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und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.
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Abstract

In recent years, an increasingly popular approach to the game-playing tech-
nique in cryptographic proofs is to rigorously specify games as pieces of well-
defined program code; this irons out potential ambiguities in their specification,
and enables a formal analysis of those games and proofs with the help of au-
tomated tools, as envisioned by Halevi [49]. Barthe et al. recently developed
EasyCrypt [13], a tool which comes with a fully-specified programming language
suitable for the formalization of cryptographic games, as well as an associated
probabilistic relational Hoare logic and built-in program verification techniques.
EasyCrypt can automatically generate proof obligations arising within a game-
playing proof, and solve these mechanically using state-of-the-art automated tools.

In this thesis, we use EasyCrypt to formally verify the indifferentiability of the
prefix-free Merkle-Damg̊ard construction, following a seminal proof by Coron et
al. [39]. Merkle-Damg̊ard is a cryptographic construction ubiquitously used to
implement hash functions: These have received considerable attention from the
cryptographic community in the last few years, motivated by the ongoing SHA-3
competition. Indifferentiability is a powerful and non-trivial security notion that
yields many implications, and certainly constitutes a desirable security property
to achieve when designing a modern cryptographic hash function.

More concretely, we specify a sensible sequence of games in EasyCrypt’s lan-
guage, and discuss the arguments that were needed for machine-checking the
validity of the transitions relating those games. We focus in particular on the
underlying axiomatization and derived lemmas used to justify the validity of side-
conditions that arose when proving invariants of those games. Our results provide
a first, but significant step towards a machine-checked verification of the indiffer-
entiability of the finalists of the SHA-3 competition.
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Notations and Conventions

Naming conventions.

x – Usually a block, i.e. a bitstring of length k (see Section 3.1)

y – Usually a chaining value, i.e. a bitstring of length n (see Section 3.1)

m – Usually a message, i.e. a bitstring of arbitrary length (see Section 3.1)

p – Usually a padding, i.e. a list of blocks (see Section 3.1)

IV – A fixed chaining value used as initialization vector in the Merkle-Damg̊ard iteration
(see Section 3.1)

pRHL judgments.

⊢ c1 ∼ c2 : Ψ =⇒ Φ – pRHL judgment correlating commands c1 and c2 under the pre-
condition Ψ and the post-condition Φ (see Section 4.3)

e〈1〉 – Within a pre-condition or a post-condition of a pRHL judgment, the interpretation
of e in the left command of that judgment (see Section 4.3)

e〈2〉 – Within a pre-condition or a post-condition of a pRHL judgment, the interpretation
of e in the right command of that judgment (see Section 4.3)

={x} – Short-hand notation for x〈1〉 = x〈2〉 for some variable x (see Section 4.3)

Probabilities.

Pr [c,m : A] – Probability of event A after the execution of command c under initial mem-
ory m (see Section 4.4)
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Pr [c : A] – Probability of event A after the execution of command c under an arbitrary
initial memory (see Section 4.4)

Maps.

upd(T, xy, z) – The map resulting from the update of map T with the pair (xy, z) (see
Section 6.1.1)

Lists.

nil – The empty list

x::xs – Construction of a list

xsℓ ‖ xsr – Concatenation of lists

Options.

Some(x) – The option associated to object x

None – Empty option

πo – The projection of option o, i.e. if o = Some(x) for some object x, then πo = x

Types.

τ list – The type of a list over elements of type τ

τ option – The option type over elements of type τ
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1
Introduction

T
he game-playing technique is a salient technique to prove security properties of
cryptographic constructions in modern cryptography, advocated by Bellare and Ro-

gaway [23] and Shoup [68]. In a game-based proof, one typically formulates a desired
security property of a cryptographic construction as a probabilistic experiment, called the
initial game. In this game, a challenger uses or initializes the construction in question
and communicates with an adversary, described by a black-box function. The goal of the
adversary is to break some security property of the construction, denoted in the initial
game by some event S. Then, the probability of event S is the probability of the adversary
to break the security property. This probability is usually expressed in terms of a security
parameter, and the goal is to show that the probability of S is negligible in terms of this
security parameter. For instance, the probability for some adversary to determine which
of two ciphertexts is the encryption of a chosen plaintext may be negligible in the length
of the key.

To derive such a bound in the game-based setting, one defines a sequence of intermediate
games and proves that the probability of S in each two consecutive games is equal, or differs
only by a negligible amount. The last game usually has a form where it is easy to see the
probability of S, or where such a probability is assumed or already known. Finally, by
summing up over all the differences of the probabilities of S of any two consecutive games,
one obtains an upper bound on the difference of the probabilities of event S in the initial and
final games, yielding a bound for any adversary to break the desired security property. That
is, since the adversary cannot distinguish with more than negligible probability between
the initial and final games, and furthermore it is assumed or clear that the adversary cannot
perform a successful attack on the final game with more than negligible probability, then
it cannot do so for the initial game either.

