({?x | seckey(A)}).out(seckey(A)).0; Q:‘ &
$bob := new(m).out({m | pubkey(A)}).0; -
A |> alice || B |> bob

"log | analysis }

Security Properties

public names ml{4) k-_Al6)
Secret names

weak authenticity true

strong authenticity true

Causal Graph Statistics
number of nodes 10

Analysis Statistics
time needed for analysis 0.012s
end assertions checked o

Figure 3.6: Protocol 2.1 in simplified form

which provides secrecy and authenticity of the exchanged message between two parties. As
we are only concerned about secrecy in this example, we drop the assertions. Further we
omit the identity and the nonce for improved readability. The remainder, depicted in Fig.
3.6, constitutes a protocol where B sends a message m encrypted to A. However, this protocol
still preserves the secrecy of m. To introduce a weakness we send out the secret key of A after
receiving the encrypted message.

As expected, Caspa identifies the name m as being public. The secrecy graph, shown in
Fig. 3.7, highlights the output of the ciphertext containing m and the output of the secret key
of A, since the latter is needed to decrypt the former.

3.2 Trace Generation

The second core algorithm in Caspa is the generation of traces and trace sets. These are
needed to prove authenticity and cycle invariance.

Before beginning with the description of the algorithm we would like to clarify some
expressions we will use. A trace is a single path in the graph from an arbitrary node to the
top node and consists of the actions corresponding to the nodes along this path. Such a trace
is denoted top down, so it starts with the top node and ends one node before the one we
compute the traces for. A path is a set of traces that contains every trace that is causally
needed to reach a given node. Whenever we talk about the traces or paths for a given node,
we would like to compute all paths, i.e., all possible protocol sessions, that lead to this node
or state. When we talk about structural paths we refer to intra-thread communication and
communication paths refers to inter-thread communication.

On the implementational side a trace is an action list, a path a list of traces and the paths
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806
+ = Q

{ authenticity graph | secrecy graph ]

1:(A[> m({?} k- A).out(k- A).0 | B[> new(m).out({m}_k+ A).0)

o

3 :new(ml).out({ml} k+ A).0

2 :({7x}_k-_A).out(k-_A).0

fml x4, 1)} k+ A4, 2) / \

[ 9 : Com({ml_x(4, 1)}_EPS) ) [ 10 : Com({ml_x"(4, 1)} k+ A%4, 2)) ] (S:Com({EPS_x}_EPS)]

ml x4, 1)

k-_A x/(6, 1)

( 7 : Com({k-_A x*(6, 1)}_EPS) )

Figure 3.7: Secrecy graph for the protocol 3.6

let paths_table : (int, (prot_edge list * paths) list) Hashtbl.t = Hashtbl.create 100

Figure 3.8: Dynamic programming table definition

for a given node a path list, i.e., an action list list list. Additionally we decided to
store a reference to the node, an action originates from, together with the action, so in fact
we have (action * node) list list list as the resulting type. We will make use of this
annotation for attack reconstruction during the authenticity check. Internally the algorithm
uses type definitions for traces and paths for convenience.

The implementation we present here follows the definition from [3] directly, extended with
dynamic programming techniques.

The algorithm and its functions are located in the tracepaperdp module. The main
method is paths which invokes paths’ with the given node as argument and an initially
empty set of edges and afterwards postprocesses the result returned by paths’.

Whereas the idea of paths is clear to us, edges are new. Due to the representation of the
graph as objects with references to each other there exist no explicit edges in Caspa. For the
trace finding algorithm however it is important to use every edge leading to an in-instruction
only once for a trace to ensure that every cycle is only passed once, so we store the edges used
so far together with the resulting paths. For a single node we can thus have several different
paths-edges pairs. In practice this can occur for example if we reach a node from different
child nodes that of course use different edges to reach it. So a possible cycle may have already
been used for the one node whereas the other one still may use it.

This explains why we invoke paths’ with an initially empty edge list: no edges have been
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let run =
if Hashtbl.mem paths_table n#get_id then
(
let possible_paths = Hashtbl.find paths_table n#get_id in
List.fold_left (fun a (be, bp) ->
if list_compare edge_compare be e = 0 then

Some bp
else
a) None possible_paths
) else
(
None
) in

match run with
Some X -> X
| None -> ...

Figure 3.9: Dynamic programming lookup

used so far. The first step of the algorithm is a lookup in the dynamic programming table for
the current node (Fig. 3.9). If an entry was found we have to compare all the paths-edges
pairs stored with the current edge list. If there is a complete match, i.e., the edges used are
equal, the paths stored are the result for the whole function. If not, we have to compute the
paths for the current node and add them to the table.

Before we go into detail with the algorithm let us have a closer look at the dynamic
programming extension. In order to save results for later reuse we introduced a hashtable
whose definition you can find in Fig. 3.8. It stores the id of a node as key together with a
list of edges and paths pairs.

