Saarland University

Department of Computer Science
Bachelor's Program in Computer Science

Bachelor’'s Thesis

Expi2Java — An Extensible Code Generator
for Security Protocols
submitted by

Alex Busenius

on October 28, 2008

Supervisor

Prof. Dr. Michael Backes

Advisor

Catalin Hritcu

Reviewers

Prof. Dr. Michael Backes
Dr. Matteo Maffei

Statement

Hereby | confirm that this thesis is my own work and that | have docu-
mented all sources used.

Saarbriicken, October 28, 2008
Alex Busenius
Declaration of Consent

Herewith | agree that my thesis will be made available through the library
of the Computer Science Department.

Saarbriicken, October 28, 2008
Alex Busenius

Abstract

This thesis presents expi2java, an extensible code generator for security protocols. We use
a variant of Spi calculus [AG99] for the protocol specifications and complement it with
an expressive type system that is designed to reject incomsistent protocols. This type
system features subtyping and parametric polymorphism. It is able to handle the types
of nested terms, specialized channels and even low-level term configurations. Expi2java
is highly customizable, easily extensible and generates interoperable Java code. We show
the flexibility of our approach by generating an implementation of the Transport Layer
Security (TLS) protocol.

Acknowledgments

I am very grateful to my advisor, Catalin Hritcu, whose enthusiasm motivated me to keep on
working on this thesis over the last months. He gave me the needed background knowledge
about the type systems and semantics, shared with me many ideas, discussed the occurred
problems and always provided a lot of useful comments, corrections and suggestions.

I would like to thank Alfredo Pironti, Davide Pozza and Riccardo Sisto for providing the
complete source code and documentation for the spi2java framework that we used as a
starting point for expi2java. The discussions we had about the design of spi2java, as well
as the comments on our extensions and the report were very helpful. I also appreciate the
help of Violeta Ivanova who worked with me on the seminar report and the previous version
of expi2java.

I would also like to thank Dominique Unruh for the source code of the ZK Compiler tool.
His contribution saved us a lot of time and effort.

In conclusion, I wish to thank the countless contributors from the Open Source community
who have developed numerous powerful tools and libraries I used.

Contents

1 Introduction

1.1 Motivation e
1.2 Contributions
1.3 Outline e

2 An Extensible Spi Calculus

2.1 Abstract Syntax
2.1.1 Terms and Constructors
2.1.2 Destructors
2.1.3 Processes
2.1.4 Example: Perrig-Song Mutual Authentication Protocol

2.2 Operational Semantics

2.3 File Format (Expi)

3 Type System with Nested Types

3.1 The Need for a Type System

3.2 Configurations e

3.3 Goals e

3.4 The Need for Nested Types

3.5 Definitions
3.0.1 Types . . . oo
3.5.2 Typing Rules and Judgments

3.6 Proofs

3.7 A Fully Annotated Example oL

3.8 File Format (Exdef)

4 Code Generation

4.1 Design L
4.1.1 Overview e e e
4.1.2 Translation of the Extensible Spi Calculus to Java
4.1.3 Current Limitations o L.
4.1.4 Templates e

4.2 Configurations Lo

4.3 Runtime Library

5 Case Study: TLS Protocol

5.1 Transport Layer Security

5.2 Implemented Part of HTTP/TLS

5.3 The Model in Extensible Spi Calculus

5.4 Results. e

T W W

© 00 0o I~

10

15
15
16
17
17
18
18
19
22
27
29

35
35
35
36
37
38
38
40

43
43
44
46
48

6 Conclusion 51

6.1 Contributions 51
6.2 Related Work e 52
6.3 Relation with Spi2java L 52
6.4 Future Work e 54
Bibliography 57

1 Introduction

1.1 Motivation

One of the important directions in security research is ensuring the correctness of the design
and the implementation of security protocols. The protocols can be formally modelled and
analyzed in different abstract calculi, e.g., in the Spi calculus [AG99]. These formal models
can be used by various verification tools, for instance by ProVerif [Bla01], to automatically
prove the desired security properties, such as authentication, confidentiality and integrity.
Furthermore, the abstract models can be analyzed by many type systems [Aba99, ABO1,
GJ04, HJO6, BEMO07, BCFM07, FGM07, BHMO08a] that statically enforce some security
properties.

However, a secure formal model of a protocol does not necessarily lead to a secure imple-
mentation of this protocol. One of the possible approaches to guarantee correctness of the
implementation is to generate the implementation automatically from the formal protocol
specification. In fact, various experimental tools for automatic code generation exist, such
as CIL2Java by J. Millen and F. Muller [MMO1], the Sprite tool by B. Tobler [Tob05] and
Spi2java by A. Pironti, R. Sisto, L. Durante and D. Pozza [PSD04, PS07].

Ideally, both the translation from the abstract model to the implementation language and
the target language should be formalized and proved correct (i.e., proved at least to preserve
the security properties of the initial protocol). Unfortunately, proving the translation cor-
rect is a non-trivial task even if one considers cryptography as a fully reliable black box and
uses a simple implementation language. In the case of mainstream programming languages,
such as Java, C#, C or C++, this task is very hard to achieve and requires correctness
proofs about a large subset of the used target language. For instance, protocols such as SSH
or TLS require networking, cryptography, concurrency and rely on the low-level bitstring
representation of the data.

Even though a provably sound code generation of complex protocols in a real-world pro-
gramming language is still a vision, there are many other reasons to use the code generators.
The alternative to generation is the manual implementation. It is error-prone, slow and
requires the programmers to write a large amount of code for every used protocol. The
implementation of a code generator, in contrast, is relatively small and can be tested more
extensively, resulting in an increased confidence in the correctness of the generated protocol
implementations. The use of the code generator also leads to lowering the overall costs by
shorter development times.

One of the most important features of a code generator, aiming at the generation of real-life
security protocols, is the interoperability with the existing implementations of the protocols.
In order to achieve this, the implementation must exactly follow the protocol specification

1 Introduction

and be able to work with common standards, (like the X.509 standard for digital certifi-
cates), use the corresponding realizations of the cryptographic primitives, (e.g., popular
block encryption schemes, such as DES, AES and RSA), and have full control over the
setup of the communication channels. The user must be able to customize the genera-
tion process according to the informal details of the specification, which cannot be easily
modelled in the formal calculus.

The calculus used to model the protocols must be flexible and expressive enough to model
complex protocols as good as possible. It should be easy to extend the calculus and the set
of cryptographic primitives and data types available for the code generation.

The implementations of security protocols are used in a large amount of existing software,
thus, the integration of the generated code into the existing applications is very important.
Additionally, the generated code should be efficient enough to be used as a replacement of
the existing optimized implementations used by real applications.

The quality and correctness of the implementation of the code generator is crucial for the
quality and correctness of the generated code. The tool should have a simple, modular
design that is both flexible and easy to maintain. The code generator should be easy to use
and integratable into the popular development tools.

Our long-term goal is to combine as many of these important features together as possible.
We need to be able to generate large real-world protocols, support also the complex primi-
tives such as zero-knowledge proofs, be flexible, configurable and generate provably-correct,
secure code.

1.2 Contributions

In this thesis we introduce the expi2java tool, an extensible Java code generator for security
protocols. Expi2java originated as an extension of the spi2java framework [PSD04] and
evolved in the course of time into an independent project.

We introduce a type system with nested types, aimed at the needs of our code generator.
This type system ensures that specialized data types are used in a consistent way and pre-
vents the usage of incompatible cryptographic primitives. Using parametric polymorphism
and subtyping, we can represent the complex types of nested terms with only a few core
type constructors.

Another important contribution is the notion of configurations, which allow the user to
specify all needed low-level information about every term with minimal effort. The con-
figurations also offer a simple way to solve the issues that originate from the differences
between the abstract representation and the concrete implementation of channels that are
described in more detail in Section 4.2.

One of our first extensions to the spi2java [BIO8] was using an extensible Spi calculus
with user-defined constructors and destructors [AB05]. In this thesis, we have adapted
this calculus to use the configurations. The resulting Extensible Spi Calculus is defined in
Chapter 2.

1.3 Outline

The abstract concepts mentioned before are implemented in the expi2java tool. Expi2java
is able to generate interoperable Java implementations from protocol specifications written
in the Extensible Spi Calculus. The user can customize the code generation process without
the need to change the implementation of the code generator. We provide a convenient way
to extend the calculus, the type system and the set of the available cryptographic primitives
and data types used by the code generator. The cryptographic primitives are implemented
in a runtime library that relies on the standard Java cryptographic providers.

A case study on the Transport Layer Security (TLS) protocol [DA99] illustrates the po-
tential of expi2java. The generated TLS implementation instantiates a secure AES-256
encrypted connection to a given web server using the RSA key exchange and downloads a
web page using the HT'TP over TLS [Res00].

1.3 Outline

Chapter 2 describes the Extensible Spi Calculus that we use to model security protocols and
the concrete file format supported by expi2java. In Chapter 3 we define the type system
with nested types, prove that it preserves typing on evaluation and explain how the types,
configurations, constructors and destructors can be defined in our tool. The design and
main features of expi2java, as well as some details on the generated implementations of
the protocols are described in Chapter 4. The case study on the implementation of the
TLS protocol is discussed in Chapter 5. Finally, in Chapter 6 we give a short overview of
the related projects, compare expi2java to its predecessor and provide directions for future
work.

2 An Extensible Spi Calculus

We use a variant of the Spi calculus, a process calculus for modelling cryptographic pro-
tocols. The calculus is the same as the one by M. Abadi and B. Blanchet [AB05], but we
extend it with configurations (Section 3.2) and give a new type system for it (Chapter 3).
Throughout this thesis we will refer to this calculus as the Extensible Spi Calculus, since it
can be easily extended by the user in various ways. In this chapter we define the syntax
and semantics of this calculus.

2.1 Abstract Syntax

2.1.1 Terms and Constructors

In the Extensible Spi Calculus, terms are used to model data and processes are used to
model the behavior of the protocol participants and the communication between them.
The set of terms contains names (which represent constant data), variables and constructor
applications.

Table 2.1 Terms and constructors

K, L, M,N := terms
a,b,m,n, k names
T,Y, 2, U, W variables

f(My,...,M,) constructor application (f of arity n)

2

c?

1 0

f == enc?, enca?, pkl, sign?, vki, hl, true®, false?, pair?, succl, zero®

Notation: We use u to refer to both names and variables.

Notation: We use ¢, d, e and * to denote configurations.

Notation: The default configuration % can be omitted, i.e., true = true,.
Notation: The numbers in constructor names denote arities, i.e., enc? has arity 2.

Constructors are function symbols that are used to build terms. For instance, the con-
structors enc. and enca,. represent symmetric and asymmetric encryption; pk. extracts a
public key from the given private key; sign. constructs a digital signature; vk, extracts the
corresponding verification key from the signature key; h. constructs hashes; the nullary
constructors true and false represent the corresponding boolean values; finally, zero. and
succ, are used to represent integers.

The only difference between the calculus from [ABO05] and our calculus is the notion of
configurations. In our Extensible Spi Calculus, every constructor and destructor has a
corresponding configuration. If the configuration is not set explicitly, the default configu-
ration * is used. The default configuration is compatible with any other configuration.

2 An Extensible Spi Calculus

The configurations have many uses, amongst others, they allow for specifying sets of types,
constructors and destructors meant to be used together. For example, we can have a
constructor encpgs, a corresponding destructor decpgs and two types SymEncpes(7’) and
SymKeypgs (T'), that together represent the DES encryption. We will describe configurations
in more detail in Sections 4.2 and 3.2.

Note that the set of constructors and destructors used in this calculus is not fixed. Using a
flexible file format described in Section 3.8, the user can easily add new primitives, change
existing definitions and remove constructors and destructors according to his or her needs.
The constructors from Table 2.1 and destructors from Table 2.2 define a set of commonly
used cryptographic primitives and data types that we will use in the examples we give in
this thesis.

2.1.2 Destructors

Destructors are partial functions that can be applied to terms. The semantics of destructors
is defined by the reduction relation |}, which can either succeed and provide a term N as
the result (denoted by g(Mj,..., My) | N), or fail (denoted by g(M, ..., M,)). Every
constructor used in a reduction rule should have the same configuration as the destructor,
otherwise the reduction will fail, e.g., decags(encrca(M, K), K) /.

Table 2.2 Destructors g(My,...,M,) | N

2
cr

g == dec?, deca?, msgl, ver?, eq?, first!, second!, prel

dec.(enc.(M, K), K) M first(pair(M, N)) I M
deca.(enca.(M, pk.(K)), K) second(pair(M,N)) || N
msg.(sign.(M, K)) pre.(succ.(M)) U M
ver.(sign.(M, K),vk.(K)) pre.(zero.) [}

eq(M, M)

Eees
TREX

Notation: We write g(My, ..., M,) ¥ if none of the rules above applies, i.e., the destructor fails.

The destructors dec. and deca. decrypt messages encrypted with enc, and enca. respec-
tively; ver, verifies the given signature and returns the signed term on success, msg. returns
the signed term without checking the signature; eq compares two terms and returns true on
success; first and second allow for extracting the corresponding components of pairs; finally,
pre. returns the predecessor of the given integer if possible or zero. otherwise.

2.1.3 Processes

The processes are used to model the behavior of protocol participants and the communica-
tion between them [ABO05]. A specific characteristic is that a replication process can only
be followed by the input process, as in [FGM07, BHMO08a], since this is the most common
way to use replication in a protocol specification.

The out(M, N).P process outputs the message N on the channel M and then behaves
as the process P; the in(M,x).P process inputs the message N on the channel M and
then behaves as the process P{N/x}; the replication process !in(M,z).P behaves as an

2.1 Abstract Syntax

Table 2.3 Syntax of processes

P,Q,R := processes
out(M,N).P output
in(M,z).P input
lin(M, z).P replicated input
new a :T.P restriction
P|Q parallel composition
0 null process

let z = g(M) in Pelse @ destructor evaluation

Notation: M = My, ..., M,.

unbounded number of in(M,z).P processes executed in parallel; the restriction process
new a : T.P generates a fresh name a of type T and then behaves as P; the parallel
composition P |) behaves as the processes P and) executed in parallel; 0 does nothing;
let x = g(]\7) in P else (applies the destructor g to the terms M and then, in case the
destructor succeeds providing the term N, it behaves as P{N/z}, otherwise it behaves as
Q. We denote by {M/z} the capture-avoiding substitution of z by M.