Whenever two consecutive games do not have the same probability of some event S
(typically the result of the game), but whose respective probabilities of event S differ only
by a negligible amount, one introduces failure events capturing low-probability events that
may lead to the games differing in event S. Then, one shows that the games have the
same behavior with respect to event S unless one of these failure events occurs. Finally,
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1 Introduction

the Fundamental Lemma of Game-Playing [23, 68] is used to conclude that the difference
of the probabilities of event S in the two games is upper-bounded by the probability of the
failure events, and the probability of the failure events is concretely calculated.

A crisis of rigor. However, in practice the formal arguments used to justify the
validity of such transformations can, more often than not, leave many things to be de-
sired. Typically, games may be outlined in natural language at worst, or specified in some
kind of ad-hoc pseudocode at best, and their precise mathematical definitions and formal
inner workings left unclear. The proofs are then performed in a rather semi-formal way,
along with a lot of “handwaving”. Yet, even though some transformation may be easily
understood at an intuitive level, it may in fact require rigorous mathematical arguments
to formally justify its validity. In [23], Bellare and Rogaway speak of a “crisis of rigor”
concerning cryptographic proofs in general, and endorse the usage of the game-playing
technique along with a pseudocode-based descriptive language to formalize the games, but
they still assume the operational semantics of the pseudocode to be implicitly clear. In [49],
Halevi argues that the problem arises, for the most part, from the technical difficulties of
fully formal proofs, especially since they consist in great parts of “mundane” arguments
(e.g., checking that a transformation is truly valid), as opposed to the creative part of the
proof, such as describing a simulator or a reduction. Indeed, cryptographers can hardly be
expected to manually verify each and every one of these mundane parts down to their last
detail; on the other hand, this would be necessary to obtain a fully verified proof that can
be believed without reservation. In Halevi’s words,

“The problem is that as a community, we generate more proofs than we carefully
verify (and as a consequence some of our published proofs are incorrect). I
became acutely aware of this when I wrote my EME* paper [48]. After spending
a considerable effort trying to simplify the proof, I ended up with a 23-page proof
of security for a — err — marginally useful mode-of- operation for block ciphers.
Needless to say, I do not expect anyone in his right mind to even read the proof,
let alone carefully verify it. (On the other hand I was compelled to write the
proof, since it was the only way that I could convince myself that the mode was
indeed secure.)”

— Shai Halevi, [49]

Therefore, Halevi takes the idea of code-based game-playing proofs even further, and ad-
vocates the definition of a fully-specified programming language used to describe games;
further, he advocates the creation of a tool tuned to this language that helps to automate
the verification of the mundane parts of the proof, using formal verification methods.

A possible solution: EasyCrypt. In the years that followed, several tools address-
ing this situation saw the light of day, outlined in greater detail in Section 2. Recently, a
new tool has been developed, called EasyCrypt [13], which defines an imperative program-
ming language with random assignments, suitable for formalizing games in cryptographic
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proofs, and implements an associated probabilistic relational Hoare logic and program ver-
ification techniques. In this way, EasyCrypt enables an automated mechanical verification
of game transformations with the help of state-of-the-art SMT solvers and automated the-
orem provers interacting with EasyCrypt. The cryptographer needs only concentrate on
the essence of a proof by specifying a sequence of games, written as small programs, along
with Hoare judgments specifying how the games are related to each other, and logical
statements expressing properties of the operators used in the games. Then, the reduction
can be mechanically verified, significantly increasing the trust that can be placed in the
proof. EasyCrypt also delivers tools to support the reasoning with failure events, in partic-
ular a mechanical implementation of the Fundamental Lemma of Game-Playing as well as
a lemma to bound the probability of failure events (see Section 4.4). Therefore, EasyCrypt
seems to be an excellent candidate for achieving the goals described by Halevi’s ambitious
program.

Hash functions. Motivated by the ongoing SHA-3 competition, discussed in more de-
tail in Section 3.3, hash functions and their security properties have received considerable
attention from the cryptographic community in recent years. Most hash functions, includ-
ing all SHA-3 finalists, implement the Merkle-Damg̊ard construction (or a variant thereof),
put forward by the pioneering works of Merkle [60] and Damg̊ard [42] in 1990. The plain
Merkle-Damg̊ard construction hashes a message as follows. First, a message is split into
blocks of the same length using an appropriate padding function. Then, a compression
function is iterated over the blocks, generating an intermediate chaining value in each step.
The compression function takes as arguments a block and a chaining value. The chaining
value used for the compression of the first block is a fixed value called the initialization vec-
tor ; the last chaining value output by the compression function is the final hash. Variants of
Merkle-Damg̊ard include the chopping of trailing bits of the last chaining value before out-
putting the hash, or imposing certain restrictions on the padding function. Several classic
notions for the security of hash functions exist, such as collision resistance, preimage resis-
tance and second preimage resistance (see discussion in Section 3.1). Merkle and Damg̊ard
showed independently that when used in conjunction with a suffix-free padding function,
then the Merkle-Damg̊ard iteration yields a collision-resistant hash function [42, 60] – a
suffix-free padding function is a padding function with the property that no padding of a
message is a suffix of the padding of another message. Both authors considered a concrete
suffix-free padding function (in which a message is appended with as many 0’s as necessary
to obtain a multiple of the block size, and an additional block encodes the length of the
original message), although their proofs are applicable more generally for any suffix-free
padding function, a fact which at least Merkle also observed [60].
A new security notion that arose relatively recently is the notion of indifferentiability, in-