Before computing anything related to paths, Caspa computes the traces for all nodes in
the graph top down and stores the results so that they can be reused. Here the unique ids
assigned to nodes by the graph generation algorithm are very helpful. Since we create the
graph in a breadth first way from top to bottom, in general a lower id for a node means that
it is further up in the graph, i.e., it was created earlier. So we generate the traces for the
nodes in the order of their id. For every node there is a high probability that we already
computed the traces for the parents of this node.

After this computation every call to trace generation is a lookup.

As first step of the computation all edges that lead to the node we are considering are
reconstructed using the references to the parents stored in every node object and the com-
munication nodes introduced during graph generation. The latter are necessary because they
store the message sent and the integer components from the corresponding out-nodes that
are needed to reconstruct both types of communication edges, i.e., ComOut- and ComIn-edges.
The former contain the out-node, the message sent, the integer component and the target
node and the latter the in-node, the message sent and the target node. Structural edges
connect nodes introduced by structural reduction and contain only the two nodes.

If the edge list is empty, the current node has no parents, so the paths for this node are
empty. This marks the end of the recursion, an empty entry for this node together with the
edges used is added to the hashtable and the empty path is returned. If the edge list is not
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empty, we have to make a distinction between structural paths and communication paths
referring to intra-thread communication and inter-thread communication respectively. To
achieve this we split the edges computed into structural edges and communication edges and
provide them as arguments to subfunctions called communication paths_of n (Fig. 3.11)
and structural paths_of n (Fig. 3.10) along with the current edge list. The result is the
concatenation of the results returned by these subfunctions. Again this result together with
the current edgelist is added to the hashtable before being returned.

and structural_paths_of_n struct_edges e =
let pre_paths = List.fold_left (fun a b -> let pP = get_p_from_edge b in
action_to_paths (make_action_node pP#get_protocol, pP) (paths’ pP e) @ a)
(]
struct_edges in
pre_paths

Figure 3.10: structural_paths_of n

Structural paths_of n iterates over the list of edges it receives as argument, extracts
the corresponding action and adds it to every trace in every path returned by a recursive call
to the paths’ function with the source node of the current edge as initial argument.

Communication_paths_of n is slightly more complicated. First the list of edges provided
as argument is split into the one edge originating from the in-node and edges originating
from an out-node. The latter list may be empty if this communication only contains messages
created by the environment. Then it is checked whether the in-edge has already been used by
doing a lookup on the list e of already seen edges provided as argument. The result is stored.
Afterwards the message m expected by the in-node is matched against the message sent,
extracted from the communication edge using bind_abs which is a faithful implementation
of the bind,bs procedure from [3]. If either the matching does not bind, which is basically
only a sanity check, or the in-edge has already been used, which was determined and stored
beforehand, the computation ends and the function returns an empty list. Otherwise the
in-process inP and the out-processes from the out-edges are extracted. The next step is the
computation of the paths for inP and all outP by a recursive call to the paths’ function, like
we did it for structural edges, but this time the in-edge is added to the list of already used
edges when invoking paths’ to ensure that every in-edge is only used once by every path. To
all paths in the result of the recursive call an out-action containing the message sent from the
ComOut-edge and the corresponding out-node is added as well as an aincom-action with the
integer-component and the com-node. The result returned by communication_paths_of n is
obtained by adding the paths for the in-node to all paths in the big set computed for the
out-nodes.

3.3 Authenticity Checking

Before we explain the implementation of authenticity checking in Caspa we shortly repeat
what we want to prove. A graph provides authenticity if and only if for every end-node
there exists at least one trace in every path for this end-node with a matching begin. A
matching begin is a begin-assertion where the indices, the annotated names crossed over
and the session messages match the respective ones from the end-assertion. Additionally the
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3.3. Authenticity Checking

and communication_paths_of_n com_edges e =
let in_edge, out_edges = split_in_out_edges com_edges in
let in_edge_in_e = List.fold_left (fun a b -> a ||
edge_compare_eq_ComIn b in_edge)
false
e
in
let m = get_m_from_comin_edge in_edge in
let sigma, bound = match bind_abs m (labelerazor_term
(get_sent_from_com_edge in_edge)) with
Some (_, f) -> (f, true)
| None -> raise (Invalid_argument "Communication_paths_of_n:
inconsistent edge found (tracepaperdb.ml)")
(x((fun z -> z), false)*)
in
if ((not in_edge_in_e) && bound) then
(
let inP = get_p_from_edge in_edge in
let m_sigma = replace_term sigma m in
let in_S = action_to_paths (AIn(m_sigma, m_sigma), inP) (paths’ (inP)
(in_edge :: e))
in
let big_path_list =
List.fold_left (fun a b —->
let gi’ = get_ic_from_comout_edge b in
let gi = get_gi_from_comout_edge b in
let outP = get_p_from_edge b in
let out_S = paths’ outP (in_edge :: e) in
action_to_paths (AIncom (gt2t gi’, m_sigma),
get_comnode_from_com_edge b)
(action_to_paths (AOut(t2gt gi), outP) out_S) :: a)
(]
out_edges
in
combine_paths in_S big_path_list
)
else

(]

Figure 3.11: communication_paths_of n

messages must be from the same session. So in order to prove authenticity for a given graph
we have to compute the traces for every end-assertion.