We denote by fn(P) the set of free names in P, by fu(P) the set of free variables and by
free(P) the set of free names and variables. We say that P is closed if it does not have any
free variables.

2.1.4 Example: Perrig-Song Mutual Authentication Protocol

The Perrig-Song mutual authentication protocol® given in Figure 2.1 uses a shared key to
authenticate two participants and send an encrypted message. We will use this protocol as
a running example throughout this thesis.

Alice Bob

(Alice, N)

enc((Na, Np, Bob), Kgp)———

enc((NB,M), KAB)

Figure 2.1: Perrig-Song mutual authentication protocol

The Perrig-Song protocol is composed of three message exchanges. First, the initiator of
the protocol, Alice, sends her identity together with a fresh nonce N4 to the responder,
Bob. Bob encrypts the nonce N4, which he received from Alice together with another fresh
nonce Np and his identity with the shared key K4p and sends this encryption to Alice.
Alice receives the encrypted message, decrypts it with the shared key K 4p and checks that
the nonce N; inside is the same as her nonce N4. If the nonces match, she encrypts the
received nonce Np and a message M she wanted to send with the shared key K 4p and sends

!Can be found in examples for CAPSL by J. Millen et al. [MMO1], at http://www.csl.sri.com/users/
millen/capsl/examples.html

http://www.csl.sri.com/users/millen/capsl/examples.html
http://www.csl.sri.com/users/millen/capsl/examples.html

2 An Extensible Spi Calculus

the resulting message to Bob. Bob decrypts the message and checks that the received nonce
N, is the same as his nonce Np. If the nonces match, the protocol completes successfully.

This protocol can be written in the Extensible Spi Calculus as follows:

out(c, pair(Alice, Na)).
in(c, e).

let msg = dec(e, k) in

let tmp = first(msg) in
let Nal = first (tmp) in
let ok = eq(Na, Nal) in
let Nb = second(tmp) in
out(c, enc(pair(Nb, M), k)).

0
| in(c, x).
let name = first(x) in
let Na = second(tmp) in
new Nb.

out(c, enc(pair(pair(Na, Nb), Bob), k)).
in(c, msg).
let p = dec(msg, k) in
let Nbl = first(p) in
let ok = eq(Nb, Nbl) in
let M = second(p) in
0)

Listing 1: Perrig-Song mutual authentication protocol in Extensible Spi Calculus

2.2 Operational Semantics
The semantics of the calculus is standard and is defined by the usual structural equivalence
relation (P = @) and an internal reduction relation (P — Q).

Structural equivalence relates the processes that are considered equivalent up to syntactic
re-arrangement. It is the smallest equivalence relation satisfying the rules in Table 2.4.

Table 2.4 Structural equivalence P=qQ
(EQ-ZERO-ID) P|0O = P
(EqQ-PAar-ComM) P|lQ = Q|P
(EQ-PAR-Assoc) (PIQ)|R = P|(Q]|R)
(EQ-ScoPE) newa:T.(P|Q) = Plnewa:T.Q, ifa¢ fn(P)
(EQ-BIND-SWAP) new aj : Thi.new ag : To.P = new ag : To.new a1 : T1.P, if a1 # as
(EQ-CTXT) EP] = €Q),ifP=Q

Where € stands for an evaluation context, i.e., a context of the form & = new a : T.([] | P)

Internal reduction defines the semantics of communication and destructor application. It
is the smallest relation on closed processes satisfying the rules in Table 2.5.

10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

2.3 File Format (Expi)

Table 2.5 Internal reduction P—qQ
(RED-1/0) out(a, M).P | in(a,x).QQ — P |Q{M/x}
(RED-!I/O) out(a,M).P |lin(a,z).Q — P |Q{M/z}|!in(a,z).Q
(RED-DESTR) let z =g(M)in Pelse Q — P{N/xz}, ifg(M){ N
(RED-ELSE) letz = g(M) inPelse@ — Q, if g(M) ¥
(RED-CTXT) EPl — €Q], ifP—-Q
(RED-EQ) P—Q, ifP=P P —Q,and Q' =Q

2.3 File Format (Expi)

The input file format for the expi2java tool is called Expi. The concrete syntax used in Expi
files is mostly compatible with the input syntax used by ProVerif [Bla01, ABF05], a popular
cryptographic protocol verifier. We use the same syntax for all processes and terms, only
the declarations of constructors and destructors have mandatory type annotations and are
declared in included Exdef files for convenience. We will describe Exdef files in Section 3.8.

All extensions to the calculus that are not supported by ProVerif are added in form of
additional annotations, written as ProVerif comments. A similar approach is used in the
zero-knowledge type checker tool [BHMO8b]. This allows for a simple translation into a
form suitable for ProVerif by a simple preprocessing step. We have implemented this step
as a part of the pretty-printer in the expi2java tool, which can transform any Expi input
file into a nicely formatted ProVerif input file.

The Perrig-Song protocol from Section 2.1.4 can be written in Expi as follows:

(*

x Perrig—Song mutual authentication protocol

*)
(x# include "../exdef/default.exdef” x)

(x Free names x)
free Alice.

free Bob.

free c.

(x* Named processes x)

let testA (x# public %) =
new M;
new Na;
(+ Msg 1. A>B: pair(Alice, Na) x)
out(c, pair(Alice, Na));
(+ Msg 2. B—>A: enc(pair(pair(Na, Nb), Bob), K.AB) x)
in(c, emsg);
let msgl = dec(emsg, k) in
let tmp = first(msgl) in
let Nal = first (tmp) in
let ok = eq(Na, Nal) in
let Nb = second(tmp) in
(+ Msg 3. A>B: enc(pair(Nb, M), KAB) x)

11

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

2 An Extensible Spi Calculus

out(c, enc(pair(Nb, M), k)).

let testB =
(x* Msg 1. A>B: pair(Alice, Na) x)
in(c, tmp);
let name = first (tmp) in
let Na = second(tmp) in
new Nb;
(+ Msg 2. B—>A: enc(pair(pair(Na, Nb), Bob), KAB) x)
out(c, enc(pair(pair(Na, Nb), Bob), k));
(x Msg 3. A>B: enc(pair(Nb, M), KAB) x)
in(c, mmm);
let pp = dec(mmm, k) in
let Nbl = first(pp) in
let M1 = second(pp) in
let ok = eq(Nbl, Nb) in
0.

(x+ Main process x)
process

new Kk

(testA | testB)

Listing 2: Perrig-Song mutual authentication protocol in Expi (untyped)

Compared to the abstract calculus described in Section 2.1, the concrete syntax used in the
Expi files has several additional features (also supported by ProVerif).

A process can be given a name using the “let process_.name = P.” construct to improve the
readability. Such named processes are often used to represent the protocol participants, as
in Listing 2. In this case the main process (starting with the keyword process) only contains
a restriction followed by the named process of the two participants executed in parallel.

The free names are declared using the “free a.” construct. Every name used by a process
or a term should either be previously generated using the new a.P process or be declared
as free. If a free name declaration has the optional private keyword, it is not known by the
adversary in ProVerif. We support this feature for compatibility reasons.

The code parts enclosed in (x x) are ProVerif comments. We use them to add several
extensions to the language while staying compatible with ProVerif.

One of the extensions is the include directive: (x# include "../exdef/default . exdef” x). It is
used to include External Definitions files, which contain the definitions of types, configu-
rations, constructors and destructors. The file default.exdef contains the set of types
and cryptographic primitives used by all example protocols provided with expi2java. The
syntax of Exdef files is defined in Section 3.8.

Another extension is the process kind, which can be specified as an optional annotation of
a named process: “let process_name(«# keyword) = P.” where keyword is one of {public,
private, skip}. The protocol participants are represented as public processes (default),
private processes represent integral parts of the public processes and processes marked with
skip are ignored during the code generation. Private processes can be used to split large
public processes into several smaller processes for readability or define helper processes that
should not be implemented (e.g., for verification with ProVerif). In Listing 2, both named

12

2.3 File Format (Expi)

processes are public, but we omitted the optional process kind annotation for the second
process.

The last extension is the type annotation: (x: <type annotation> x). The type annotations
were omitted in Listing 2, since the type system will be introduced in the next chapter. A
fully annotated example of this protocol can be found in Section 3.7, Listing 4.

All other ProVerif comments, (i.e., the ones not starting with “(x:” or “(x#”) are treated
as comments in expi2java as well.

13

14

3 Type System with Nested Types

We motivate the use of a type system in Section 3.1. In Section 3.2 we introduce the
configurations. In Sections 3.3 and 3.4 we define our goals and explain the advantages of
nested types. We define our type system in Section 3.5 and prove that it preserves typing
on evaluation in Section 3.6. In Section 3.7 we give an example of typed protocol. Finally,
Section 3.8 explains how the types, configurations, constructors and destructors can be
defined in our tool.

3.1 The Need for a Type System

The calculus we presented in Chapter 2 didn’t consider types. This is reasonable in certain
settings. For example, when we verify a protocol model in ProVerif, we might only want
to know if some term is leaked to the adversary and in this case we do not need to know
what this term is.

However, if we want to generate code for the same protocol in an explicitly-typed language
like Java, then we need to provide (or infer) a type for every term, since in the generated
code terms are represented by Java variables of different types. Moreover, we also need
to know the types of all methods that are used to implement processes, constructors and
destructors.

Consider the following example:

fun pair /2.
fun enc/2.

reduc dec(enc(x, y), y) = x.
reduc id(x) = x.
reduc first(pair(x, vy
reduc second(pair(x,

< -
-
N
Il
<

query attacker:m;
attacker: k.

let pA =
out(c, enc(m, k));
in(k, e);
let y = dec(e, c) in (x always fails =)
out(c, vy);

out(enc(k, m), pair(y, k)).

let pB =
in(c, e);
out(k, e);
in(c, y);

15

26

3 Type System with Nested Types

let ekm = id(enc(k, m)) in
in(ekm, y).

free c.

process
new m; new k;

(PA | pB)

Listing 3: Unimplementable protocol in Extensible Spi Calculus

This is a valid protocol specification written in ProVerif syntax. In addition to the con-
structors and destructors defined in Section 2.1 it uses the identity destructor id. The query
in the lines 9-10 is a ProVerif-specific construct, used to define which properties should be
proved. In this case, we ask whether the adversary can know the terms m or k.

This protocol is accepted by ProVerif and is even secure, since the attacker is not able to gain
the knowledge of neither m, nor k. Nevertheless, it would be very difficult to implement this
protocol in a usual programming language, since it uses the terms in a totally incompatible
way. The term c is first used as a channel in the lines 13 and 20, where the participants
send the message m encrypted with the key k. Then, in lines 14 and 21, this encrypted
message is sent back over the key k and is decrypted using the channel c. Of course, this
decryption fails, since ¢ # k, but the code generator would also need to generate a code
that passes the Java type-checker for the whole protocol, including the part where a pair
of terms should be sent over an encryption.

One of the purposes of our type system is to reject such “unimplementable” protocols before
the code generation phase.

3.2 Configurations

The configurations are a crosscutting concept that solves several problems. First, we need
a convenient way to define subsets of related types, constructors and destructors without
explicitly defining them with different names, since multiple similar definitions are hard to
use and cause unneeded duplication. This feature is an integral part of the Extensible Spi
Calculus and our type system. It is used there to detect errors, such as decrypting a DES
encrypted message with an AES key.

The specifications of real-world protocols contain a lot of information that cannot be directly
expressed in Spi calculus, but still should be taken into account during the code generation.
For example, there are often exact rules of how the messages should look like on the bit-
string level, which data types should be used, which size they should have etc. We need
a way to express that using the type system in order to make a model that matches the
protocol as closely as possible, ideally without any implicit assumptions on the behavior of
the implementation classes. In order to limit the number of types in a manageable range,
they should stay as abstract as possible and allow for defining of specialized types with
different characteristics, such as AES and DES encryptions.

In order to solve these problems, we introduced the concept of configurations and imple-
mented it as simple key-value mappings with some special keys. The configurations are

16

3.3 Goals

defined in the Exdef files using the syntax defined in Section 3.8. There is also a way to
extend the configurations, similar to the inheritance in object-oriented programming. This
allows the user to define a configuration that only differ in several keys from another one
in a convenient way.

3.3 Goals

Using a type system, we can statically check whether a given protocol is well-typed. This
process is fast, reliable and, provided that the type system is sound, implies that every
well-typed protocol is also valid according to the criteria enforced by this type system.

First, we want every term to have a type corresponding to its data type, such as integer,
string, symmetric encryption, pair etc. The corresponding parameter of the constructors
and destructors and their return types should also reflect their intended use.

Additionally, we also need to enforce the proper usage of constructor and destructor con-
figurations and integrate this configurations with the types.

Since we cannot predict all the possible uses of this type system, we need a simple and
small core and a possibility to extend this type system with custom types, if needed. This
approach also leads to a clean design and a simpler implementation of the type checker.

3.4 The Need for Nested Types

One possible solution is to use a hierarchy of simple types, as in the spi2java framework
by A. Pironti, R. Sisto, L. Durante and D. Pozza [PSD04]. Simple types fulfill most of our
goals and, with some additional low-level information, allow to generate interoperable code,
as it was shown on the example of an SSH client [PS07].

However, simple types also have some limitations. They are not able to carry the informa-
tion from the nested terms, which means that the discarded information about the term
structure needs to be provided by the user every time one of the nested terms is extracted
using a destructor. This information can be recovered in some simple cases using the type
inference [BIO8], but for more complex protocols it leads to an increased amount of type
annotations.

The type hierarchy used in the simple type system has the form of a tree with one top
type called Message. This allows for defining e.g., encryption as a constructor taking two
parameters, one of type Message and the other of type Key, and returning an encrypted
message of type Encryption. This is desirable if we want to represent an universal encryption
that can take a message of any type, convert it to Message using the subsumption rule
and return an encrypted message. In case of the specialized encryption functions, for
example those that should only encrypt strings, using this type system would lead to several
constructors and destructors that only differ in their names and parameter types, and
several specialized encryptions. It is also not possible to express specialized channels, since
the in and out processes need to take the most abstract type of channels and messages.

17

3 Type System with Nested Types

In order to have an expressive and flexible type system we decided to use not only subtyping,
but also parametric polymorphism [CG92, Pie02]. This allows us to use a small number of
“generically” typed constructors and destructors and still be able to specialize them. The
parametric types can be nested, which naturally corresponds to the types of the nested terms
and allows us to keep more information about the inner terms even after several destructor
or constructor applications. The nested types also allow for expressing the relation between
the type of a channel and the type of messages sent and received over it, modelling the fact
that an encryption and the corresponding key work on messages of the same type, using
only a few base types.