troduced by Maurer et al. in 2004 [59]. Shortly thereafter, Coron et al. applied this notion
to hash functions [39]. Essentially, a hash function that is indifferentiable from a random
oracle behaves like a variable input length random oracle [22], i.e. an oracle which takes as
input a bitstring of variable length and that returns a value chosen uniformly at random
from its range for each fresh query that it receives; multiple identical queries are answered
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1 Introduction

with the same response. The proof is performed in an idealized model: For instance, it
may be assumed that the underlying compression function is a fixed input length random
oracle, or even that an underlying building block of the compression function, such as
a block cipher or a permutation, is an ideal primitive. Therefore, an indifferentiability
proof gives confidence in the higher level design of the hash function: If an underlying
building block is assumed to behave like an ideal primitive, then the hash function as a
whole also behaves like an ideal primitive. Coron et al. furthermore showed that the plain
Merkle-Damg̊ard construction is indifferentiable from a random oracle when the employed
padding function is prefix-free, and the compression function is assumed to be a fixed input
length random oracle (a prefix-free padding function is defined analogously to a suffix-free
one). Indifferentiability of a hash function is a powerful notion, and yields many other
security properties including collision resistance, as well as preimage and second preimage
resistance of the hash function [4], however the proof is not in the standard model, and
may yield worse bounds than a direct proof of a specific security property. Still, indifferen-
tiability is an interesting property to consider and is certainly a desirable security property
when designing a state-of-the-art cryptographic hash function.

Contributions. We set out to verify in EasyCrypt the security property of indiffer-
entiability for the finalists of the SHA-3 competition. Our first step was to provide a
mechanically verified proof of the indifferentiability of the prefix-free Merkle-Damg̊ard con-
struction, closely following the proof by Coron et al. [39]. The resulting paper was published
at the 25th IEEE Computer Security Foundations Symposium (CSF 2012) [8]. My main
involvement in this project laid in the abstraction, generalization and formal verification
of the side conditions arising within the EasyCrypt proof, in the Coq proof assistant [70].
The resulting EasyCrypt proof consisted of over 3700 lines of code, and the accompanying
Coq file had over 4200 lines of code. These are available at:

http://easycrypt.gforge.inria.fr/csf12/

The main contributions of this thesis are a deeper look into the indifferentiability proof
performed in EasyCrypt than it was done in [8], detailed in Chapter 5, and the development
of the aforementioned Coq file, whose proofs are described in Chapter 6.

Outline. The layout of this thesis is as follows. We begin with a look at related work
in Chapter 2. Then, we review the background of the thesis by discussing hash functions
and their security properties, formally defining the Merkle-Damg̊ard construction, as well
as discussing the SHA-3 competition in Chapter 3. Next, we investigate the EasyCrypt
tool in some more detail in Chapter 4. Our new results are outlined in Chapters 5 and 6.
The high-level EasyCrypt proof is described in Chapter 5; it goes into deeper detail than
the corresponding section in [8], and can be considered as an extended version thereof.
Chapter 6 details the operators, predicates and axioms that the EasyCrypt proof is based
on. Then, it discusses the side conditions that needed to be proven manually to enable
EasyCrypt to verify the indifferentiability proof, and further provides formal proofs for all
of those side conditions, based solely on the axiomatization presented in the same chapter.
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Finally, Chapter 7 concludes with a discussion of the applicability of our results to the
finalists of the SHA-3 competition, and future work.
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2
Related Work

P
ursuing a code-based approach to the game-playing technique to perform crypto-
graphic proofs dates back to early work by Kilian and Rogaway in 1996 [53], and

was applied in many subsequent papers by Rogaway, e.g. [21, 29, 30, 50, 51, 66]. Bellare
and Rogaway argue in [23] that regarding games as code benefits the technique of game-
based proofs since it is less error-prone and imposes some discipline on the process, and
describe a sample programming language suitable for formalizing games. In [49], Halevi
advocates a rigorous specification of such a programming language and furthermore the
creation of an automated tool to support the verification of code-based game-playing proofs.
Thus, cryptographers could concentrate on the creative parts of a proof, leaving machines
to verify the more mundane parts (checking that some transformations are actually sound).