The algorithm implementing authenticity checking follows the intuition by first computing
a list of end-nodes from the graph. Then for every identified candidate it is checked whether
it provides authenticity and if so, whether it provides weak or strong authenticity. To return
as much information as possible the algorithm keeps track of all end-assertions providing
authenticity, weak authenticity and no authenticity separately. The module provides access
functions to retrieve the corresponding lists and information like the number of assertions
checked. In addition every node that does not provide authenticity is marked by setting its
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fillstyle attribute to ”dashed” resulting in the node being rendered differently when the graph
is displayed in the graphical interface or rendered using Graphviz.

Individual end-assertions are checked by the check_candidate method that computes the
sets for its argument and then checks every set. In addition the first set that does not provide
authenticity is marked. The individual sets are checked by the check_set method that again
only iterates over all traces in a given set and invokes check_trace on them.

A single trace provides authenticity if for every end in this trace there is a matching
begin. This is computed by extracting all ends and begins together with their positional
index from the trace and then checking the matching for every end against the begins. A
begin matches an end if its positional index in the trace is smaller than the one of the end,
the indices annotated in the assertions match, the identities match crossed over and finally
the session messages for the messages send and the nonce match and originate from the same
session.

Example - We revisit the protocol 2.1, i.e., a message exchange between two parties. The
analysis using Caspa concludes that the protocol provides strong authenticity.

As explained previously, in order to prove authenticity, Caspa has to check the traces for
all end-assertions in the graph. For our protocol, there is only one end with seven trace sets.
This makes it feasible to follow them manually. Fig. 3.12 shows one of the seven sets. We
can easily check that there is at least one trace with exactly one matching begin in it, i.e.,
begm}ﬂ(z) (A, B, ml(z)), but none with two matching begins. The complete trace sets can be
found in appendix A.1.
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3. Architecture

3.3.1 Attack Reconstruction

To provide a better intuition of a possible flaw in a protocol that does not provide authenticity
we extended the code to mark the first set that fails in the check_candidate function. This
is done by setting the color attribute of all nodes belonging to this set to red. This results in
a highlighting of the whole communication that does not provide authenticity once the graph
is rendered.

Although the restriction to the first set failing seems a bit arbitrary, it is important to
notice that it is not useful to mark more than one set. We have discovered during tests that
highlighting more than one set leads to a situation where a huge part of the graph is red
and additionally it is unclear to which failing set a marked node belongs. Using different
colors for every failing set would be unpractical too because the number of expressive colors
is restricted and the problem arises how to color nodes that belong to more than one failing
set. However if we only color one set, choosing the first one is a feasible solution in practise.

As a motivation for this extension remember that Caspa implements an abstract interpre-
tation technique. If Caspa claims that a protocol does not provide authenticity, this only is
a possible flaw and we have to analyze the protocol further using different techniques or by
hand. But the traces for real life protocols fill several pages and the graphs usually are too
big to fit on a screen in a readable size. The highlighting however helps greatly by providing
a visual guideline to a failing path. This allows users familiar with the graph representation
to easily track the communication and get insights into what is possibly going wrong.

Example - As an example we refer again to protocol 2.1. Since this protocol provides
strong authenticity, we have to introduce a weakness. This is done by removing the identity in
the ciphertext sent by the initiator. The modified protocol suffers from a man-in-the-middle
attack:

A E(A) {"7m}k;§ B

{nvm}k+
A

beginl (A, E,m)

n,
n

endl (B, A,m)

Intuitively spoken, B believes he is talking to A, but in fact he is talking to the attacker.
Note that, while being present in the graphical protocol description, assertions involving an
attacker do not need to be modelled in Caspa as we do not wish to check if an attacker can
authenticate. For simplicity we omit them (see Fig. 3.13).

The analysis of this modified version of the protocol reveals that our change indeed broke
authenticity. The secrecy graph, depicted in Fig. 3.14, shows that in the highlighted session
A was never willing to authenticate with B, although he authenticates A in the end. This
constitutes an attack.

29



30

3.8. Authenticity Checking

8oce6e

806

@ W @ =

current protocol :

BECRETS := m;

Salice := in({?x, ?z | seckey(A)}).out(x).0;

$bob := new(m).new(n).out{{n, m | pubkey(A)}).in(n).end(l n B

A m).0;

A |> alice || B |> bob

| P |
log | lysis |
Security Properties
public names
secret names mlk-_A
weak authenticity false
strong authenticity false
Causal Graph Statistics
number of nodes 16
Analysis Statistics
time needed for analysis 0.19s
end assertions checked 1

Figure 3.13: Protocol 2.1 modified to not provide authenticity
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6 out(EPS_x).0

Figure 3.14: Authenticity graph for the protocol 3.13
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4. Interface

Section 4

Interface

Caspa offers various ways for the user to interact with it, beginning with the input files Caspa
accepts over the command line switches in the console version of it to the easy to use gui.
Both versions of Caspa work on the same code and offer the same possibilities, but while the
command line version offers a fine granular selection of the output for the expert user, the
graphical interface reveals the full power of Caspa with a single mouse click. In the following
we will present the individual features of the command line and the graphical version of
Caspa.