3.5 Definitions

3.5.1 Types

Our type system has only two mandatory types, Top and Channel (T, all other types are
user-defined. Top is supertype of any other type. The type Channel.(T") must also be always
present, since it is hardcoded in some of the process typing rules from Table 3.8. The other
types we define in Table 3.1 represent the types of the cryptographic primitives and some
common data types. They are needed for typing the constructors and destructors defined
in Section 2.1.

Table 3.1 Types

T,U := Top Channel (T°) SymEnc.(T") PubEnc.(T") Signed.(T™)
Bool. Pair (T, U") SymKey . (T~) PubKey.(T~) SigKey.(T™)

Int. Hash (TT) PrivKey.(T~) VerKey.(T™)
Notation: Let 7 : T denote xy:T1,...,x, : T, for some n
Notation: We use +, — and o to denote covariant, contravariant and invariant subtyping
Definition: T is generative if T € {Int., Channel (T}, SymKey.(T), PrivKey.(T'), SigKey (T}
Note: Two types are equal if their names, nested types and configurations are equal

The variance (see Pierce, TAPL [Pie02], Chapter 15.2) of every parameter in nested types
controls the sense of the subtyping relation defined in Table 3.4. It is reversed for con-
travariant parameters, runs in the same direction for covariant parameters and requires the
invariant parameters to be the same. The parameters of all user-defined types can have
arbitrary variance, however, the variance needs to be chosen carefully, since the subtyping
rules can be used to circumvent the type system on constructors and destructors applica-
tions in some cases. We have chosen the variances of the types in Table 3.1 in the way
that does not allow such misuses (see Proposition 3.6.9 (Typing Destructors Consistent)
and Theorem 3.6.10 (Subject-Reduction)).

Types can be declared to be generative. Only generative types are allowed to be used in a
restriction process. This allows the user to selectively restrict the generation of fresh names
only to the types where it actually makes sense (i.e., where the corresponding implemen-
tation is available) in a clean way. In the default set of types we allow to generate fresh
integers that can be used as nonces in the protocols, to create fresh keys and open new
communication channels using the restriction process.

18

3.5 Definitions

Similar to the constructors and destructors, every type (with the exception of Top) also
has a corresponding configuration. Two differently configured types are considered to be
different by the type system. The type and the configuration of any name or variable inside
a protocol can be chosen independently from each other via a type annotation. This feature
is used to provide the low-level information needed for the code generation for every type
in a consistent way, without the need to define new specialized primitives or types. For
example, assume we want to decrement a 64 bit long nonce Na of type Intgspir and send
it on a channel: “let Nal = pre(Na) in out(c, Nal)”. If the type system would just check
that the type of Nal is an Int, we could accidentally configure Nal to be only 16 bit long
(i.e., Intyepit), and get an incorrect behavior of the generated code (the receiver would only
get a part of Na).

3.5.2 Typing Rules and Judgments

Our type system is based on the typing judgments defined in Table 3.2.

Table 3.2 Typing judgments

ko well-formed environment
r-T<U subtyping
f:(Ty,...,T,) — T constructor typing
g:(Th,...,T,) — T destructor typing
'EM:T term typing

r-pP well-typed process

Notation: We use I' - J to denote a typing judgment, where J € {o, T <: U, M : T, P}

Table 3.3 Well-formed environment I'kFo
E E ENV-BINDING
NV-EMPTY ko u ¢ dom(T")
DEo

Nu:TkFo

Definition: dom(0) = 0; dom(T,u : T) = dom(T") U {u}

The typing environment I is a list containing name and variable bindings of the form u : 7.
A typing environment is well-formed, denoted by I' - ¢, if no name or variable is bound more
than once. All other typing judgments check that the typing environment is well-formed.

Our type system supports subtyping with a top type Top. This allows us to omit the
information about the nested types where it does not matter and makes it possible to
express the types of “universal” keys, encryptions, channels etc., which should work with
any type. The subtyping relation is a partial order (see Lemma 3.6.7 (Subtyping Partial
Order)). It is defined by the rules in Table 3.4.

We can also represent deep type hierarchies like the one from the type system used in
spi2java by nesting the types several times. For instance, the relation

Int <: Name, Bool <: Name, Name <: Message

19

3 Type System with Nested Types

can be modelled using the nested types as
Name(Int) <: Name(Top), Name(Bool) <: Name(Top), Name(Top) <: Top,

assuming that Name(T'") is a covariant type.

Table 3.4 Subtyping 'ET<:U

SUB-NESTED

Vi e [1,n]. (variance(T,i) =+ = T'FT; <:U;)

SUB-REFL SUB-TOP A (variance(T,i) = — = T'HU; <:T;)

ko o A (variance(T,i) = o = T, = Uy)
TFT<:T TFT<: Top T(Ty,.... Ty < T<U U

Notation: variance(T,4) returns the variance in the i-th parameter of the type T' (see Table 3.1)

The types of all constructors and destructors from Section 2.1 are defined in Tables 3.5
and 3.6. Most of them are implicitly parametrized by the one or more types T" and U
that can be replaced by any type from Table 3.1, resulting in a well-typed instance of the
corresponding constructor or destructor.

Table 3.5 Typing constructors f:(T,....,T,)—T
enc. : (T, SymKey (T")) — SymEnc.(T") true : () — Bool
enca, : (T, PubKey.(T')) — PubEnc.(T") false : () — Bool
pkc : (PrivKey (T")) — PubKey.(T") pair : (T',U) — Pair(T,U)
sign. : (T, SigKey(T")) — Signed.(T') succ. : (Int.) — Int,
vk, : (SigKey (T")) — VerKey (T zero, : () — Int,
h. : (T) — Hash(T)
Table 3.6 Typing destructors g: (Ty,...,T,)—T
dec. : (SymEnc.(T'),SymKey (T)) — T eq: (T,T) — Bool
deca. : (PubEnc (T, Prieryc<T>) — T first : (Pair(T,U)) —
msg. : (Signed.(T)) — second : (Pair(T,U)) — U
ver, : (Signed (T, VerKeyc<) — T pre. : (Int;) — Int,

All types inside a constructor or destructor type should have the same configuration as the
corresponding constructor or destructor, as far as it makes sense (but it should always be
possible to use a different configuration with the type variables, of course). This allows us,
for example, to detect the attempt to use a DES key k : SymKeypgs(Int.) to decrypt an
AES encrypted message M : SymEncags(Int.), i.e., in a destructor application decags(M, k).
Other uses of the configurations are discussed in Sections 3.2 and 4.2.

20

3.5 Definitions

The judgment I' = M : T checks that the message M has the type T using the term typing
rules defined in Table 3.7. The types of names and variables can be simply determined
using the corresponding binding from the typing environment. The constructor applications
have the type given by the corresponding constructor type, provided that the types of all
arguments match the constructor type. Any term having type 1" can also be seen as having
any supertype of T by the subsumption rule.

Table 3.7 Typing terms I'eM:T
Env SuB
I'ko u:T el I'EM:T r-7T<:7
'tu:T T-M:T
CONSTR

f:(Th,....,T,)—T Vie[l,n.TFM:T,
- f(My,...,.My,): T

The typing judgment I' = P checks whether the process P is well-typed using the process
typing rules from Table 3.8. The output process “out(M, N).P” is well-typed, if the term
M has the channel type Channel.(T), the term N has the type T and the process P is
well-typed. The input process “in(M,x).P” is well-typed, if the term M has the channel
type Channel . (T') and the process P is also well-typed assuming that x has the type 7.
The restriction process “new a : T.P” is well-typed, if the type T is generative according
to Table 3.1 and the process P is well-typed assuming that a has type T. The parallel
composition “P | Q" is well-typed, if both processes P and @ independent of each other
are also well-typed. The null process “0” is always well-typed. Finally, the destructor
evaluation process “let x = g(M,...,M,) in P else Q7 is well-typed, if the process @ is
well-typed, all parameters of the destructor g have the corresponding parameter types of
the destructor type and the process P is well-typed assuming that x has the destructor
return type.

Table 3.8 Typing processes r-p
PrROC-OUT Proc-[REPL]-IN
' M : Channel (T '-N:T r-pr ' M : Channel (T) Fe:THP
't out(M,N).P L'k [Nin(M,z).P
Proc-Stopr Proc-NEwW Proc-PAr
I'ko T is generative Ta:THP '@ r-p
r+o 'Fnewa:T.P '-P|Q
Proc-DEs

g:(Th,....T))—T Yic[l,n.TFM:T, T,2:TFP TFQ
L'k let x = g(Mi,...,M,) in P else Q

21

3 Type System with Nested Types

3.6 Proofs

The proof technique is standard [WF94]. We are going to show that process typing is
preserved by evaluation (subject-reduction).

We first show that typing judgments can be only derived for well-formed typing environ-
ments.

Lemma 3.6.1 (Well-formed Environment)

IfT'EJ, then 't o.

Proof. By induction on the length of the typing derivation of I' F J. All base cases are
trivial, since there we explicitly check that the typing environment is well-formed. O

The weakening lemma states that if a typing environment I proves a judgment 7, then every
well-formed extension of I" still proves J. Thus, extending the set of typing assumptions
means extending the set of provable judgments.

Lemma 3.6.2 (Weakening)
IfO.1"+J and T,T, T + o, then I, T".T" - 7.
Proof. The only typing rule explicitly checking for the absence of a term in the typing

environment is ENV-BINDING and, by hypothesis, I',I",T” + . The proof is by induction
on the length of the typing derivation of I', T + 7. O

The strengthening lemma states that if a judgment J can be proved by a typing environ-
ment [', then the judgment J can be proved after removal of name and variable bindings
not occurring in J from I'.

Lemma 3.6.3 (Strengthening)

o, = g, dom(T") N free(J) =0 and T, TV o, then T, T" + J.

Proof. The proof proceeds by induction on the length of the typing derivation of I', T, T -
J, and case analysis on the last applied rule. For rule ENV, we know that I', T, TV - u : T
and thus by the premises of the rule that (u:T) € T, T",T". Since dom(I") N {u} = 0 we

have that (u: T) € T',I”. From the hypothesis of the lemma we have that I', TV - ¢, so by
applying ENV we conclude that I', TV -« : T. All the other cases are trivial. O

We denote by I' - J{M/z} the capture-avoiding substitution of = by M inside an arbitrary
typing judgment J.

Definition 3.6.4 (Substitution)
o I'Fo){M/xz}=TFo

22

3.6 Proofs

e 'FT<U){M/z}=TFHT <:U
e 'FN:T){M/z} =T+ N{M/z}:T
e I'FP){M/x}=TFP{M/zx}

Note that the substitution applies only to terms. The substitution lemma is a standard
tool for proving the preservation of types at run-time. During process evaluation, variables
are instantiated by terms, and the substitution lemma states that all typing judgments are
preserved by the type-preserving substitution of variables.

Lemma 3.6.5 (Substitution)
IfT,2:THJ and T+ M : T, then T - J{M/z}.

Proof. We proceed by cases, depending on the judgment J:

Case J =oand J =T <: U. Trivial by Lemma 3.6.2 (Weakening), since the substitution
does not apply.

Case J = M : U. The proof proceeds by induction on the length of the derivation of I', z :
T+ M :U, and case analysis on the last applied rule.

The first base case is ENV, where I';z : T+ u : U for some u and by the premises of
therule 'z : THoand w: U € Tz : T. If u = x, then we are done since U = T (by
ENv-BINDING), I' = M : T (by hypothesis), and (u : U){M/u} = M : T. If u # z, then
u:U €Tl (sincewu:U e€l',z:T and u # z), I' - ¢ (by inverting ENV-BINDING from
[,z :T+F o), so by ENV we have that I' - w : U, as desired. The induction steps follow
directly from the induction hypothesis.

Case J = P. The proof is simple and uses the previous judgments

The next lemma shows that the order of the bindings and formulas inside a well-formed
typing environment does not matter.

Lemma 3.6.6 (Exchange)
IfT'1,T9, T3, T4 = J and T'1,T'3, T2, Ty 0, then I'1,T'3, T2, Ty = J.

Proof. Trivial since no judgment depends on the order of the elements of I'. The proof is
by induction on the length of the derivation of I'y, Iy, I's, ' F 7. O

The next lemma shows that the subtyping relation is a partial order.
Lemma 3.6.7 (Subtyping Partial Order)

Reflexivity 'T<.T

Antisymmetry IfI'-T <:U and'-U <: T thenT =U

23

3 Type System with Nested Types

Transitivity IfTFTy <:Th and U F T <:T5 then ' HT7 <: Ty

Proof. Reflexivity follows directly from SUB-REFL.

We prove Antisymmetry by induction on the derivation of I' - U <: T and case analysis on
the last applied rule.

SuB-Top We have T' = Top and by assumption it also holds that I' =T <: U. Since the
only case where I' - Top <: U can be true is SUB-REFL, we also have that T'=U.

SUB-NESTED We have that there exist types T, Ty,...,T, and Uy,...,U, st. T =
T(Ty,...,T,) and U = T'(Uy,...,U,). Furthermore, we have that Vi € V* : T'
U < T;,VieV :THT, <:U; and Vi € V° : T; = U;, where V* C [1,n], V= C [1,n]
and V° C [1,n] denote the subsets of indices of covariant, contravariant and invariant
parameters respectively.

In order to prove T; = U; for all i € [1,n], we do a case analysis on the subtyping rule
applied to T HT <: U, ie., T ET{TY,...,T,) <: T (Uy,...,Uy).

SUB-NESTED We get that Vi € V* : ' - T, <: U;, Vi € V- : T' - U; <: T; and
Vi € V° : T, = U;. Now we can apply the induction hypothesis to conclude that
Vi € [l,n] T =U,.

The other cases are trivial.

The proof for transitivity is by induction on the derivation of I' - T, <: T and case analysis
on the last applied rule.