CryptoVerif was the first tool aiming at the automatic verification of game-based proofs
in cryptographic schemes. In [33], Blanchet and Pointcheval used it to prove the unforge-
ability of the Full-Domain Hash signature scheme under the trapdoor-one-wayness of some
permutations. Additionally, it is also suitable to prove security of cryptographic protocols:
It has been applied to prove authentication and key secrecy properties of Kerberos [32].
Games in CryptoVerif are specified in a probabilistic process calculus, inspired by the pi-
calculus [31], and transformations are captured by probabilistic bisimulation relations. Its
focus is on automation: According to Blanchet, security assumptions on cryptographic
primitives are applied in a fairly direct way and the tool has limitations as it comes to
deeper mathematical reasoning. Therefore it is mainly suited for the analysis of security
protocols using high-level primitives (e.g. encryptions or signatures) [31].

Several authors set out to develop frameworks to formalize game-based cryptographic
proofs in proof assistants:

• In [62, 63], Nowak reports on a framework to develop game-based cryptographic
proofs in Coq using a shallow embedding, in which games are implemented directly
as Coq functions. He uses it to give security proofs for the semantic security of ElGa-
mal [62], and for the security of two other cryptographic primitives based on number
theory [63]. However, his framework lacks a formal theory for syntactic program
transformations, which considerably hampers the possibility for proof automation in
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2 Related Work

game transitions, and it cannot deal with complexity notions such as polynomial-
time programs; Nowak and Zhang address these problems in [64] by using a typed
probabilistic lambda-calculus, but do not implement the latter in a tool.
• In [1], Affeldt et al. provide a formal proof of the PRP/PRF switching lemma in the
proof assistant Coq. In contrast to Nowak’s framework, their framework uses a deep
embedding; they define a simple programming language following the game-playing
framework by Bellare and Rogaway [23], and a specialized version of the Fundamental
Lemma. However, their framework is tuned to their particular example, and lacks a
general applicability.
• In [9], Backes et al. developed a framework for game-based proofs in the proof assis-
tant Isabelle/HOL [61]. It formalizes a simply-typed probabilistic higher-order func-
tional language with references and support for events fit to express all constructs
used in cryptographic games, including random oracles, polynomial-time programs,
and sampling from possibly continuous probability measures. It comes along with
a theory for observational equivalence and computational indistinguishability, and a
definition of the Fundamental Lemma. Since the language is higher-order, oracles can
be dealt with in a very natural fashion, as they can simply be passed as arguments to
procedures. However, its high level of complexity is costly, and no working examples
have been completed. In [44, 69], Driedger and Skoruppa contemplate in their respec-
tive Bachelor’s theses pen-and-paper proofs of syntactic program transformations in
that framework, resulting in example proofs concerning one-way permutations and
the semantic security of ElGamal, yet these are not implemented in Isabelle/HOL.
• In [15], Barthe et al. presented CertiCrypt, a fully verified framework built on top
of the Coq proof assistant that enables specifying and machine-checking game-based
cryptographic proofs. They formalize an imperative programming language with
random assignments, structured datatypes and procedure calls, and provide a set
of certified tools to reason about equivalence of probabilistic programs, including a
probabilistic relational Hoare logic, a theory of observational equivalence, verified
program transformations and cryptographic techniques such as reasoning about fail-
ure events and lazy/eager sampling. A fair amount of proofs has been carried out
in CertiCrypt, such as: the PRP/PRF switching lemma [15, 16]; existential unforge-
ability under adaptive chosen-message attacks of the FDH signature scheme [15, 76];
semantic security of ElGamal [12, 15] and of OAEP [15]; adaptive IND-CCA security
of OAEP [14]. The authors also formalized a class of zero-knowledge proofs, known
as Σ-protocols [41], and formally proved the security of many instances thereof from
the literature [17]. Furthermore, they verified the semantic security of the Boneh-
Franklin Identity-based encryption scheme [34] in [19]. More recently, they machine-
checked a proof of the indifferentiability of a construction for hashing into elliptic
curves by Brier et al. [35] from a random oracle in [11], and developed an extension
of CertiCrypt, called CertiPriv, to reason about differential privacy [18]. The only note-
worthy disadvantage of CertiCrypt is that the fully formally carrying out of proofs
requires a high level of expertise and can be fairly time consuming, which is why the
authors came up with EasyCrypt [13] to help in the automation of this task.
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Courant et al. investigate a different approach for automatically proving several security
notions such as IND-CPA and adaptive IND-CCA security in [40]: They define a Hoare
logic for a simple programming language, and use it to implement an automated verification
procedure for asymmetric encryption schemes in the random oracle model. Their focus
is on full automation; while their logic is sound, it is not complete (i.e. it may fail to
prove a secure encryption scheme), however they do achieve security proofs for several
encryption schemes in the literature. Later, Barthe et al. design a general logic which
captures typical reasoning patterns common in provable security [10], such as reductions,
simulations, random oracles, adaptive adversaries, failure events, and lazy/eager sampling.
The logic is called CIL (Computational Indistinguishability Logic) and subsumes the former
logic. The authors applied it to prove the security of probabilistic signature schemes, the
FDH signature scheme, and adaptive IND-CCA security of OAEP [10]. The rules of the
logic have been formalized in Coq by Corbineau et al. [38]. Shortly ago, Daubignard
et al. extended this logic such as to capture domain extenders, and presented a generic
reduction theorem to prove the indifferentiability of several hash function constructions [43],
applicable to four of the five SHA-3 finalists – a work closely related to the one presented
in this thesis. However, their method has not yet been implemented.
In stark contrast to all the above work, Koblitz casts a radically different view at the