4.1 Command Line Program

On the command line Caspa can be invoked with several switches that determine how much
output is produced, which graphs are generated and for which node the paths are outputted.
The general usage string, depicted in Fig. 4.1, follows the standard unix conventions:

An overview of all switches and a short explanation can be found in table 4.1. The
protocolfile must always be provided because this is the inputfile with the protocol to be
checked. All other switches are optional but some of them may require others to be set to
work correctly. When invoking Caspa with a wrong switch or with ~help a short overview is
displayed on the console giving the short explanations you find in table 4.1. In the following
we will explain them in more detail.

The -s flag allows the user to define for which node in the graph the traces should be
generated and pretty printed into a file called protocol.tex, where protocol is the basename
of the inputfile Caspa was invoked with. The ids of the nodes are displayed in the graph, so
this option is only useful after seeing the graph, in a second run for example. In this case it
offers the possibility to print out the traces and trace sets for any given node in a readable
form. This does not improve the automated analysis, but allows the user to check the traces
manually by compiling the tex output to a pdf or a postscript document, or to use it further.
Fig. 2.3 for example is the output of the execution of Caspa on the protocol from Table 2.2

./main [-s <startid>] [-T outputtypel [-t typel [-c] [-v level] [-p acds]
<protocolfile>

Figure 4.1: Usage string for Caspa
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-s the id of the node to start the traces from (as default the first
node in the graph (id 1) is taken)

-T  the type of output to render

-t the trace function to use (1: paper version with DP, 2: paper
version without DP, 3: old version)

-v  verbosity level, 0 by default

-¢ if set, using slow algorithm for cycleinvariance check

-p the print modifiers determine which images will be generated. a
for authenticity, s for secrecy, ¢ for colored and d for the default
graph. -p ac for example would generate two graphs, one for
authenticity and one colored

-help display this list of options

Table 4.1: Switch table for Caspa

with -s 6.

The -T switch allows the user to define what type the images of the graphs should have.
By default Caspa produces a .dot file of the graph that can be displayed using Graphviz and
no traces. Using the -T flag it is possible to produce an image of the graph directly, without
the need of calling Graphviz manually. The type of output possible is defined by the Graphviz
implementation on the system running Caspa. Typical examples are -T png, for png images,
or -T jpg, for jpgs. To see a full list of options supported use the command dot -T?. If -T
is used, Caspa will create a temporary file, print the dot output in there, invoke dot program
from Graphviz on it and produce the output specified by the user. The resulting file will then
be called protocol.type, e.g. rsa.png. The temporary file will be deleted afterwards.

Using the -c flag the user can chose to use a second algorithm for checking cycle-invariance.
The one used by default is much faster than the slower one, which was implemented earlier.
The faster technique can be proven equivalent and thus is the default.

The -p flag results from the different extensions to Caspa introduced in the section about
the architecture, i.e., attack reconstruction and colored threads. Given this option the user
can chose which graphs he wants to be created. The flag expects a string as argument which
may consist of an arbitrary combination of the letters a, ¢, d, and s. The individual letters
are interpreted, where ¢ stands for a graph with colored threads, s for a secrecy graph, where
the nodes where names enter the knowledge of the environment are highlighted, a for the
authenticity graph and d for the default graph without any color.

Last, -v allows for defining the level of verbosity for Caspa. Every output statement in
the code has a number attached defining the level of verbosity it has. The higher the number
the more advanced this output is. By default a level of 0 is assumed so only the default
outputs are printed. When using -v 4 for example, every (debug-) output is shown. The
logging mechanism used in Caspa is further explained in 4.1.1.

4.1.1 Logging

In addition to the images of the graph and the traces Caspa can also produce a lot of textual
output on the console during execution. This output reflects the current computational steps
executed and their respective results. Even for reasonable small protocols the amount of
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output generated is huge. Therefore it is usually hidden. However, on demand it can be
activated using the level of verbosity option -v from the command line client. To make
this possible we implemented a powerful logging method that clearly separates data and
representation on output.

Prior to implementing an own system we tried to extend the printf function of Ocaml
with specifiers for our data structures. printf however is a highly complex function because
its type changes according to the modifiers and the number of arguments. This requires
external calls to a non-Ocaml library deep inside the implementation of Ocaml itself. At
this point we decided for a pure functional implementation that works without external calls
or additional libraries. This had the downfall, that we do not create a type that fits the
arguments of the actual call, but have to create a function with one type that fits all possible
calls.