SUB-NESTED In this case we have that there exist types T, 17, ..., T, and Uy, ..., U, s.t.
T, =T(T},....,T)), T5 =T(U1,...,Up) and Vi e VT : T+ T/ < U;, Vi € V™ : T+ U; <:
T/ and Vi € V° : T = U;, where V* C [1,n], V= C [1,n] and V° C [1,n] are the subsets
of indices of covariant, contravariant and invariant parameters respectively, as in the
previous case. Furthermore we also get from the assumption that I' - Ty <: T(T7,...,T))

Now we do a case analysis on the rule applied to I' - T} <: Th

SUB-NESTED We get that there exist types 77,...,T) s.t. Ty = T{T},...,T)) and
VieVt :THT! <T/,VieV :TFT/ <T/ and Vi € V° : T/ = T!. We
apply the induction hypothesis to T}, T/ and U; for all i € [1,n] and conclude that
VieVt:THT! <:U;, Vi € V™ : T FHU; <: T/ and Vi € V° : T/ = U; and therefore
also I' F T7 <: T3 as desired.

The other cases, SUB-REFL and SUB-TOP are trivial. O

The next lemma states that well-typing is preserved by structural equivalence.

Lemma 3.6.8 (Structural Equivalence Preserves Typing)

IfT'FPand P=Q, then T Q.

Proof. The proof is by induction on the length of the derivation of P = @) and case analysis
on the last applied rule.

24

3.6 Proofs

Case (EQ-ScOPE) In the scope extrusion case we assume that I' - new a : T.(P | Q) and
a ¢ fn(P) and we show that I' - P | new a : T.Q).

From the assumption, by inverting the rules PROC-NEW and PROC-PAR, we obtain that
that T'ya : T+ P and I'ya : T F Q. Since a ¢ fn(P) we can apply Lemma 3.6.2
(Weakening) to I';a : T+ P and obtain I' - P. From I';a : T+ @ by PROC-NEW we get
I'Fnew a: T.Q. By PROC-PAR this implies that I' = P | new a : T.Q.

Case (EQ-CTXT) The inductive case corresponds to the closure of structural equivalence
under application of evaluation contexts.

For & = new a : T.([] | R) we have that T - £[P], £[P] = £[Q)], and P = Q. From T - £[P]
by inverting PROC-NEW and PROC-PAR we get that I';a: T'= P and I, a : T F R. From
I''a : T+ P and P = @, by the induction hypothesis we get that I',a T F Q. Now,
using PROC-PAR and PROC-NEW we can conclude that T' - £[Q)].

The case P | 0 = P (EQ-ZERO-ID) is trivial

The cases P | Q = Q | P (EQ-PArR-ComM), (P | Q) | R=P | (Q | R) (EQ-PAR-ASsoC)
and new ay : Ty.new ag : T5.P = new ay : Th.new a1 : T1.P (EQ-BIND-SwaAP) follow by
Lemma 3.6.6 (Exchange). O

The following proposition states that the reduction rules for destructors are consistent with
the typing rules.

Proposition 3.6.9 (Typing Destructors Consistent)

Ifg: (Th,...,T,) — T, g(My,...,M,) 4 N and T'+ M; : T; for all i € [1,n] we also have
that T N :T.

Proof. The proof is by case analysis on the destructor g.

Case deca.(enca.(M,pk.(K)),K) | M. From the definition in Table 3.6 we know that for
all T the type of this destructor is dec, : (PubEnc.(T), PrivKey .(T")) +— T. Using the
assumption, we get that I' - enca.(M, pk.(K)) : PubEnc (T) and I' = K : PrivKey.(T")
for some T

Now we show that I' = M : T' by induction on the derivation of I' - enca (M, pk.(K)) :
PubEnc.(T") and a case analysis on the last applied rule.

ConsTR I' = M : T follows directly from the definition enca. : (7, PubKey (T)) —
PubEnc.(T") in Table 3.5.

SuB Since PubEnc.(T") is covariant, we have that there exists a type 7" s.t. ' =T <: T
and T' - enca.(M, pk.(K)) : PubEnc.(T"). Finally, by applying the induction hypothe-
sis and SUB we can conclude that ' M : T

Case first(pair(M,N)) | M. From the definition in Table 3.6 we know that for all T the
type of this destructor is first : (Pair(T,U)) — T. Using the assumption, we also get that
I' F pair(M, N) : Pair(T,U) for some T

Now we show I' = M : T by induction on the derivation of pair(M, N) and a case analysis
on the last applied rule.

25

3 Type System with Nested Types

CoONsTR TI'F M : T follows from the definition pair : (T, U) +— Pair(T,U) in Table 3.5.

SuB We have that there exists a type 7" s.t. I' = T” <: T and, since Pair(T*, U™T)
is covariant, that ' F pair(M, N) : Pair(T’,U). Finally, by applying the induction
hypothesis and SUB we can conclude that ' - M : T

Case pre(succ.(M)) |} M. From the definition in Table 3.6 we know that for all T" the type
of this destructor is pre. : (Int.) — Int.. Using the assumption, we now also have that
succ.(M) : Int,.

Now we show I' = M : Int, by a case analysis on the last applied rule.
CoNSTR TI'F M : Int, follows from the definition succ, : (Int.) — Int. in Table 3.5.

SuB We have that there exists a type 7" s.t. I' = T" <: Int, and ' succ.(M) : T".
The only type that can satisfy T' - T" <: Int, is Int. (by SUB-REFL), therefore we can
immediately conclude that I' = M : Int,.

The cases dec, and ver, are very similar to deca.. All of them have the same structure (up
to constructor and type names) since the types of their parameters are also covariant, like
PubEnc.(T") in the proof of deca,.

The cases second and msg. have the same structure as the destructor first.

The cases pre. and eq are trivial, since here N = zero, for the former and N = true for the
latter, and true : Bool, zero, : Int, by CONSTR (other rules do not apply here). O

The next theorem shows that well-typed processes stay well-typed during evaluation. This
property is also known as preservation [WF94, Pie02].

Theorem 3.6.10 (Subject-Reduction)
IfT'FPand P— @Q then T Q.

Proof. The proof is by induction on the derivation of P — () and case analysis on the last
applied rule.

Case (RED-1/0O) We assume I' - out(a, M).P | in(a,x).Q and out(a, M).P | in(a,z).QQ —
P | Q{M/z}. By PrROC-PAR we obtain that I" - out(a, M).P and ' F in(a,x).Q. The
former by ProC-OuT implies that 37 s.t. I' - a : Channel (T), T F M : T and T' - P,
while from the latter by PROC-IN we infer that 37" s.t. I' - a : Channel .(T") and T,z :
T+ Q. The type of a can only originate from one of the following rules:

ENv We get a: Channel .(T) € T and a : Channel .(T") e T, but ' -0, s0 T =T".

SuB We get that w.l.o.g. ' = Channel .(T) <: Channel.(T'), but since channels are
invariant by definition in Table 3.1, we can also infer from SUB-NESTED that T' = T".

Now, from Lemma 3.6.5 (Substitution) it follows that I' - Q{M/x}. As a consequence
of the rule PROC-PAR we obtain that I' - P | Q{M/x}.

Case (RED-!I/O) This case is very similar to the previous one.

26

© 0 N O U W N

3.7 A Fully Annotated Example

Case (RED-DESTR) Letletx = g(M)in Pelse @ — P{N/x},I'tletx = g(M) in P else Q
and g(M) |} N. By PROC-DES we get that g : (T3,...,T) — T, Vi € [1,n]. T+ M, : T,
and I,z : T + P. By Proposition 3.6.9 (Typing Destructors Consistent) we infer that
' N :T. By Lemma 3.6.5 (Substitution) we can finally infer that I' = P{N/z}.

Case (RED-ELSE) Immediate from PrROC-DES.

Case (RED-CTXT) Let € = new @ : T.([] | R) and assume that I' - £[P] and P — Q.
From I" F £[P] by reverting rule PROC-NEW we get that I';a: T+ P | R. From this by
reverting rule PROC-PAR we infer that I, a : TF P and F,&’;TV F R. SinceI',a : THP
and P — @ by the induction hypothesis we obtain that I';a : T Q). By rules PROC-PAR
and PROC-NEW we conclude that I' - £[Q)].

Case (RED-EQ) Assume that '+ P and P= P and P/ —» Q" and Q' = Q. From '+ P
and P = P’ by Lemma 3.6.8 (Structural Equivalence Preserves Typing) we obtain that
I' = P'. By the induction hypothesis this yields I' - @’. By applying Lemma 3.6.8 again
we conclude that I' - Q.

O]

The subject-reduction implies that the type system cannot be circumvented. However,
we have not yet formalized the precise semantic properties that are enforced by this type
System.

3.7 A Fully Annotated Example

We use the syntax “Type@Configuration<parameter types>" for parametrized types in the Expi
and Exdef files. In the Expi files the types are put into the type annotations of the form
“(x: type). The type annotations are currently mandatory for all free name declarations
“free a(x: type *).” and restriction processes “new a(x: type x);”.

At the moment, our type checker for expi2java cannot find out how to instantiate the type
variables in constructor and destructor types, since we do not do any type inference. In
order to still be able to type check the polymorphic types, we rely on the user to provide an
additional type annotation for every application of a parametric constructor or destructor.
These type annotations have the form (x :[types]«), where types is a comma-separated list
containing the types that should be used to instantiate the constructor or destructor. For
example, an application of the pair constructor on the names a : Intyonce and b : Bool needs
to be written as “pair (:[Int@Nonce, BoolJx)(a, b)”.

This is the Perrig-Song protocol from Section 2.1.4 with all needed type annotations:

(*

x Perrig—Song mutual authentication protocol
)

(x# include "../exdef/default.exdef” x)

(x Free names x)

free Alice(x: String x).
free Bob(«: String =).

27

3 Type System with Nested Types

10 private free M(x: String x).

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

(x+ Named processes x)

let

let

testA («# public *) =
new Na(x: [nt@Nonce x);
(+ Msg 1. A>B: pair(Alice, Na) x)
out(cl, pair(«:[String, Int@Nonce]x)(Alice, Na));
(+ Msg 2. B—>A: enc(pair(pair(Na, Nb), Bob), K.AB) x)
in(c2, emsg);
let msgl = dec(* :[Pair<Pair<Int@Nonce, Int@Nonce>, String >]«)(emsg, k) in
let tmp = first (* :[Pair<Int@Nonce, Int@Nonce>, String]+)(msgl) in
let Nal = first (* :[$Nonce, $Nonce]*)(tmp) in
let ok (*: Bool *) = eq(*:[$Nonce]*)(Na, Nal) in
let Nb = second (* :[Int@Nonce, Int@Nonce]*)(tmp) in
(+ Msg 3. A>B: enc(pair(Nb, M), KAB) x)
out(c3, enc(*:[Pair<Int@Nonce, String>]x)(
pair (* :[Int@Nonce, String]=)(Nb, M),

k)).
testB =
(x Msg 1. A—>B: pair(Alice, Na) x)
in(cl, tmp);

let name = first (x :[String, Int@Nonce]*)(tmp) in
let Na = second (* :[String, Int@Nonce]*)(tmp) in
new Nb(«:/nt@Noncex);
(x Msg 2. B>A: enc(pair(pair(Na, Nb), Bob), K.AB) x)
out(c2, enc(* :[Pair<Pair<Int@Nonce, Int@Nonce>, String>]x)(
pair (x :[Pair<Int@Nonce, Int@Nonce>, String]x*)(
pair (x:[Int@Nonce, Int@Nonce]=)(Na, Nb),
Bob) ,
k)):
(+ Msg 3. A>B: enc(pair(Nb, M), KAB) x)
in(c3, mmm);
let pp = dec(* :[Pair<Int@Nonce, String >]+)(mmm, k) in
let Nbl = first (* :[Int@Nonce, String]=)(pp) in
let M1 = second (* :[Int@Nonce, String]*)(pp) in
let ok(x:Boolx) = eq(x :[Int@Nonce]=)(Nbl, Nb) in
0.

(x+ Main process x)
process

new cl(x: Channel@TcplpChCfg<Pair<String , Int@Nonce>> x);
new c2(x: Channel@TcplpChCfg<SymEnc@SymEncCfg<
Pair<Pair<Int@Nonce, Int@Nonce>, String>>> x);
new c3(x: Channel@TcplpChCfg<SymEnc@SymEncCfg<
Pair<Int@Nonce, String>>> x);
new k(x: SymKey@SymKeyCfg<Pair<Top, Top>> x);
(testA | testB)

Listing 4: Perrig-Song protocol with type annotations

We use a type “String” and several configurations in this protocol, which are defined in the
default Exdef files provided with expi2java. Since the type “String” is not generative, we
need to declare the term M as a free name. We use the private keyword to make sure that
M is still not visible to the adversary in ProVerif.

28

3.8 File Format (Exdef)

The channel ¢ had to be split into three names c1, ¢2 and c3, one for each message exchange.
This is necessary, since the type Channel.(7°) is invariant and we need to specify the exact
type of each message according to the process typing rule PROC-IN. An alternative would
be to use tagged union types [Car04, Pie02], but they are not supported by the current
type system.

As the previous example in Listing 4 shows, the type annotations for the nested types can
quickly become very lengthy and hard to read. The type definitions can shorten these type
annotations a lot.

3.8 File Format (Exdef)

Besides the Expi files described in Section 2.3, we use another file format, called Exdef,
which stands for External Definitions. Exdef files are used to define types, configurations,
constructors and destructors, which can be used in the Expi files via the include directive.

This is the Exdef file used with the Perrig-Song protocol:

(x Perrig—Song protocol configuration x)

include " ../ exdef/default.exdef”

type generative Nested<X+, Y—, Z0>. (x example type definition x)

type String@UTF8StringCfg.
config ldentifierCfg(class = "Identifier”).

typedef $ldentifier = String@ldentifierCfg.

config ChA = TcplpChCfg_(

variable = "cA",
timeout_ms = "20000",
port = "2121"
).
config ChB = TcplpChCfg_(
variable = "cB",
timeout_ms = "20000",
port = "2121"
).
typedef $Msgl = Pair<$ldentifier , $Nonce>.

typedef $Nonces = Pair<$Nonce, $Nonce>.
typedef $Data = Pair<$Nonces, $ldentifier >.
typedef $Msg?2 SymEnc@SymEncCfg<$Data >.

typedef $MData = Pair<$Nonce, String >.
typedef $Msg3 = SymEnc@SymEncCfg<$MData>.

29

38

© 0 N O Uk W N =

e e e
= W N = O

3 Type System with Nested Types

typedef $KeyAB = SymKey@SymKeyCfg<Pair<Top, Top>>.