concept of automated theorem-proving in reductionist security proofs [54, 55] and speaks
of a “metaphorical race between human and machine”. He criticizes inherent weaknesses
of this concept, e.g. that mechanically verified proofs are not, or only in a limited way,
understandable and replicable by humans – citing Manin’s “a good proof is one which
makes us wiser” [57] – and submits that computer-assisted theorem-proving has not yet
reached a wide audience amongst mathematicians. However, he duly admits to an inchoate
knowledge in the field of automated theorem-proving [55], having never constructed a game-
based proof himself, and many of his claims are easily refuted. While he does raise a few
valid concerns, he also seems to miss the point that machine-checked proofs intend to
complete, rather than to replace, human-made proofs; and to increase, rather than to give
in the first place, confidence in the correctness of these proofs.
Concerning indifferentiability, the notion was first introduced by Maurer et al. [59] and

applied to hash functions by Coron et al. [39], who in the same paper performed a proof
of the indifferentiability of the prefix-free Merkle-Damg̊ard construction (as well as other
variants of Merkle-Damg̊ard), which this thesis heavily relies on. The ongoing SHA-3
competition has motivated further research on the security of hash functions, including
indifferentiability for all the SHA-3 finalists [2, 3, 20, 24, 26, 37]. We discuss these in more
detail in later sections.
The notion of indifferentiability is not uncontroversial [65], nor is the random oracle

methodology [36]. Nonetheless, indifferentiability from a random oracle represents an in-
creasingly accepted notion for hash functions in the cryptographic community, and remains
a good heuristics to assess their security, since an indifferentiability proof demonstrates that
a hash function’s high-level design preserves an ideal functionality, and implies bounds on
all the classical security properties of hash functions [4].
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3
Background

T
he purpose of this chapter is to recapitulate the basic notions that this work is based
on. First, we give some background on hash functions: How they are usually built,

and classical security properties of cryptographic hash functions. Then, we introduce the
more recent security notion of indifferentiability (and some related results), and finally we
discuss the ongoing SHA-3 competition.

3.1 Hash Functions

Generally speaking, hash functions are functions that take inputs of variable length (e.g.,
large messages) and map them onto small bitstrings of a fixed length. We call such an
output a hash value, or simply a hash for short.

Cryptographic hash functions are hash functions that aim to achieve certain security
properties. In practice, they are designed such that their output is seemingly random and
unique for each input message, even though in reality it clearly is not, since the domain
of a hash function is necessarily much larger than its range. For instance, it should be
hard for an adversary to generate a message that has a given hash, or generate a message
that has the same hash as another message, or find two messages that have the same hash.
Such functions are frequently used in many cryptographic constructions, in particular for
(but not limited to) providing authenticity, such as in digital signature schemes or message
authentication codes. The output of a cryptographic hash function is also called the digest
of a message; depending on its usage, one may also speak e.g. of a fingerprint or a checksum.

At the heart of most cryptographic hash functions realized today lies the so-called Merkle-
Damg̊ard construction (or a variant thereof), which was proposed independently at the
same time by Ralph Merkle [60] and Ivan Damg̊ard [42]. It works by first splitting a
message into blocks (bitstrings of a fixed length), using an appropriate padding function.
Then, a compression function is iterated on those blocks. The compression function takes
two arguments: a block and a chaining value (also a bitstring of a fixed length), and
outputs a new chaining value to be used in the next iteration. The final chaining value is
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the digest of the message. The chaining value to be used in the first iteration is a fixed value
called the initialization vector. Throughout this thesis, we use the following conventions:

1. A block is a bitstring of length k, and is usually denoted by x;
2. a chaining value is a bitstring of length n, and is usually denoted by y;
3. a message is a bitstring of arbitrary length, and is usually denoted by m;
4. a padding is a list of blocks, and is usually denoted by p; and
5. the initialization vector is an n-bit constant IV.

Furthermore, a padding function pad is a function of type {0, 1}∗ → {0, 1}k list, that maps
a message to a padding. A compression function f is a function of type {0, 1}k×{0, 1}n →
{0, 1}n, that compresses a pair of a block and a chaining value to a new chaining value.
Now, we formally define the Merkle-Damg̊ard construction.