A function that should be able to output every part of the protocol syntax separately
however needs as many arguments as there are different types. This would make such a
function inconvenient to use because we had to always provide all arguments. The solution is
given by Ocaml itself. Ocaml allows the use of optional arguments. These arguments can be
provided, but do not have to and can be assigned a default value. In the final version the log
method prototype optionally accepts a list of arguments for every type. The only argument
that is non-optional is the format string.

The core part of this system is the logmanager that administrates all loggers registered
for the current application and processes every log statement in the code. Every logger is
registered together with a verbosity level. All messages with a verbosity level smaller or equal
to the one of the logger are passed to it by the manager. The -v option allows the user to set
the loglevel for the default logger that is created.

Along with the logmanager we implemented a virtual base class logger that every logger
has to inherit. This ensures that the logger is compatible to our system. The log method
every logger has to implement expects one argument list for every datatype we introduce in
Caspa and a format string, similar to the one printf uses. It may contain specifiers similar to
printf, but much simpler, namely a single letter preceded by a $ for every type. The order the
specifiers appear in is the order the arguments are plugged in, e.g. the first protocol specifier
will be replaced with a representation for the first element of the ?protocols argument. Any
mismatch between specifiers and number or type of arguments is considered an error. While
the default logger outputs text on the console, possible new loggers could output into a file
directly, on the screen using a window system or further process the information.

This flexibility of course cannot be addressed by the user directly, but is provided for
experienced programmers that intend to modify or extend Caspa to their needs. Inside the
Caspa modules we avoided printf completely and used the log statements instead.

4.2 Input File Format

Protocols given as input to Caspa, on the command line as well as in the graphical interface,
are written in a powerful syntax, the prot file format, which is an extension of the grammar
shown in Fig. 2.1. For practical reasons we allow comments in protocol files. Everything
behind the letter # is considered a comment and is ignored during parsing. However it is
possible to access the comments of the most recently parsed file. They are output for example
on the console after a protocol was parsed successfully. In the following we will explain the
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extensions to the grammar.

First of all we allowed the definition of sub-protocols and assignment of identifiers to them.
This makes the definition of protocols easier and more readable. Figure 4.2 shows the basic
example from 1.1 in the prot format accepted by Caspa. The threads for Alice and Bob are
defined separately and assigned to the identifiers that are used in the final protocol definition
on line 17.

# This is a simple challenge response protocol:
A B
<- {B,n,m}k+A —-
begin 1 n (A,B,m)

end 1 n (B,A,m)

H OH H HEH HH

# provides strong authenticity
# the message m is secret

SECRETS := m;

$alice := in({B, 7x, 7z | seckey(A)}).begin(l x A B z).out(x).0;
$bob := new(m).new(n).out({B, n, m | pubkey(A)}).in(n).end(1 n B A m).0;

A |> alice || B |> bob

Figure 4.2: Protocol in prot format

Another extension we see in this example is the definition of secret names. In a protocol
some of the names may intentionally be sent in plain over the network without losing security
of the protocol itself. The SECRETS section in the input file offers the designer the possibility
to manually define which messages should be kept secret in a protocol. Only the messages
defined here will be checked for secrecy by Caspa.

The parser itself is realized using the Ocaml variants of lexx and yacc. The parser source
file parser.mly contains a full definition of the grammar Caspa accepts and parser.mll the
primitives that are recognized. Any error during parsing makes the command line program
stop and the graphical interface output an error. The exact line number and position where
the error occurred is output.

4.3 Graphical Interface

Maybe the most powerful aspect of Caspa in terms of usability is the graphical user interface
we provide (see Fig. 4.3). The gui offers the user the possibility to easily load, modify and
save protocols, to analyze them using one mouse click and viewing the different aspects of
the graph at the same time.

After a prototype version written in lablTK, a TK/TCL extension for Ocaml, we decided
to go for a more complex approach using Qt [11], a state of the art toolkit for graphical
interfaces. Qt is platform independent and maybe the most powerful kit around. As Qt uses
C++ [15] as programming language we had to find a way to combine the Caspa logic written
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GXeNa) % CASPA gui

1 @ ¥ @ = = o)
current prOrOCOI 5
Salice := in{{B, ?x, 7z | seckey(A)}).begin(l = A B
z).out({x).0; -
Sbob := new(m).new(n).cut{{B, n, m | pubkey(A)}).in{n).end(l n .
B Am.O; 3

2 A |» alice || B |» beob

{Iug | analysis

[06:40:32] loaded protocol:

Salice := in({B, ?x, 7z | seckey(A)}).begin(l x A B z).out(x).0;
Sbob := new(m).new(n).out({B, n, m | pubkey{A)}).in(n).end(1 n B A m).0;

3  Al>alice|| B> bob

[06:40:32] started default dot
[06:40:32] started color dot 1
[06:40:34] finished default dot <

Figure 4.3: The Caspa Gui

in Ocaml and the interface code in C++.