Listing 5: Exdef file for the Perrig-Song protocol

The comments can be specified inside (x *). Exdef files can also include other Exdef files
using the include " file .exdef” directive, similar to the include construct from the Expi files.

New types can be defined using the “type [generative] Type[@Config][<parameters>].” con-
struct. This defines a new type with the name “Type”, optionally adds it to the set of
generative types, sets the configuration “Config” as the default for this type and defines the
number and variance of its parameters. The default configuration is used in cases where
no configuration is explicitly provided. In order to generate code, every type used in a
protocol must either have a default configuration or the configuration must be set in all
type annotations using this type. The type parameters use a syntax that is similar to the
abstract types in Table 3.1.

Two example type definitions can be found in the lines 6 and 9 of Listing 5. In line 6
we define a generative type named “Nested” with three parameters. The first parameter
is covariant, the second is contravariant and the last one is invariant. The type “String”
defined in line 9 has no parameters and uses a configuration named “UTF8StringCfg” as a
default. The definitions of the default types can be found in Listing 7.

The configurations are defined using the “config Name [= BaseName](key = "value”, ...).” con-
structs. They are handled like key-value mappings and can either be defined from scratch or
by extending existing configurations. If the base configuration contains some keys with the
same name as the keys in the new configuration, they are redefined by the new mapping.
This allows us to change only some of the settings, e.g., the port of an TCP/IP channel,
without copying all other settings. Some keys have a special meaning, this is explained in
detail in Section 4.2.

Another feature are the type definitions (or short, typedefs). They are declared using
“typedef $Name = Type” constructs. The names of typedefs always start with a $ sign to
make them visually distinguishable from the types. Unlike types, the typedefs can neither
be configured, nor have type parameters (but the mapped types can). The type definitions
are pure syntactic sugar, they are textually replaced with the types they are mapped to on
parsing.

The use of the typedefs can significantly shorten the size of the type annotations, as shown
on the example of the Perrig-Song protocol (using the Exdef file from Listing 5):
(*

x Perrig—Song mutual authentication protocol

)

(x# include "perrig—song.exdef” x)
(+ Free names %)
free Alice(x: $ldentifier x).

free Bob(«: $ldentifier x).
private free M(x: String x).

(*+ Named processes x)

30

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

3.8 File Format (Exdef)

let testA =
new Na(x: $Nonce *);
(*+ Msg 1. A—>B: pair(Alice, Na) x)
out(cl, pair(*x:[$ldentifier, $Nonce]*)(Alice, Na));
(* Msg 2. B—>A: enc(pair(pair(Na, Nb), Bob), K.AB) x)
in(c2, emsg);
let msgl = dec(* :[$Data]*)(emsg, k) in
let tmp = first (x:[$Nonces, $ldentifier]+)(msgl) in
let Nal = first (x :[$Nonce, $Nonce]=*)(tmp) in
let ok (x: Bool *) = eq(* :[$Nonce]=)(Na, Nal) in
let Nb = second (* :[$Nonce, $Nonce]*)(tmp) in
(+ Msg 3. A>B: enc(pair(Nb, M), KAB) x)
out(c3, enc(* :[$MData]=)(
pair (x:[$Nonce, String]=+)(Nb, M), k)).

let testB =
let cl(x: Channel@ChB<$Msgl> %) = accept (« :[$Msgl]*)(cl) in
let c2(*: Channel0OChB<$Msg2> x) = accept (* :[$Msg2]«)(c2) in
let c3(*: Channel@ChB<$Msg3>) = accept (* :[$Msg3]*)(c3) in
(x Msg 1. A—>B: pair(Alice, Na) x)
in(cl, tmp);
let name = first (x:[$/dentifier, $Nonce]x)(tmp) in
let Na = second (x :[$/dentifier, $Nonce]=)(tmp) in

new Nb(x: $Nonce x);

(+ Msg 2. B—>A: enc(pair(pair(Na, Nb), Bob), K.AB) x)

out(c2, enc(x:[$Data]x)(pair(x:[$Nonces, $ldentifier]=)(

pair (x :[$Nonce, $Nonce]=)(Na, Nb),
Bob), k));

(+ Msg 3. A>B: enc(pair(Nb, M), KAB) x)

in(c3, mmm);

let pp = dec(* :[$MData]x*)(mmm, k) in

let Nbl = first (x :[$Nonce, String]=)(pp) in
let M1 = second (% :[$Nonce, String]=)(pp) in
let ok (*: Bool *) = eq(* :[$Nonce]*)(Nbl, Nb) in
0.

(x Main process x)

process
new cl (x: Channel@ChA<$Msgl> =);
new c2(x: Channel@ChA<$Msg2> =x);
new c3(x: Channel@ChA<$Msg3> =) ;
new k(x: $KeyAB x);
(testA | testB)

Listing 6: Perrig-Song protocol annotated using the typedefs

In comparison to the previous examples, we create local copies of the channels c1, ¢2 and
c3 in process testB. We use the destructor accept defined in the line 49 of Listing 7 to model
the server side of the protocol. This destructor is modelled in the Extensible Spi Calculus as
an identity function to ensure that the semantics of the input and output processes defined
by the rules RED-I/O and RED-!I/O are preserved. The implementation of accept listens
on the port specified in the configuration of the given channel and returns an initialized
channel when a connection is made.

The constructors and destructors are also defined inside the Exdef files. Since the set of
constructors from Table 2.1 and destructors from Table 2.2 covers the most common cryp-
tographic primitives, we define them together with the types from Table 3.1 in an Exdef file

31

3 Type System with Nested Types

named “default.exdef”, shown in Listing 7 below. This file is used by all example protocols.
Another file named “configs.exdef” contains a long list of all supported configurations.

W N e

© 00 N9 o O«

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

(+ default external definitions x)
include "configs.exdef”

(+ cryptographic primitives x)

type SymEnc<T+>.
type generative SymKey<T—>.
type PubEnc<T+>.
type PubKey<T—>.
type generative PrivKey<T—>.
type Signed <T+>.
type generative SigKey<T—>.
type VerKey<T—>.
type Hash<T+>.

(+ data types x)

type Pair@PairCfg <X+, Y+>.
type Bool@BoolCfg.

type generative Int.

(+ default typedefs x)
typedef $Nonce = Int@NonceCfg.

(+ constructors =

)
fun enc : [T]. (T, SymKey<T>) —> SymEnc<T>.
fun enca : [T]. (T, PubKey<T>) —> PubEnc<T>.
fun pk : [T]. (PrivKey<T>) —> PubKey<T>.
fun sign = [T]. (T, SigKey<T>) —> Signed<T>.
fun vk : [T]. (SigKey<T>) —> VerKey<T>.
fun h : [T]. (T) — Hash<T>.
fun true : Bool.
fun false : Bool.
fun pair : [T, U]. (T, U) — Pair<T, U>.
fun succ : (Int) — Int.
fun zero : Int.

(+ destructors x)

reduc dec(enc(*:[T]*)(x, y), y) = x : [T]. (SymEnc<T>, SymKey<T>) —> T.

reduc deca(enca (* :[T]*)(x, pk(=:[T]*)(y)), y) = x
- [T]
reduc ver(sign (x:[T]=)(x, k), vk(= [T]*)(k)) =

reduc msg(sign (x:[T]*)(x, y)) = x [T S|gned<T>) — T.
reduc eq(x, x) = true :[T]. T) —> Bool.
reduc first(pair(x:[T, Ul*)(x, y)) =x = [T, U]. (Pair<T, Uu>) —> T.
reduc second(pair(x:[T, Ulx)(x, y)) =y : [T, U]. (Pair<T, U>) —> U.
reduc pre(succ(x)) = x;
pre(zero) = zero() : (Int) = Int.
reduc accept(c) = ¢ : [T]. (Channel<T>) —> Channel<T>.

PubEnc<T>, PrivKey<T>) —> T.

(
X
[T]. (Signed<T>, VerKey<T>) —> T.
(
(T

Listing 7: The default Exdef file

2

The constructors are declared using the “fun name : type.” constructs. The destructor dec-
larations have a similar syntax to the syntax used in ProVerif, but additionally specify the
destructor type: “reduc name(terms) = result : type.”. The type of both constructors and

32

3.8 File Format (Exdef)

destructors has the form “[parameters]. (argument types) —> result type”. The parameters is
a list of the type parameters, allowed in the argument types and return type. If the list of
parameters or argument types is empty, it can be omitted, e.g., the constructor declaration

“fun true : Bool.” is equivalent to “fun true : []. () —> Bool.”.

The result term in the destructor declaration can only contain (arbitrary) constructors and
names or variables that are also present in its parameters terms. The configurations of the
destructor parameters should match the configurations of the corresponding parameters of
the destructor type. Note that a destructor can have multiple reduction rules (like pre.),
in this case, all of them must have the same number of parameters and the same type.

33

34

4 Code Generation

The most important feature of expi2java is code generation. In Section 4.1 we describe the
overall design of the tool, discuss the features of the code generator and some challenges
that arose during the implementation. Section 4.2 explains the aspects of configurations
that are important for the code generator. Finally, in Section 4.3 we summarize the purpose
of the runtime library used by the generated code.

4.1 Design

4.1.1 Overview

The overall design of expi2java framework is shown in Figure 4.1. There are two arts of
input files. The Expi file contains the protocol and the Exdef files contain the low-level
information for the code generation. The input files are parsed, checked for consistency and
transformed into an internal in-memory representation. This data is then used as the input
to the type checker. Afterwards, the data is passed to the code generator that produces the
code using user-provided code templates. The generated code uses a runtime library that is
described in Section 4.3. Additionally, a pretty-printer can be used to output a formatted
version of the input files in ProVerif syntax.

r-- - - - - - -~ 1 - - - 7
Type Checker | Templates | | Library |
L - - - - - __ |

S i [|

Lo _ _ J\
Internal
Representation Code Generator ’; Code

i B
| Exdef | l

L ___
r T T T T T T 7
Pretty-Printer ’—H ProVerif Protocol +——= ProVerif
Lo ____ _

Figure 4.1: Overall design of expi2java

We will not go into the implementation details of expi2java here, but rather give an overview
of the functionality.

35

4 Code Generation

4.1.2 Translation of the Extensible Spi Calculus to Java

The target language of the code generator and the implementation language of the tool is
Java. We require at least version 1.6 to build the tool, the runtime library and the generated
code!.

The implementation of the Extensible Spi Calculus defined in Section 2.1 is split into
two parts. All user-defined constructs (i.e., types, constructors and destructors) can vary
between different protocols and are implemented inside the runtime library that is used
only by the generated code and can be changed as needed. Everything else is implemented
directly in the generated code.

For example, the following lines from the testA process in the Perrig-Song protocol:

1 new Na(x: $Nonce x*);

2 (+ Msg 1. A>B: pair(Alice, Na) x)

3 out(cl, pair(x:[$ldentifier, $Nonce]=)(Alice, Na));
4 (+ Msg 2. B>A: enc(pair(pair(Na, Nb), Bob), K.AB) x)
5 in(c2, emsg);

6 ..

result in the following Java code:

1 // new Na(x: Int@NonceCfg *); out...

2 Nonce Na_44 = null;

3 Na_44 = new Nonce(this. _configurations.get(” NonceCfg"), "Na_44");
4 try {

5 // out(cl, pair(x:[String@ldentifierCfg , Int@NonceCfg]«)(Alice, Na)); in...

6 Pair<ldentifier , Nonce> pair_48__Alice_41_Na_44__9

7 = Pair.pairCtor(this. _configurations.get(”PairCfg”), Alice_41, Na_44);
8 cl1.116.send(pair_48__Alice_41_Na_44_.9);

9

10 // in(c2, emsg); let ...

11 // "emsg” id=50

12 SymEnc<Pair<Pair<Nonce, Nonce>, ldentifier >> emsg_ 50 = null;

13 try {

14 emsg 50 = c2_117 .receive (new SymEnc<Pair<Pair<Nonce, Nonce>, Identifier >>(
15 new Pair<Pair<Nonce, Nonce>, ldentifier >(

16 new Pair<Nonce, Nonce>(

17 new Nonce(this. _configurations.get(”NonceCfg")),

18 new Nonce(this. _configurations.get(”NonceCfg")),

19 this. _configurations.get(” PairCfg")),

20 new ldentifier(this._configurations.get(”ldentifierCfg")),
21 this. _configurations.get(” PairCfg")),

22 this. _configurations.get("SymEncCfg")));

23 emsg_50.setVarName (" emsg_50");

24

25

26 } finally {

27 // cleanup

28 if (emsg.50 I= null) { emsg_50.deinitialize (); }

29 }

30 } finally {

31 // cleanup

32 if (Na_44 != null) { Na_44.deinitialize (); }

33 }

Listing 8: Generated Java code

'In theory, version 1.5 should suffice too, since it also supports generics, but we have not tested it.

36

4.1 Design

By convention, all free names are treated as input parameters of the protocol, i.e., they
must be initialized by modifying generated code manually and deinitialized afterwards.
This feature should be used when the protocol depends on some dynamic values provided
by the application that uses the protocol. The names, generated inside the protocol using
the “new a : T.P” process are treated as local protocol variables, i.e., they are created and
initialized as soon as the control flow reaches the corresponding restriction process and are
deinitialized after the process P finishes. The initial value of the names generated in a
restriction process can be set in the configuration.

The Spi names and variables correspond to Java variables. In Listing 8, the Spi name Na
corresponds to the Java variable Na_44, where 44 is an unique identifier of this term. The
variable Na_44 is initialized with a fresh nonce in line 3 and is deinitialized in the finally
section in line 32. The deinitialize method must be implemented by all implementation
classes and should perform the needed finalization steps like closing open files and sockets.

The constructors and destructors are implemented in the runtime library as static methods
with a special signature. The constructors must be implemented in the class that represents
their return type. The destructors are commonly used to perform some computation on
terms of a specific type, thus we require them to be implemented in the class that represents
the type of their first parameter. This ensures that for example, enc, and dec. are both
implemented in the class that represents the symmetric encryption.

An example of a constructor application can be found in lines 5-7 of Listing 8. The config-
uration that should be used to initialize the result is given as a parameter to the pairCtor
method that implements the pair constructor.

The input process corresponds to a receive method and the output process corresponds to
a send method of the channel type in the runtime library, as can be seen in lines 14 and 8 of
Listing 8 respectively. The destructor evaluation assigns the result of the destructor appli-
cation to a Java variable and proceeds with the correct process. The parallel composition
creates two threads, one for each process, runs them and waits until both threads terminate.
The replicated input “lin(M, z).P” is implemented as an endless loop that first inputs some
data using the input process, initializes the variable z, then creates a new thread for the
process P and runs it without waiting for its termination.