Definition 3.1 (Merkle-Damg̊ard). Let pad be a padding function, f be a compression
function, and IV be a (public) initialization vector. The Merkle-Damg̊ard hash function
MDpad,f is defined as follows:

MDpad,f : {0, 1}∗ → {0, 1}n

MDpad,f (m) := f ∗(pad(m), IV)

where f ∗ : {0, 1}k list× {0, 1}n → {0, 1}n is recursively defined by the equations

f ∗(nil, y) := y
f ∗(x::xs , y) := f ∗(xs , f(x, y))

Later on, we will often use the notion of an MD-chain to ease explanations. An MD-
chain is a list [(x1, IV), (x2, y2), . . . , (xj , yj)] of pairs of blocks and chaining values, where
the blocks are associated to the padding of a given message, and the chaining values are
the intermediate values generated by a given compression function as used in the Merkle-
Damg̊ard iteration. We give the formal definition below.

Definition 3.2 (MD-chain). Let pad be a padding function, f be a compression function,
and IV be a (public) initialization vector. Then an MD-chain is a list [(x1, y1), . . . , (xj, yj)]
such that

1. y1 = IV,
2. ∀i ∈ {1, . . . , j − 1}. f(xi, yi) = yi+1, and
3. [x1, . . . , xj] is in the range of pad.

Remark. In the above definition we obtain f(xj, yj) = MDpad,f (pad
−1([x1, . . . , xj ])).

Many variants of the Merkle-Damg̊ard construction exist. For instance, the HAIFA
construction [27] uses a compression function of the form f(x, y, b, s), where the additional
parameters b and s denote a counter and a salt, respectively. The counter ensures that
each block is processed with a unique variant of its compression function, while the usage
of a salt value means that the HAIFA construction defines a family of hash functions,
rather than a single hash function. A popular variant of Merkle-Damg̊ard is the so-called
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chop-MD construction, which chops some trailing bits off the final hash; very similarly, the
wide-pipe hash construction [56] prescribes to use larger internal chaining values than the
final output, using a different compression function for the last iteration. Using a different
compression function in the last iteration is also a widely used paradigm in its own right,
and usually referred to as a final transformation (note that the chopping of trailing bits is
typically not considered part of a final transformation).
All of these variants can be understood as heuristics aimed at improving the security

properties of the plain Merkle-Damg̊ard construction. Prominent classical security proper-
ties that cryptographic hash functions aim to achieve include the following.

Collision resistance. It is hard to find two distinct messages m1,m2 such that H(m1) =
H(m2).

Preimage resistance. For a given digest h, it is hard to find a message m such that
H(m) = h.

Second preimage resistance. For a given message m1, it is hard to find a message m2 6=
m1 such that H(m1) = H(m2).

Resistance to length extension attacks. Given a digest H(m1), it is hard to compute
H(m1 ‖ m2) for any non-empty message m2.

An extensive survey of these (and related) security properties and their relationships can
be found in [67]; an overview of several iteration modes and their property-preserving traits
appears in [6].
We point out here the following basic result, a special case of which was already described

by both Merkle and Damg̊ard in [42, 60]: if a padding function pad is suffix-free (see below),
then the plain Merkle-Damg̊ard-construction MDpad,f is at least as collision-resistant as
the compression function f . More precisely, they show that if a collision can be found for
MDpad,f , then a collision can also be found for f .
Lastly, we formally define the notion of a suffix-free (resp. prefix-free) padding function.

Definition 3.3 (Prefix- and suffix-free padding). A padding function pad is prefix-free
(resp. suffix-free) iff for any distinct messages m1,m2 and any padding p, it holds that
pad(m1) 6= pad(m2) ‖ p (resp. pad(m1) 6= p ‖ pad(m2)).

3.2 Indifferentiability

The notion of indifferentiability of two systems was introduced by Maurer et al. in [59], and
constitutes a generalization of the well-established notion of indistinguishability. Similarly
as for indistinguishability, it yields an elegant composition theorem; the indifferentiability
of two components H and F implies that the security of any cryptosystem C(F) based on
the component F is preserved when replacing the component F by the componentH in the
cryptosystem C(·), i.e. C(H) is as secure as C(F). The difference is that indifferentiability
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may be applied to more general settings, namely where a distinguisher has access to some
internal functions or variables of the considered components.

In [39], Coron et al. applied this notion to hash functions, considering in particular the
Merkle-Damg̊ard construction. Broadly speaking, if HG is a hash function based on an
internal resource G, and F is a variable input length random oracle, then we say that HG

is indifferentiable from F (i.e., an ideal hash function) if there exists a simulator S such
that no adversary can distinguish the scenario where it is given access to the procedures
HG and G, and the scenario where it is given access to the procedures F and SF , with more
than negligible probability (see Figure 3.1). The crucial difference to indistinguishability
is that the adversary is given access to the internal resource G that the hash function is
based on; this makes it possible to perform a proof of the statement in the ideal model,
where G is assumed to be an ideal primitive, by constructing an appropriate simulator.