The solution we chose was to create a static C library from the Caspa code. To achieve
this goal we created a new Ocaml source file that encapsulates all function calls to Caspa
and a wrapper written in C that defines the interface of the library. This is a first step
towards a basic library for static protocol analysis. Other applications could use methods from
the Caspa library for their implementation without being bound to Ocaml as programming
language. Another benefit from this solution is the strict separation of model and graphical
representation. Up to now only two functions are exported. One that loads a protocol from
a file, and one that analyzes this protocol. For our graphical interface this is sufficient, for a
general purpose library more fine grained functionality should be exported.

A closer look at the mentioned wrapper shows that it not only defines the interface but
also transforms exceptions possibly thrown in the Ocaml code into C++ exceptions passed
to the application using the library. In our graphical interface we create a small error dialog
informing the user about the cause of the exception. Figure 4.4 shows the code of the wrapper.
It defines two C functions that expect a string as argument and return a string as result. Both
register on load one closure function and ensure that this costly process is only done once.
The return value is then a callback to the Caml library. In the result field it is checked
whether we have an exception.

The leading idea in the design of the Caspa gui was to reveal the full power of our analysis
technique with only a few functions. To achieve this goal we separated the protocol analysis
process into two major parts, the parsing of a protocol together with graph generation, and
the analysis itself. While parsing usually only takes a few seconds, the analysis can be very
time consuming. By this separation we let the user decide when the time consuming process,
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extern "C" {

#include <string.h>
#include <caml/mlvalues.h>
#include <caml/callback.h>
#include <caml/alloc.h>

}

char* load_protocol(char* filename)
{
static value* load_protocol_closure = NULL;
if (load_protocol_closure == NULL)
load_protocol_closure = caml_named_value("load_protocol");
value v = caml_callback_exn(*load_protocol_closure, caml_copy_string(filename));
if (Is_exception_result(v))
throw strdup(String_val(Field(Extract_exception(v), 1)));
else
return strdup(String val(v));
}

char* analyse_protocol(char* filename)
{
static value* analyse_protocol_closure = NULL;
if (analyse_protocol_closure == NULL)
analyse_protocol_closure = caml_named_value("analyse_protocol");

if (Is_exception_result(v))

throw strdup(String_val(Field(Extract_exception(v), 1)));
else

return strdup(String_val(v));

Figure 4.4: wrapper code in C

that cannot be interrupted and is blocking at the moment, starts.

In addition we source the generation of images out to own threads that are controlled by
the main application. This reduces the time Caspa is busy to the computational time of our
functions. External processes like the call to Graphviz for generating images do not influence
the gui and can be interrupted, e.g. by a new parse command.

To further improve the usability of Caspa we only activate possible options at any given
time of execution. This is realized by a small internal state machine the gui maintains. Every
action from a user leads to a state transition and the new state determines the possible
options. Qt allows us to activate or deactivate buttons. So a state transition results in a set
of activations and deactivations. Due to the fact that the menu entries in the main menu
and the toolbuttons are internally the same objects we only have to activate or deactivate
the actions once and get a consistent state as result.

In general the Caspa gui offers two ways of providing protocols to be analyzed. The first
is to load a protocol from a file, similar to the command line interface. The second option is
to provide a protocol "on the fly” using the protocol editor and then parse it directly. This
allows a user to modify a loaded protocol or to create a protocol from scratch, parse it, check
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the result, modify it again, i.e., an interactive workcycle.

4.3.1 Mainwindow

The main window of the graphical interface, Fig. 4.3, consists of a toolbar at the top, the
protocol editor in the mid-section and an information field in the lower half of the window. The
toolbar, depicted in Fig. 4.5, offers a button for every functionality Caspa offers. From left
to right this is loading (a) and saving (b) protocols, analysis (c), analysis graph (d), protocol
graph (e), parsing (f), undo (g), and finally help (h). All these functions are available from
the menu bar too using the same icons and descriptions.

@ W @ & = @
a b ¢ d e f g h

Figure 4.5: The Toolbar

Saving (b) and loading (a) protocols work as expected. A click on the respective toolbutton
opens a dialog that lets the user browse the file system and specify a file to save to or load a
protocol from. As soon as a protocol is loaded, i.e., it is parsed and the graph built, the show
graph button becomes available. This may take a few seconds because in the background we
still use Graphviz to transform the graph into an image.

A click on the ”show graph” buttons, namely (d) and (e) opens a new window, the graph
display window, which is described in more detail in 4.3.2.

The analysis can be started using button (c) once a protocol was loaded or parsed suc-
cessfully. This process may take some time depending on the number of communications in
the protocol and cannot be interrupted. As soon as the analysis is finished the results are
printed to the information window. Subsequent clicks on button (c¢) have no effect as long
as the protocol is not changed. As mentioned above the rendering of the graph is started in
separate processes. When they are ready the analysis graph button (d) becomes available.