In the implementation, unlike in the abstract calculus, where only the destructor evaluation
can fail, any process (except the null process) or constructor application can fail at any
point, e.g., because of an “out of memory” error. In this case, we deinitialize all local
names and variables and abort the protocol with an exception. The parallel composition
fails if one of the processes running in parallel fails. The replicated input only fails if
the input process fails, disregarding how the subsequent process P running in a thread
terminates.

4.1.3 Current Limitations

There are also some cases that are possible in the Extensible Spi Calculus as defined in
Section 2.1, but can not be implemented due to the current limitations of the type system
or implementation of the runtime library.

37

4 Code Generation

The operational semantics of the Extensible Spi Calculus from Table 2.5 defines a syn-
chronous behavior of the input and output processes. This means that an output process
out(M, N).P starts the process P only after the message N was received by another input
process. Another alternative is the asynchronous approach as in [Bou92], where output
process do not have a continuation process and multiple messages are sent using the paral-
lel composition. However, the current implementation uses a different approach, commonly
used in the real-life protocols. Our implementation classes simply start the next process
P right after the message was sent, since it is difficult to decide whether the message was
received without an explicit confirmation message. In this setting, the messages are sent
asynchronously, but the order in which they are sent is preserved as in synchronous case.
This might cause the protocols that rely on the synchronous message delivery to fail, but
should in general not make them less secure.

4.1.4 Templates

The code generator uses a set of templates provided with expi2java to generate the code.
In general, the templates are pieces of Java code with placeholders that are replaced by
the code generator with the corresponding data of the currently generating protocol. This
allows the user to adapt the generated code to the needs of the target application by
extending the provided templates. There are two kinds of templates, class templates and
code templates.

The class templates are used as the base for the classes that represent the protocol. We
generate one class for the main process, this class is named according to the protocol name
and is used to start the protocol from the main application. The main application is a
template with an example implementation of the protocol usage. The user can adapt it to
fit into the actual application that he or she is developing or provide a custom template to
generate a class that can be directly integrated with the existing code. We also generate
a class for every thread in the protocol and a helper class containing the configuration
parameters.

The code templates are small pieces of Java code (only a couple of lines) that are used to
generate code for different process and term types. The use of code templates allows the
user to change the produced code (within certain limits) without the need to change the
implementation of the code generator. This can be used, e.g., to use another implementation
of the runtime library, than the default one discussed in Section 4.3.

4.2 Configurations

During the code generation phase, we need to provide a lot of low-level information about
every term. Mandatory is to know which Java class is used to implement each term. Besides
the class name, there are also various settings, like the employed algorithm, padding or key
length, that are used by the implementation and need to be provided by the user. In
order to minimize the amount of data that needs to be entered by the user, these low-
level information should be kept centralized, e.g., there should be a way to define the AES
configuration and use it with the constructors and destructors, types of the keys, encrypted
messages etc.

38

e oW N =

4.2 Configurations

Another issue is the need to split a channel name in order to type it, as we did in the
Perrig-Song example in Section 3.7. These split channels need to be merged together to
“logical” channels in the generated code, but often in a different way as they would be
represented in the untyped Extensible Spi Calculus. The implementation of a TCP/IP
channel, for instance, needs to share a reference to a server socket among all Java variables
that represent the channel names used in the participant process that acts as a server, and
another reference of the client socket among the Java variables that represent all other parts
of the same channel.

Channel c1
D>
Channel c2
<
Channel c3
D>
» 4

Client and Serve‘f

Channel ¢ (untyped) channels in Java

Figure 4.2: Channel splitting in Perrig-Song protocol

As shown in Figure 4.2, the Perrig-Song protocol uses one channel name c in the untyped
version, three channel names c1, ¢2, c3 in the typed version and two Java channels in the
generated code.

We have implemented channel merging using special implementation classes, called aliases.
An alias controlls the number of instances of the aliased implementation class, similar to
the singleton pattern. The user can define virtual variables in the generated code using the
configuration key “variable”. The Aliases use this configuration key to create one instance of
the aliased class for every virtual variable. Every instance of an alias in the generated code
that belongs to the same virtual variable, forwards all method calls to the corresponding
instance of the aliased class, effectively acting as one Java variable.

In most cases, different configurations in the Exdef files correspond to different configura-
tions in the type system. However, there is also a possibility to bundle several configurations
into one “virtual” configuration for the type system. For example, we need different low-
level settings for the types PubKeyags(T'), PrivKeyags(T") and PubEncags(T), but they all
should belong to the same configuration called “AES” in the type system. We have a special
key “bundle” that allows for bundling of several different configurations into one virtual
configuration.

(x Simple configuration x)
config ldentifierCfg(

class = "ldentifier”
).

39

5
6
7
8
9
10
11
12
13

17
18
19
20
21

4 Code Generation

(+ AES Bundle x)
config abstract AES_(

bundle = "AES_Encryption”,
algorithm = "AES",
keylength = "256",
provider = "SunJCE"
).
config AESEncCfg = AES_(
class = "AESEnc" ,
mode = "CTR",
padding = "PKCS5Padding”
).
config AESKeyCfg = AES_(
class = "AESKey" ,
iv = "1234567887654321"

Listing 9: AES bundle

The AES bundle is shown in Listing 9. The bundle key is set in the base configuration AES_
and is inherited by AESEncCfg and AESKeyCfg. If the bundle key is not set, as in the simple
configuration above, the name of the configuration is used instead.

Every configuration must provide the name of the implementation class in the “class” key.
The settings for this class are implementation-specific and is treated as all other keys. The
implementation classes are given these settings as a mapping and are free to use them
however they like.

4.3 Runtime Library

The runtime library is a set of classes used to implement the behavior of the types, construc-
tors and destructors in the generated code. Obviously, these classes cannot be generated
automatically, since they need to provide low-level implementation that depends on the
intended use of the protocol, e.g., the actual cryptographic algorithm corresponding to a
constructor and destructor. The user is free to change existing types, constructors and
destructors or add new ones and must be able to also provide the implementation in these
cases without the need to change the code generator.

The library provides several interfaces that define abstract methods used by the generated
code. All implementation classes need to implement these interfaces.

We provide the implementation of the default types and primitives defined in Tables 2.1, 2.2
and 3.1, as well as several helper classes (like implementation of aliases discussed in Sec-
tion 4.2) in the standard expi2java distribution.

The types are implemented as generic Java classes. Every type parameter corresponds to
a generic parameter in the Java realization. This allows us to model the nested types in a
convenient way, avoiding many casts and instance-of checks. The implementation classes
for generative types must contain a special Java constructor that is used to create new
names in the implementation of the restriction process. The classes implementing channels

40

s oW o =

s oW oo =

4.3 Runtime Library

must also support the send() and receive() methods that are used in the realization of the
input and output processes.

All implementation classes (except channels) must support special serialization and de-
serialization methods that allow full control over the binary format as needed by many
protocols. Of course, the default Java serialization can be used internally if no other format
is required.

Parametrized constructors and destructors are implemented using generic methods. This
allows us to use a simpler implementation suitable for all instantiations of types and inte-
grates nicely with the generic implementation of nested types. However, we had to overcome
the limitation of the Java type system with respect to generics. The generic type parameters
in Java are always invariant [[PWO01], but in our type system, the variance is user-defined.
For example, the first argument of the destructor dec. : (SymEnc.(T),SymKey (T)) — T
has a covariant type SymEnc.(T") and the second argument has the contravariant type
SymKey.(T~). This makes it possible to use this destructor with arguments of types
SymEnc.(Int;) and SymKey.(Top) and return a result of type Int., since SymKey.(Top) <:
SymKey,(Int.) by SUB-NESTED and therefore the second argument can be given the type
SymKey.(Int.) by SuB.

A realization of this destructor in Java with one generic parameter would give a typing
error in such cases. In the following example, generic parameter T corresponds to the type
variable T":

public static <T extends I|Expi>
T decDtor (SymEnc<T> enc, SymKey<T> key) {
}

Listing 10: Implementation of the dec, destructor with one generic parameter

We worked around this problem by using several generic parameters, one for each occurrence
of the type variable in the constructor or destructor type, and specifying the possible relation
between them manually, using the Java type bounds. For instance, the dec. destructor is
implemented using the following signature:

public static <U extends I|Expi, V extends U, T extends V>
V decDtor (SymEnc<T> enc, SymKey<U> key) {
}

Listing 11: Implementation of the dec. destructor

The relation between the generic parameters U, V and T reflects the fact that in our type
system, the parameter T' of the encryption can be a subtype of the return type V and the
parameter U of the key can be a supertype of the return type V.

It is sometimes desireable for a protocol to return results after finishing executing. In order
to do this, we have implemented a “ReturnChannel” that stores copies of all terms that
are sent over it. The stored terms can be retrieved by name using the provided methods.
Such channel needs to be specified as a free name, otherwise it will be deinitialized after
the protocol ends.

41

4 Code Generation

In principle, the complete runtime library can be replaced by another implementation.
The configurations for the existing types need to be updated in this case, of course. If
the naming conventions or the signatures of the library methods used to implement the
Extensible Spi Calculus are changed, the templates and code snippets also need to be
updated accordingly.

42

5 Case Study: TLS Protocol

Our goal was to generate an implementation of a simple web client that uses a popular
cryptographic protocol to communicate with a normal web server. We used HTTP over
TLS [Res00] to request a web page and display the received data. The intention was to
implement the complete protocol in the Extensible Spi Calculus using the runtime library
only for cryptographic primitives and data types. This case study was an important and
challenging test for all the features of expi2java and demonstrates the potential of this
tool.

We give a short overview of the TLS protocol and reason about our choices for this case
study in Section 5.1. Section 5.2 describes the implemented part of the protocol. The model
of TLS in the Extensible Spi Calculus and current limitations are described in Section 5.3.
In Section 5.4 we discuss the results of this case study and compare our implementation
with others.

5.1 Transport Layer Security

Currently, most real-world protocols are defined using informal technical specifications.
Most standards for the networking protocols used in internet are developed by the Inter-
net Engineering Task Force! (IETF) and are available in form of Requests for Comments?
(RFCs). These specifications are long documents written in English and may contain er-
rors and ambiguities, even though they normally use dictionaries that define the meaning
of the important keywords and phrases like “must”, “shall”, “should”, “may”, “required”
or “optional” [Bra97]. These protocols use concrete cryptographic primitives like the SHA1
hash function or RSA encryption, are focused on existing networking protocols and stan-
dards and are defined from the exact data format on the bit-string level up to general
recommendations for the developers that want to implement the protocol.

The Transport Layer Security (TLS) protocol [DA99] was also designed by IETF and pub-
lished as RFC 2246. It is a cryptographic protocol used to provide authentication, com-
munication privacy and data integrity between two communicating parties over untrusted
channels. The TLS protocol provides a secure transport layer for many popular application
protocols such as HTTP, FTP, SMTP, NNTP, and XMPP using an underlying transport
protocol, usually TCP. The Transport Layer Security protocol is the successor of the Secure
Sockets Layer (SSL) protocol that was found flawed in various ways [WS96].

The TLS specification defines several sub-protocols. During the TLS Handshake, the par-
ticipants can agree on the security parameters to be used in the later steps, authenticate

1Official IETF site: http://wuw.ietf.org/
2The official source for RFCs: http://www.rfc-editor.org/

43

http://www.ietf.org/
http://www.rfc-editor.org/

5 Case Study: TLS Protocol

themselves, generate and exchange the session keys and finally instantiate the secure con-
nection. Once the handshake is complete, the TLS Application Data Protocol can be used
as a transport layer for any application protocol. In addition to encryption, the integrity of
the application data is verified using a MAC. The TLS Record Layer applies encryption and
MAC transparently, which ensures interoperability with the existing applications. Besides,
TLS allows the participants to notify each other about various error conditions using the
Alert Protocol, which supports a large number of encryption schemes and allows to resume
previously established connections.

5.2 Implemented Part of HTTP/TLS

TLS is a very complex protocol, it supports many encryption schemes and optional param-
eters. Moreover, there are several optional extensions that can be used by both client and
server. However, for the purpose of HTTP/TLS, which is probably the most widespread
use of this protocol, these extensions are not crucial.

There are three versions of the TLS protocol and several extensions. We have implemented
the TLS 1.0 protocol with AES extension [Cho02]. The choice of the version 1.0 from the
year 1999 over the more recent version 1.1 published in 2006 is motivated by its popularity.

We have implemented the required parts of the TLS Handshake protocol and the Applica-
tion Data protocol. The Alert Protocol and the abbreviated handshake used to resume a
previous connection are not supported. We only support one, but quite common encryp-
tion scheme, AES-256 CBC with RSA key exchange, and SHA1 HMAC. The encryption
and HMAC algorithms can be changed by adapting the configurations, but require several
changes, since some values that we handle as constants depend on the block size and key
length. Another key exchange algorithm, such as Diffie-Hellman key exchange, would also
require changes in the protocol.

The TLS handshake protocol basically consists of nine messages grouped into two message
exchanges, which are shown in Figure 5.1.

Client Server
ClientHello
ServerHello
Certificate
ServerHelloDone
ClientKeyFExchange
ChangeCipherSpec
Finished
ChangeCipherSpec
Finished

Figure 5.1: Message flow in the TLS handshake

44

5.2 Implemented Part of HTTP/TLS

First, the client sends the ClientHello message with the current timestamp, a fresh client
nonce, a list of supported encryption modes and a request for a new session. The server
responds with the current timestamp, a fresh server nonce, new session ID and the selected
encryption mode from the received list of modes supported by the client. Then the server
sends its certificate chain and finishes the hello exchange with an empty ServerHelloDone
message.

The client checks the validity of the server’s certificate, encrypts a fresh nonce with the
public key of the server and sends the encryption in the ClientKeyFxchange message. Then
the client sends the ChangeCipherSpec, indicating that all following messages will be en-
crypted, and generates the “master secret”, shared keys, initialization vectors and HMAC
keys using a custom PRF and the nonces. This PRF has two input parameters, a “seed”
and a “secret”, and generates arbitrary amount of pseudo-random data using the MD5 and
SHA1-based HMACs. Afterwards, the client hashes all previous messages with MD5 and
SHA1 and uses them together with the master secret as the arguments for the PRF to
generate a pseudo-random data of fixed size. This data is MAC-ed, encrypted and sent to
the server in the Finished message.