Definition 3.4 (Indifferentiability). A procedureH with oracle access to an ideal primitive
G is (tS , q, ǫ)-indifferentiable from F if there exists a simulator S with oracle access to F
and executing within time tS , such that for any distinguisher D that makes at most q
oracle queries, the following inequality holds:

∣
∣Pr

[
b← DH,G( ) : b

]
− Pr

[
b← DF ,S( ) : b

]∣
∣ ≤ ǫ

H G F S

D

Figure 3.1: Indifferentiability of H from an ideal functionality F

In the remainder of this thesis, the procedure H that we consider is the Merkle-Damg̊ard
construction, and the component G is the underlying idealized compression function, im-
plemented as a fixed input length random oracle. The procedure F represents an ideal
hash function, implemented as a variable input length random oracle. Therefore, the role
of the simulator S is to simulate the compression function, i.e. it should behave towards
the ideal hash function F similarly as the ideal compression function G behaves towards
the Merkle-Damg̊ard construction H.

Coron et al. showed in [39] that when used with a prefix-free padding function, the
plain Merkle-Damg̊ard construction is indifferentiable from a random oracle. In this thesis,
we focus on the formal verification of this statement using EasyCrypt and Coq. Coron
et al. also showed the indifferentiability of similar constructions, such as chop-MD (see
previous section), for a non-trivial number of output bits chopped off, which however are
of no concern in the remainder.
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It has been shown in [65] that the indifferentiability composition theorem outlined above
does not apply unconditionally, since it does not capture cryptosystems that involve mul-
tiple, disjoint adversarial stages. Nevertheless, indifferentiability from a random oracle
remains a very strong property for a hash function. Indeed, it shows that an ideal func-
tionality is preserved, rather than a specific property such as collision-resistance. In fact, it
implies bounds on the properties of collision resistance, preimage resistance, second preim-
age resistance and resistance to length extension attacks (see [4]). However, the proof is
performed not in the standard model, but in an ideal model (since an underlying prim-
itive is assumed to be ideal), and may deliver looser bounds than a direct proof. The
proof presented in this thesis assumes that the compression function used in the Merkle-
Damg̊ard construction is ideal; generally, indifferentiability proofs for similar hash function
constructions may go deeper than that by assuming that some underlying building block
of the compression function is ideal, but not necessarily the compression function itself.
Note that the assumption that some primitive is ideal is usually not realistic; however, an
indifferentiability proof ensures that the higher level design of the hash function has no
structural weaknesses, and therefore gives confidence in this design. In other words, if a
vulnerability is found, then the problem should be looked for in the underlying primitive
that was considered ideal in the indifferentiability proof. The notion of indifferentiability
continues to grow in its acceptance by the cryptographic community, and may very well
be considered a must-have for any cryptographic hash function designed in the future.

3.3 The SHA-3 Competition

The U.S. National Institute for Standards and Technology (NIST) specifies seven – suppos-
edly – secure hash algorithms in the Federal Information Processing Standard (FIPS) 180-4,
one of them called SHA-1, and six algorithms that belong to the SHA-2 family of hash
functions, which differ significantly from SHA-1 (SHA stands for Secure Hash Algorithm).
In the light of theoretical attacks found against SHA-1 in 2005 [71, 72], NIST announced
that they planned to phase out SHA-1 in favor of the SHA-2 family of hash functions, and
later on, in November 2007, announced a public competition to develop a new secure hash
algorithm, the winner of which shall be adopted in the FIPS standard and named SHA-3.
This competition is commonly known as the SHA-3 competition. As of today, there are
still no practical collisions found for the full SHA-1, but in 2011 theoretical attacks with
an estimated complexity of 251 hash function calls have been published [58].

The cryptographic community answered enthusiastically to NIST’s call for a new SHA
algorithm and NIST received 64 submissions by the end of October 2008. 51 of those
algorithms were accepted for the first round of the competition. In July 2009, 14 were
selected for the second round. After further analysis and discussion supported by the
cryptographic community, NIST narrowed down the list of candidates to 5 finalists in
December 2010.

The five SHA-3 finalists are called BLAKE [7], Grøstl [47], JH [74], Keccak [25], and
Skein [45]. All finalists can be considered as variants of the Merkle-Damg̊ard construction:

17



3 Background

BLAKE is a HAIFA [27] construction (see Section 3.1). JH, Keccak, and Skein can be seen
as a chop-MD construction (or a slight variant thereof in the case of Skein), and Grøstl
can be seen as a chop-MD construction with a final transformation before chopping. The
compression functions of all finalists are built either from a block cipher (BLAKE, Skein)
or from a permutation (Grøstl, JH, Keccak).
The original NIST requirements for the candidates of the SHA-3 competition included the

classical security properties of collision resistance, preimage resistance and second preimage
resistance. All of the finalists satisfy these properties, and in most cases, they even achieve
optimal bounds for them when the underlying block ciphers or permutations are assumed
to be ideal [5]. The design and security of all candidates has been surveyed and discussed
in depth in [4, 5] and we refer the reader there for more details on this subject.
Although the original requirements did not include the property of indifferentiability