The parse button (f) passes the current protocol in the protocol editor (2) to Caspa.
Internally the current content of the editor is stored to a temporary file and this file is passed
as argument to Caspa as if a user loaded the protocol. This allows us to re-use the function
call for load protocol defined in the wrapper. If the parsing succeeds the protocol entered can
be analyzed and its graph displayed, else the exception thrown by the parser is displayed as
a parsing error.

As soon as the user modifies the protocol in the editor the undo button (g) gets available,
but all analysis and display buttons get disabled. Undo restores the last loaded or parsed
protocol, analysis results and graphs together with the gui state, e.g. whether the protocol
has already been analyzed. The state then re-enables the appropriate buttons.

The help button (h) opens a help window that explains the general usage of Caspa and
the grammar for the prot format. Fig. 4.6 depicts the online help.

The protocol editor (2) is a single text editing window that allows copy and paste. If the
amount of space is not sufficient to display all lines in the window a scrollbar appears.
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enoe % Caspa Help
Welcome to CASPA help

Causality-based Abstraction for Security Protocol Analysis

= ) ) . . .
~=-V] The load button lets you load a protocol from a file. Just go to the desired location using the dialog and
chose a protocol.

e
‘YI The save button lets you save the currently modified protocol.
Eﬂ The analyse protocol button starts the analysis on the protocol loaded and pops up a result window.

“/ The show graphs button displays the graph, colored and non-colored, in a separate view.

®| The show analysis graphs display opens a separate view with the authenticity and the secrecy graph.

The reset button resets the protocol to the one you loaded or saved last and discards any changes
done in the edit-window.

7 The parse button parses the protocol currently displayed in the editor window. Afterwards it can be
viewed using the show graphs button and analysed using the analyse protocol button.

The syntax the parser expects is as follows:

main:
sequence

sequence:
declaration; sequence
| tag_definition; sequence
| protocol EOF

declaration:
$ := protocol (* init ;= ... ¥)

RN

Figure 4.6: Online help

The information field (3) consists of two pages organized as tabs. Both pages are read
only text fields that display information from Caspa. The one selected by default, the log
window, shows process information like the name of the protocol loaded. The other one, the
analysis result window, shows the analysis results, e.g. the number of nodes in the graph and
the secret names. Both windows automatically add scrollbars if the content is too much to
be displayed using the space available. Additionally both windows scroll automatically to the
most recent information available.

4.3.2 Graphdisplay

The graphdisplay window, depicted in Fig. 4.7, is a viewer for the graphs generated by
Caspa. It consists of a toolbar that offers basic controls at the top of the window and the
view itself displaying the graph. One display window can contain several images. If so, they
are organized as tabs and the user can switch between the displays using the tab control at
the top of the view.

On the implementational side the interface of the display class consists of one function
that allows the addition of images. The expected file format is SVG because this allows us
to zoom in and out nearly arbitrarily. Whenever a file is added successfully, i.e., the filename
was found and the image could be loaded, a new scene together with a new view for this scene
is created and added as a new tab.

The toolbar offers four basic functions to the user. From left to right these are ”zoom
in”, "zoom out”, "fit to size” and ”save”. The ”zoom” functions work as expected, they
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806

Figure 4.7: The graph display window

enlarge or shrink the currently displayed image. "Fit to size” scales the image to fit into
the current window. This is especially interesting as it returns to an overview of the whole
image from any zoom state. ”Save” allows the user to save a copy of the image displayed.
This feature is important for the Caspa gui because the images of the graph are only created
temporarily to display them. If a user wants a permanent copy he can use this function
from the graphdisplay. As soon as an image becomes too big to be displayed in the window
scrollbars appear. Next to zooming the user can use the scrollbars for navigation or directly
click on the point of interest using the mouse causing Caspa to center the scene on this point.
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5. Fxperimental Results

Section 5

Experimental Results

In oder to get an impression of the performance and to assess the utility of Caspa we ran it on
a subset of the AVISPA library [2]. The results are reported in Table 5.1. Caspa succeeded
in the analysis of safe protocols and it failed to establish security proofs of flawed protocols
as expected. In comparison to TA4SP [12, 5], Caspa did not only improve in terms of perfor-
mance, it is also capable of dealing with a larger set of protocols: the symbol - in the table
means that the protocol is not supported by the according tool, while the symbol x denotes
that the protocol guarantees only authenticity properties, which can be verified by Caspa and
but not by TA4SP. For additional comparison we added the running times of OFMC [4], the
most advanced model checker in the AVISPA tool, when the analysis is constrained to three
executions. In this setting, OFMC performs significantly better. However, model-checking
does not guarantee termination and asserts security guarantees for only a small number of
executions.