The server decrypts the last nonce, generates the master secret and the keys in the same
way as the client, verifies the received data and confirms the switch to encrypted mode by
the ChangeClipherSpec message. Then the server calculates the server finished message in
a similar way as the client, but using also the new messages and sends it to the client. The
client finishes the handshake by verifying the last Finished message.

After a successful handshake the client can proceed with the Application Data protocol
that encapsulates the application level protocol, in our case, HTTP.

Client Server
TLS Handshake

Encrypted HITP GET

Encrypted Data

Figure 5.2: Message flow in HTTP/TLS

Every message is MAC-ed and encrypted with the previously generated keys. We use a
simple HTTP GET request to retrieve the root HTML document of the specified web site.
The server responds with the HTML headers concatenated with the HTML code of the
requested page. The URL of the web page is specified in the configuration of the channel
and can be easily changed.

It would be possible to implement the rest of the TLS protocol. For example, we could
add support for multiple encryption modes and branch on the mode selected by the server
using the eq destructor, or add a custom constructor that changes the configuration of the
keys according to the encryption mode ID. The message sizes would need to be adapted
accordingly in each case.

However, the complete TLS support was not the intent of this case study. The implemen-
tation helped us to refine the implementation of expi2java and the runtime library. We

45

1
2

© 0 N O s W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

5 Case Study: TLS Protocol

could experiment with different ways to express the complex behavior and data structures
in the Extensible Spi Calculus and our type system. During the implementation we added
several new data types and explored the possibilities of expressing user interaction.

5.3 The Model in Extensible Spi Calculus

The model of the TLS protocol performs all steps of the TLS handshake from the view of the
client. We check the validity of the message MACs and the correctness of the received server
finished message in the handshake and abort on failure. The received server certificate chain
is also checked by the implementation class. A current limitation is that this implementation
class does not check the validity of the root certificate in the chain, since it would require
storing a local list of some certificates of several well-known authorities. The MAC of the
received HTML data is not checked, because we currently cannot find out the size of a
received message that is included into the MAC.

The structure of all messages is modelled completely in Extensible Spi Calculus, with the
exception of the data format of encryptions and certificates that is hardcoded in the se-
rialization methods of the corresponding implementation classes. In addition to the data
mentioned in Section 5.2, every message also contains a header of fixed content, size of the
message and some other less important fields. Since the size and the content of the hand-
shake messages is fixed, we use many integer constants that are initialized to the correct
values set in the configuration.

(#+ Protocol start: ClientHello, ServerHello xx)
let client =
new chOut(*: $ChOut x);
(+ Msg 1 : ClientHello = ((hshake_hdr, ch_size), ((ch_header,
(version, c_time)), (client_random ,
(ch_session, ch_mode)))) x)
new ch_size (x: $CHSize x);
new ch_header (x: $CHHdr x);
new c_time (x: $Timestamp x);
new client_random (x: $TLSRandom =x);
new ch_session (x: $CHSession x);
new ch_mode (x: $CHModes x);
let hshake_msgs = id (* :[$HandshakeMsgl]=)(
pair (x :[$§CHHeadlup, Pair<$TLSRandom, $CHFoot>]x)(
pair (x :[$CHHdr, $CHHeadl]x)(
ch_header ,
pair (x :[$TLSVer,$Timestamp]+)(version ,c_time)),
pair (x :[$TLSRandom, $CHFoot]x)(
client_random ,
pair (x :[$CHSession , $CHModes] *) (
ch_session ,
ch_mode)))) in
out(chOut, pair (* :[$CHHead00, $HandshakeMsgl])(
pair (% :[$TLSHshakeHdr, $CHSize]+)(hshake_hdr, ch_size),
hshake_msgs));

Listing 12: The ClientHello message from the TLS protocol

46

5.3 The Model in Extensible Spi Calculus

The first message of the TLS protocol, the ClientHello message is shown in Listing 12. We
create the output channel, initialize a set of constants used in this message, then compose
them together and send over the channel. The name hshake_msgs contains the ClientHello
message without transport layer headers.

The default library classes supported generation of integer names with specific size and
value and nonces of arbitrary length in the restriction process. We only needed to extend
the integer implementation to support unusual data formats used in TLS, for example it
often uses 24-bit unsigned integers and not only the common 16, 32 and 64 bit versions.

The amount of different data in messages is often very large, which causes very deep nested
types. The typedefs described in Section 3.8 were very helpful to keep the readability
in a manageable range. However, the amount of type annotations is still very large, the
configuration file for the TLS protocol is about 400 lines long and contains about 100
typedefs, which shows that type inference is crucial if we want to specify large protocols.

TLS uses common hashing and encryption algorithms, padding methods and block cipher
modes of operation. These settings could be easily set in the configuration of the corre-
sponding cryptographic primitives. The data is sent over the TCP/IP channel, configured
to use the port 443, the default port for HTTPS.

We had to add several new cryptographic primitives. First, we added a constructor hmac,
for the keyed hash functions that are used throughout the protocol. Furthermore, we added
a special constructor to change the initialization vector needed by the encryption in CBC
mode. A small problem with initialization vectors is that they need to be set to the last
encrypted block on every encryption. We hardcoded this behavior into the implementation
class. A better alternative would be to use a special encryption constructor that would
return not only the encryption, but also the new initialization vector.

A bigger challenge was the custom PRF function used in TLS. The problem is that in TLS,
it is used with completely incompatible parameter types, since they are simply interpreted
as a bitstring. The return type is also difficult to specify, since the returned byte sequence
is interpreted as nonces, symmetric keys, initialization vectors or just integers as needed.
We could model this PRF as a constructor prf of type [X]. (Top, Top) —> X., but in the
current setting this constructor would need to be implemented in every implementation
class in the runtime library. The simplest way to implement this function was to define a
special channel implementation, and use it in the protocol as a black box. This channel
buffers all messages sent over it, and on receive, generates a long enough pseudo-random
sequence and initializes the received messages with it.

We have added a “ConsoleChannel” class that can be used for user interaction. All messages
sent over it are printed to STDOUT, a receive on this channel reads a line from STDIN
and initializes the message accordingly. A generative type ConstString was added, which
can be used to generate text messages and display them to the user. We used these types
to define simple error handling mechanism in the TLS protocol. If some decryption or
verification step fails, we display a corresponding message and abort the protocol. Some
status messages on the handshake progress and the received HI'ML data are also displayed
in this way.

47

5 Case Study: TLS Protocol

5.4 Results

During the development phase, the generated TLS implementation was tested on the local
Apache 2.2.9 web server installation using the OpenSSL 0.9.8h library on Gentoo Linux.
For debugging purposes, we used a custom build of the OpenSSL library that outputted a
lot of internal information like generated keys and more informative error messages.

The final version of the generated code was tested with various web sites, among others,
https://banking.postbank.de/, https://bugs.gentoo.org/, https://wuw.nsa.gov/,
https://www.bnd.de/ and https://wuw.openssl.org/. The site of BND used an invalid
certificate. All other tested web servers that supported the used encryption scheme (e.g., the
NSA site does not support AES) accepted the handshake and responded to the encrypted
HTTP GET request.

The protocol specification in Extensible Spi Calculus and the corresponding Exdef file that
contains TLS-specific definitions are about 400 physical lines long each, resulting in 800
lines of specification. The size of the TLS-specific implementations in the library is about
300 physical lines, or 150 source lines of code® (SLOC). The generated implementation
is about 7000 physical lines long (about 5700 SLOC). The protocol was implemented by
the author of this thesis in about four days, including reading the protocol specification,
extending the runtime library, fixing bugs in the generator and debugging the protocol and
the implementation of the custom classes. The implementation time could be shortened at
least by one day if we had used the custom build of the OpenSSL library right from the
beginning.

For a very rough comparison, the size of the TLS-related files in OpenSSL is about 4800
physical lines of C code (3200 SLOC). Of course, this comparison is rather imprecise, since
the OpenSSL implementation is written in a completely different language and supports
almost all features of TLS, but gives a rough idea about the orders of magnitude of the
expected code size.

Another TLS implementation is PureTLS?*. It is written in Java using external crypto-
graphic providers, and do not support any TLS extensions, which is very similar to our
implementation. The size of the TLS-related classes is about 7800 physical lines of code
(4000 SLOC), although this also contains the networking routines that are implemented in
the runtime library in our case.

The predecessor of our tool, spi2java, was used to generate an interoperable implementation
of an SSH client [PS07]. The SSH protocol is much simpler than TLS. Besides, the protocol
specification was kept very abstract and most of the logic was implemented in the runtime
library. The generated implementation was about 2000 physical lines long and supported
only the handshake. Unfortunately, we do not have any information about the size of
the configuration file that had to be written by the programmer and the time that was
needed to implement and configure the SSH protocol, this makes it difficult to estimate the
productivity increase offered by expi2java in comparison to spi2java.

This case study shows that our approach is flexible enough to be used with complex real-life
protocols. The Extensible Spi Calculus and the type system with nested types, together

3 According to the David A. Wheeler’s ’SLOCCount’ tool
4Available at http://wuw.rtfm.com/puretls/

48

https://banking.postbank.de/
https://bugs.gentoo.org/
https://www.nsa.gov/
https://www.bnd.de/
https://www.openssl.org/
http://www.rtfm.com/puretls/

5.4 Results

with the configurations can be extended to support custom cryptographic primitives with
complex behavior without changes in the implementation of the tool. The code generated
by expi2java is interoperable with other implementations. The size of the generated code
is in the same order of magnitude as the size of comparable implementations, however,
the size of the protocol specifications and configuration that needed to be written by the
programmer is significantly smaller than the size of hand-written implementations.

49

50

6 Conclusion

6.1 Contributions

Types In this thesis, we have introduced a type system with nested types for the Ex-
tensible Spi Calculus. We use parametric polymorphism and subtyping [CG92, Pie02] to
achieve the flexibility and expressiveness needed for expressing real-life protocols. The type
system not only expresses the data type of each term, but also contains the information
about the structure of the nested terms, and complements the concept of constructors and
destructors. This allows us to detect more errors early in the modelling process. We have
incorporated the concept of configurations into the type system, thus ensuring the correct
usage of cryptographic primitives. The type system can express many complex types, such
as specializations of channels, encryptions etc. using a reasonably small set of core types
and can be easily extended to have more types if needed. We have proved that the processes
stay typed when evaluated, thus ensuring that the type system cannot be circumvented.

Configurations We have introduced the configurations to specify subsets of closely related
types, constructors and destructors in a consistent way and to provide the implementation-
specific low-level information about the types, needed for the code generation. The calculus
from [ABO5] was extended to support these configurations to ensure the correct usage of
the specialized types together with the constructors and destructors. With some runtime
support, we can define several related Spi names to belong to special virtual variables
that are mostly used to represent split channels as one. This allows us to generate a
working implementation of real-world protocols even though the implementation of the
network channels has some implicit assumptions about the protocol structure that cannot
be modelled with the currently used type system. The concrete syntax of the configurations
is simple, easy to use, avoids redundant information and is flexible enough to support
arbitrary additional primitives and their future implementations.

Implementation We have developed an implementation of the expi2java code generator.
Expi2java is a major step forward from the original spi2java and supports all concepts
described above. Although we expect the tool to still evolve over time, we made a point
on keeping expi2java as extensible as possible without code changes. We support flexible
file formats (Expi and Exdef) that allow to extend the set of used types, constructors and
destructors with ease. The only thing that the user will need to implement is the additional
cryptographic primitives. We provide definitions and implementation of the most common
data types and cryptographic primitives sufficient to generate working implementations of
many protocols.

The potential of the expi2java was shown by generating an interoperable implementation
of the TLS protocol from about 400 lines of specification (Expi file) and 400 lines of config-
uration (additional Exdef file). The generated implementation performs a TLS handshake
with a normal web server and downloads a web page using the HTTP protocol over the

o1

6 Conclusion

established secure connection. We support the AES-256 CBC encryption scheme with the
RSA key exchange. With a small amount of work we were able to also implement the
HMAC and a custom PRF.

6.2 Related Work

The idea of a code generator for security protocols is not new. In fact, several tools for
automatic code generation have been developed over the past years. One of the early
approaches is the AGVTI toolkit by A. Perrig, D. Song and D. Phan [PSP01] that focuses
on the generation of new protocols and uses the Athena [SBP01] protocol analyzer for
verification of the formal model, but can also generate Java implementations.

The CIL2Java tool by J. Millen and F. Muller [MMO1] can generate Java code from the
CAPSL intermediate language CIL [Mil97, DM99]. CIL2Java was designed for demonstra-
tion purposes, it is not extensible and only implements a few cryptographic primitives.

SPEARII by S. Lukell, C. Veldman and A. Hutchison [LVHO03] is a tool aimed at the rapid
protocol engineering. It has a graphical user interface and generates Java code that uses
the ASN.1 standard for data encoding and various cryptographic libraries.

The spi2java framework by A. Pironti, R. Sisto, L. Durante and D. Pozza [PSD04, PS07]
is the first code generator designed to be flexible and configurable. It uses the Spi cal-
culus [AG99] as the input language, together with a simple type system, supports type
inference and provides a way to configure the protocols with the low-level information
needed for an interoperable protocol implementation. The generated implementation of
an SSH client [PS07] demonstrates that interoperability with standard implementations is
indeed achievable.

There is also another project that uses a similar approach, the Sprite tool by B. To-
bler [Tob05]. The code generator from the Sprite tool is also called spi2java.

Spi2F# by T. Tarrach is a prototype tool aimed at the generation of protocol implemen-
tations that preserve the security properties of the formal model rather than at the inter-
operability [Tar08]. It uses two type systems, the type system from [FGMO07, BHMO08a] to
check the source language [AB05] and the F7 type-checker to check the target language (a
subset of F#). The preservation of the security properties is shown by proving that the
typed translation between the source and the target language preserves typing.

6.3 Relation with Spi2java

The previous version of expi2java originated as an extension of the spi2java framework
by R. Sisto et al. The main difference to the original spi2java was the input language.
Instead of the Spi calculus [AG99] we used the more flexible Spi calculus with constructors
and destructors from [ABO5] that was further extended to the Extensible Spi Calculus in
expi2java. The previous hardcoded translation of cryptographic primitives to Java code was
replaced by a generic code generation algorithm. Finally, we refactored most of the spi2java
code, making it simpler to maintain and preparing the tool for the future extensions.

52

6.3 Relation with Spi2java

In expi2java, we rewrote the remaining parts and redesigned the implementation of the
type system and code generation. Expi2java no longer supports any of the input files used
in the original spi2java; we built new parsers for the Expi and Exdef file formats based
on the ProVerif parser from the ZK Compiler tool by D. Unruh [BMUO8]. Only parts of
the runtime library and some helper classes could be adapted in expi2java due to the large
amount of changes.

The original spi2java uses a very simple type system. In expi2java we changed that to a
more expressive and flexible one. Many features of the new type system with nested types
that we discuss in Chapter 3, directly address the issues we have found in the original
spi2java. The parametric types prevent the incorrect usage of constructors and destructors
and eliminate a lot of implicit assumptions on the behavior of type implementations. For
instance, in spi2java the decryption has the top type Message as the return type and uses
a downcast to the actual term type in implementation, which may fail on runtime.

Another disadvantage of the original spi2java is the complicated workflow. The protocol
file in spi2java does not contain any type information, the types are specified for every term
using an additional XML configuration file. Besides the type, all low-level details must
also be specified for every term, causing a lot of redundancy. For the example protocols we
used, the size of these XML configuration files is between 250 lines for very simple protocols
like the Secure Andrew RPC [BANS9], up to 700 lines and more for bigger protocols, like
the Needham-Schroeder protocol. In contrast to that, the specification of the Needham-
Schroeder protocol in the Extensible Spi Calculus together with embedded type annotations
and all protocol-specific configurations is only 210 lines long.

A lot of information in the spi2java XML configuration files is generated automatically.
Besides that, spi2java can infer a significant amount of type information, as far as it is
possible in the simple type system. However, this advantage is diminished by the fact that
the user still must adapt the low-level information or manually specialize many types. In
expi2java, we introduced the configurations and typedefs, which avoid redundancy and are
simpler to use. Still, we no longer do any type inference at the moment.

The terms in the XML configurations used in spi2java are referenced with an unique term
ID. Since this ID is dependent on the position of the term in the protocol specification, even
the smallest change in the protocol also changes the IDs of many terms in the file that is
generated by the tool. The hand-made changes in the old XML file must be transferred to
the new file manually, making an iterative writing or refining of a protocol specification for
large protocols extremely tedious. The type annotations inside the protocol specification
files we use in expi2java are more convenient in this respect and make it much easier to
write large protocol specifications like the TLS protocol we discussed in Chapter 5. The
possibility to generate and test the code for a partially implemented protocol without the
need to merge several-hundred-lines-long XML files after every change is very convenient.

The types can be added or changed in both the original spi2java and expi2java in a similar
way, by changing the type definition and implementing the type in the runtime library.
However, in the more expressive and flexible type system with nested types this is often
not needed, since the behavior of types can also be adapted by using other type parameters
or configurations. The Spi calculus from spi2java is very limited in comparison to the
Extensible Spi Calculus.

93

6 Conclusion

6.4 Future Work

Type Inference A very useful extension would be a type inference algorithm for nested
types with a corresponding implementation. The current implementation of the type system
assumes a fully annotated protocol specification. The type annotations must be specified
by the user for every name, constructor and destructor application, resulting in a quite
large amount of redundant information. A type inference algorithm for the type system
with nested types would make it possible to omit most type annotations, resulting in more
readable protocol specifications. The nested types store a lot of information about the term
structure, which is helpful for the type inference. This should make it possible to infer even
more type information than it was possible in the simple type system used in spi2java. It
would also be beneficial if some of the type information provided by various type systems
for security could be reused for code generation.

Sum Types Extending the type system with sum types [Pie02], which combine several
types into one, could solve the channel splitting issues. Using the sum types, we could type
every channel to the combined type of all messages we send over it and select one type
when needed.

Zero-Knowledge Another very interesting direction would be to extend the type system,
the code generator and the runtime library to handle zero-knowledge. Implementing sym-
bolic zero-knowledge is a complex and challenging task that would allow for generation of a
whole new class of protocols, such as Civitas [CCMO08|. The protocols using zero-knowledge
proofs can be analyzed by the type system from [BHMO08a, BMUO08, BUOS].

Provable Translation It would be interesting to exchange some ideas with the approach
of Spi2F+# by T. Tarrach. This tool uses essentially the same input language and a type
system for security that rejects insecure protocol models. By incorporating this type system
into expi2java we would eliminate an important cause for security-related errors.

Combining the interoperability and flexibility of expi2java with the provable preservation
of the security properties is highly desirable, but also difficult. The first important step into
this direction would be to formalize a subset of Java that is sufficient to implement real-life
protocols. Then we could try to formalize and prove a translation from the Extensible Spi
Calculus to this fragment of Java.

TLS The implementation of the TLS protocol could also be improved. The current im-
plementation supports only some of the features of TLS and is limited to one encryption
scheme. We could check for the problems during the handshake and alert the server as
defined in the specification. More important is, however, to model all the features of TLS
in the Extensible Spi Calculus without special runtime support. Additionally, we could try
to verify the model of the TLS protocol with ProVerif.

Synchronous 1/O The implementation of the synchronous input and output from the
Extensible Spi Calculus should follow the abstract semantics. It is important to implement
the same behavior of the processes as expected, since some protocol specifications may rely
on that.

Implementation There is also room for improvement in the implementation of expi2java.
For instance, we could add some basic syntactic sugar to the calculus, i.e., allow constructors

o4

6.4 Future Work

in let processes instead of using them in an identity destructor or support tuples of arbitrary
length instead of the nested pairs.

It would be nice to have a possibility for a dynamic reconfiguration of protocols in a generic
way. For example, it could be used to reconfigure the keys after negotiating the key length in
the TLS protocol. The set of provided cryptographic primitives and data types could also be
extended. More flexible and configurable implementations of the cryptographic primitives
and the corresponding constructors and destructors would make the implementation of other
protocols easier. For example, many real-world protocols use block encryption schemes with
a dynamic initialization vector, and in this case the encryption constructor should not only
take the message and the key as arguments, but also the initialization vector.

In order to make expi2java more useful in praxis, support of other target languages (e.g., C#
or F#) is desirable. A GUI or an integrated plug-in for an IDE like Eclipse would make
the tool more user-friendly and allow a more efficient, interactive workflow.

95

56

Bibliography

[ABO1]

[ABO5]

[Aba99)

[ABF05]

[AG99)]

[BANSY]

[BCFMO7]

[BFMO7]

[BHMO8a)

[BHMOSD]

[BI0S]

M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In
Proc. Jth International Conference on Foundations of Software Science and
Computation Structures (FOSSACS), volume 2030 of Lecture Notes in Com-
puter Science, pages 25—41. Springer-Verlag, 2001.

Martin Abadi and Bruno Blanchet. Analyzing security protocols with secrecy
types and logic programs. Journal of the ACM, 52(1):102-146, 2005.

M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749-786, 1999.

M. Abadi, B. Blanchet, and C. Fournet. Automated verification of selected
equivalences for security protocols. In Proc. 20th Annual IEEE Symposium on
Logic in Computer Science (LICS), pages 331-340. IEEE Computer Society
Press, 2005.

Martin Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The Spi calculus. Information and Computation, 148(1):1-70, 1999. An ex-
tended version appeared as Digital Equipment Corporation Systems Research
Center report No. 149, January 1998.

Michael Burrows, Martin Abadi, and Roger M. Needham. A logic of authenti-
cation. Technical Report 39, Digital Systems Research Center, February 1989.

M. Backes, A. Cortesi, R. Focardi, and M. Maffei. A calculus of challenges
and responses. In Proc. 5th ACM Workshop on Formal Methods in Security
Engineering (FMSE), pages 101-116. ACM Press, 2007.

Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. Dynamic types for
authentication. Journal of Computer Security, 15(6):563-617, 2007.

Michael Backes, Catalin Hritcu, and Matteo Maffei. Type-checking zero-
knowledge. To appear in 15th ACM Conference on Computer and Com-
munications Security (CCS), October 2008. Full version available at http:
//www.infsec.cs.uni-sb.de/ hritcu/publications/zk-types-full.pdf.

Michael Backes, Catalin Hritcu, and Matteo Maffei. Type-checking zero-
knowledge. Implementation available at http://www.infsec.cs.uni-sb.de/
projects/zk-typechecker, 2008.

Alex Busenius and Violeta Ivanova. Extending the input language of Spi2Java.
Technical report, Saarland University, April 2008. http://www.infsec.cs.
uni-sb.de/teaching/WS07/Seminar/reports/conspi.pdf.

o7

http://www.infsec.cs.uni-sb.de/~hritcu/publications/zk-types-full.pdf
http://www.infsec.cs.uni-sb.de/~hritcu/publications/zk-types-full.pdf
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker
http://www.infsec.cs.uni-sb.de/projects/zk-typechecker
http://www.infsec.cs.uni-sb.de/teaching/WS07/Seminar/reports/conspi.pdf
http://www.infsec.cs.uni-sb.de/teaching/WS07/Seminar/reports/conspi.pdf

Bibliography

[Bla01]

[BMUOS]

[Bou92]

[Bra97]

[BUOS]

[Car04]

[CCMOS]

[CG92]

[Cho02]

[DA9Y]

[DMOY]

[FGMO7]

[GJ04]

[HJO6]

[IPWO1]

o8

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules.
In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pages
82-96. IEEE Computer Society Press, 2001.

Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct anonymous attesta-
tion protocol. In Proc. 29th IEEE Symposium on Security and Privacy, pages
202-215. IEEE Computer Society Press, 2008.

Gérard Boudol. Asynchrony and the w-calculus, May 1992. INRIA Research
Report 1702.

S. Bradner. Key words for use in RFCs to indicate Requirement Levels, March
1997. RFC 2119 (Best Current Practice).

Michael Backes and Dominique Unruh. Computational soundness of symbolic
zero-knowledge proofs against active attackers. In Proc. 21th IEEE Symposium
on Computer Security Foundations (CSF), pages 255-269. IEEE Computer So-
ciety Press, 2008.

Luca Cardelli. Type Systems, Chapter 97. CRC Handbook of Computer Sience
and Engineering, 2nd edition, February 2004.

Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: A secure
voting system. In Proc. 29th IEEE Symposium on Security and Privacy, pages
354-368. IEEE Computer Society Press, 2008.

Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum
typing and type-checking in F<. Mathematical Structures in Computer Science,
2(1):55-91, 1992.

P. Chown. Advanced Encryption Standard (AES) Ciphersuites for Transport
Layer Security (TLS), June 2002. RFC 3268 (Informational).

T. Dierks and C. Allen. The TLS Protocol Version 1.0, January 1999. RFC
2246 (Proposed Standard).

G. Denker and J. Millen. CAPSL intermediate language. In FLoC Workshop
on Formal Methods and Security Protocols, 1999.

C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization
in distributed systems. In Proc. 20th IEEE Symposium on Computer Security
Foundations (CSF), pages 31-45. IEEE Computer Society Press, 2007.

A. D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic
protocols. Journal of Computer Security, 12(3):435-484, 2004.

Christian Haack and Alan Jeffrey. Pattern-matching spi-calculus. Information
and Computation, 204(8):1195-1263, 2006.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(3):396-450, Mai 2001.

Bibliography

[LVHO3]

IMi197
[MMO1]
[Pie02]

[PS07]

[PSD04]

[PSPO1]

[Res00]

[SBPO1]

[Tar08]

[Tob05]

[WF94]

[WS96]

Simon Lukell, Christopher Veldman, and Andrew Hutchison. Automated at-
tack analysis and code generation in a multi-dimensional security protocol en-
gineering framework. In Southern African Telecommunications Networks and
Applications Conference. University of Cape Town, 2003.

Jonathan Millen. CAPSL: Common Authentication Protocol Specification Lan-
guage. Technical Report MP 97B48, The MITRE Corporation, 1997.

J. Millen and F. Muller. Cryptographic protocol generation from CAPSL. Tech-
nical Report SRI-CSL-01-07, SRI International, December 2001.

Benjamin C. Pierce. Types and Programming Languages. MIT press, 2002.

Alfredo Pironti and Riccardo Sisto. An experiment in interoperable crypto-
graphic protocol implementation using automatic code generation. In Interna-
tional Symposium on Computers and Communications (ISCC), January 2007.

Davide Pozza, Riccardo Sisto, and Luca Durante. Spi2Java: Automatic cryp-
tographic protocol java code generation from spi calculus. In 18th Inter-
national Conference on Advanced Information Networking and Applications
(AINA 2004), pages 400-405. IEEE Computer Society Press, 2004.

A. Perrig, D. Song, and D. Phan. AGVI — Automatic Generation, Verification,
and Implementation of security protocols. In Proc. Computer Aided Verifica-
tion’01 (CAV), Lecture Notes in Computer Science. Springer-Verlag, 2001.

E. Rescorla. HTTP Ouver TLS, Mai 2000. RFC 2818 (Informational).

Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena: A novel
approach to efficient automatic security protocol analysis. Journal of Computer
Security, 9(1/2):47-74, 2001.

Thorsten Tarrach. Spi2F# — A prototype code generator for security protocols.
Bachelor’s Thesis, 2008.

Benjamin Tobler. A structured approach to network security protocol imple-
mentation. Master’s thesis, University of Cape Town, November 2005.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and Computation, 115(1):38-94, 1994.

David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In In
Proceedings of the Second UNIX Workshop on Electronic Commerce, pages 29—
40. USENIX Association, 1996.

99

	Introduction
	Motivation
	Contributions
	Outline

	An Extensible Spi Calculus
	Abstract Syntax
	Terms and Constructors
	Destructors
	Processes
	Example: Perrig-Song Mutual Authentication Protocol

	Operational Semantics
	File Format (Expi)

	Type System with Nested Types
	The Need for a Type System
	Configurations
	Goals
	The Need for Nested Types
	Definitions
	Types
	Typing Rules and Judgments

	Proofs
	A Fully Annotated Example
	File Format (Exdef)

	Code Generation
	Design
	Overview
	Translation of the Extensible Spi Calculus to Java
	Current Limitations
	Templates

	Configurations
	Runtime Library

	Case Study: TLS Protocol
	Transport Layer Security
	Implemented Part of HTTP/TLS
	The Model in Extensible Spi Calculus
	Results

	Conclusion
	Contributions
	Related Work
	Relation with Spi2java
	Future Work

	Bibliography