Protocol CASPA | TA4SP | OFMC Protocol CASPA | TA4SP | OFMC
CHAPv?2 0,03s | 10,59s | 0,32s NSPK 0,13s | 7.56s | 0,0ls
CRAM-MD5 0,09s - 0,71s NSPK-KS 28m - 1,1s
EKE 081s | 7,56s | 0,19s NSPK-fix 0,08 | 0,98s | 0,18s
IKEv2-CHILD | 0,31s § 1,195 NSPK-KS-fix Tm - 24,86
ISO1 0,05s x 0,02s SHARE 04s | 14,38s | 0,08s
1SO3 1,085 x 0,04s UMTS-AKA | 004s | 051s | 0,02s
LPD-MSR 0,05s - 0,02s APOP 0,44s x 2,94s
LPD-IMSR 0,37s . 0,08s DHCP-DA 1,03s - 0,06

Table 5.1: Protocol results, conducted on a Pentium-IV 3GHz 1GB under linux

As preparation to the evaluation we had to identify the protocols Caspa is capable of
analyzing and to translate them from the Intermediate Format protocol language [2] into the
prot format. The former is important as up to now Caspa is only able to handle symmetric
and asymmetric encryption, hashes, and signatures, however exponentiation for example is
out of scope. To facilitate the latter task we developed a translator from the Intermediate
Format to our dialect of the spi-calculus. The translation involves manual steps, such as
specifying the owners of the keys and defining suitable correspondence assertions. These
steps require basic familiarity with our language and understanding of the protocol.
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6. Conclusion and future Work

Section 6

Conclusion and future Work

We have introduced Caspa, a fast and stable implementation of an static analysis technique for
security protocols. We briefly motivated the approach and explained the underlying technique
as well as the implementation of the key algorithms and their extensions and optimizations.
Finally we presented all ways to interact with Caspa including the graphical user interface.

As mentioned above the code of Caspa is already revised and optimized. Further im-
provements of the runtime can only be achieved by applying implementational tricks, e.g. the
abbreviation of loops using exceptions, or by changing the algorithms used. Yet the utility of
Caspa still can be improved.

When deriving attacks, the current implementation only considers the first trace set failing.
However there may be even more such sets, but to maintain readability it is impossible to
mark more than one trace set in a single image. However the graphical interface already offers
the possibility to display several graphs of the protocol analyzed. This has to be extended to
enable the user to see all possible flaws. The first option is to create a single graph for every
failing trace set or second, all fails are reported to the graphical interface and the gui offers
the user a menu where he can select the graph he wants to inspect.

The first option requires some work on the code of Caspa itself. All trace sets failing
have to be recorded and the corresponding images created. The graphical interface needs no
change as the graphdisplay class already allows for the addition of an arbitrary number of
images. The latter option however only requires small changes to Caspa, i.e., recording and
exporting of trace sets not providing authenticity, but major changes on the representation of
graphs in the graphical interface. In the current implementation graphs are images. But to
be able to interactively highlight different aspects on the same graph it has to be a real data
structure whose properties can be changed. This requires graph representation and layout
procedures.

As a side effect a more complex representation of graphs would offer a new grade of flex-
ibility and interactivity to the graphical interface. Nodes can be reordered, or more general,
moved by the user, graphs re-arranged to point out different aspects and nodes selected using
a mouse-click and corresponding information made available to the user. This extends to the
protocol currently analyzed. A highlighting of a node in the graph and corresponding part of
the input protocol in the protocol editor and vice versa becomes available, strengthening the
utility of Caspa further. As an example consider a protocol where the name n becomes known
although it should be kept secret. The secrecy graph already highlights all nodes that lead
to this condition, but the enhanced version also directly highlights the corresponding part of
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the input protocol in the editor, making identifying and correcting possible flaws easier. In
general a better representation of graphs improves the utility of Caspa as an analysis tool for
cryptographic protocols because it emphasizes the coherence between the protocol and causal
relations in the graph.

A different aspect that can be enhanced is the connection of Caspa to other applications,
e.g. the graphical interface. As explained earlier we chose an approach where we define an
interface and compile Caspa to a static C library. The interface however only offers two
very abstract functions that provide access to graph generation and analysis. It has to be
extended to allow a more fine grained access to the methods in Caspa. This makes the library
interesting for more applications than its own graphical interface because single algorithms
become available that may be interesting for other projects as well. However this imposes
some care when selecting the functionality that is exported. At the moment there is a lot
of internal state in Caspa and part of the functions are not self-contained, i.e., there are
functions which expect that other functions have been called beforehand. So exporting every
function can lead to inconsistent program states which will cause erroneous results.

In addition it is useful to provide a dynamic library in addition to the static one. Whereas
the latter contains the Ocaml bytecode in addition with the runtime files of Ocaml, the former
needs Caspa to be compiled to native code using ocamlopt. Next to a better integration into
the unix environment, Ocaml code compiled to native code is simply faster than the bytecode
variant. During experiments we noted that the runtime of the native version of Caspa is
faster than the bytecode variant by at least a factor of two. However, up to now the bytecode
variant does not work together with the graphical interface. The reason for this is related
to the linking of the dynamic library into the gui code written in C++ using the Qt toolkit.
This has to be further analyzed before changing Caspa completely to bytecode.
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A.1 Additional Figures
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Figure A.1: Graph for protocol 2.1 with colored threads
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