from a random oracle, this notion has also been considered in the literature and is achieved
by all five finalists [2, 3, 20, 24, 26, 37]. Indeed, as discussed in the previous section, it seems
an important property to consider. The proofs of indifferentiability of all five finalists are
quite involved and complex. Our original motivation and main aim is the formal verification
of those proofs. For several reasons, our proof of the indifferentiability of the prefix-free
Merkle-Damg̊ard construction is not immediately applicable to any of the SHA-3 finalists.
In particular, only two of them use a prefix-free padding function, and the compression
function cannot be assumed ideal for any of the finalists. We discuss this, and how our
proof would have to be adapted to fit the SHA-3 finalists in more detail in the conclusion.
Nevertheless, our mechanically verified proof of prefix-free Merkle-Damg̊ard provides an
excellent starting point to tackle the proofs of those finalists.
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EasyCrypt

E
asyCrypt is a tool that aims to support cryptographers in performing fully formal-
ized and mechanically verified game-based proofs. It was quite recently presented at

CRYPTO 2011 , where it won the Best Paper Award [13]. Using EasyCrypt, it is possible
to specify games and the relations used to justify transitions between them in a strictly
formal way; more importantly, EasyCrypt helps conducting game-based proofs by auto-
matically generating the necessary verification conditions to derive the validity of desired
claims – and solving these with the help of automated tools. It has been developed by the
same people who previously published the tool CertiCrypt [15], and builds upon the same
programming language pWhile and its related probabilistic relational Hoare logic, called
pRHL. The most notable difference to CertiCrypt is that EasyCrypt provides automation to
solve proof obligations, i.e. it actively helps the user to verify the “mundane” parts of a
proof, so that the user can focus on the more interesting creative parts. Hence, EasyCrypt
makes a tremendous step towards the realization of Halevi’s program (see Introduction).
In this chapter, we condense the most important information from [8] and [13] concerning
EasyCrypt relevant for a better understanding of the thesis, including a description of the
language pWhile, the logic pRHL, and how to use pRHL judgments to derive probability
claims. We also go into two specific techniques that will be important later on, namely
how to model random oracles and how to deal with lazy/eager sampling. More details can
be found in [8, 13]; many lemmas and techniques that apply to the EasyCrypt framework
are also discussed in previous publications on CertiCrypt, such as [12, 15, 16, 75].

4.1 Organization of a Proof

The basic idea of an EasyCrypt proof is that the user needs only to provide a proof sketch
representing the essence of a security proof. In a typical EasyCrypt proof, a user intro-
duces the types and operators manipulated in a construction, states associated axioms
and lemmas, provides a sequence of games, and writes pRHL judgments and probability
bounds that relate these games. When parsing such a proof sketch, EasyCrypt automati-
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cally generates verification conditions to derive the validity of the pRHL judgments, and
solves these with the help of automated theorem provers and SMT solvers. In a final step,
these pRHL judgments can be used to derive claims about the probability of certain events
in the games.

More in detail, a proof in EasyCrypt is composed of 5 parts:

1. Declaration of types, constants, operators, and predicates. Typically, one first de-
clares the basic types and constants used in a scheme. Additionally to the built-in
types, a user may declare arbitrary other types (e.g. group elements), or type aliases
(e.g. variable-length bitstrings as lists of Booleans). Operators may also be declared
or defined and can be used within the definitions of the games. Furthermore, predi-
cates may be declared, providing an elegant way to describe invariants in a compact
fashion.

2. Axioms and lemmas. The second step is to specify axioms and lemmas that describe
properties of objects manipulated by the scheme. These are used by the SMT solvers
and automated theorem provers to check the validity of arising proof obligations.
They are written as first-order formulae involving expressions over variables, con-
stants, operators and predicates (declared previously). For instance, one may specify
as an axiom that some constant is positive, or declare that an operator which de-
cides a predicate is sound and/or complete. The difference between an axiom and a
lemma in EasyCrypt is that the validity of a lemma is derived automatically, using
either built-in axioms (e.g., properties of lists), or user-defined axioms declared pre-
viously. By contrast, the validity of an axiom is simply assumed. Thus, in order to
believe the validity of an EasyCrypt proof, one only has to believe the axioms stated
in this proof (and the soundness of the tool itself, obviously). In practice, when de-
veloping complex proofs, some claims intended as lemmas may be non-trivial, and lie
out of the scope of the supported automated tools. Different automated tools may
be tried, as EasyCrypt formats proof obligations in the intermediate format of the
Why tool [46]; when all of these automated tools fail, it is still possible to export the
corresponding statements to the Coq proof assistant and prove them manually. In
Chapter 6, we detail the axioms and lemmas used in our proof of indifferentiability,
and give human-readable proofs for all of the statements that needed to be derived
from our underlying axiomatization.

3. Definition of a game sequence. A game is specified as a collection of procedures,
global variables manipulated by these procedures, and adversary specifications. Pro-
cedures are defined in the language pWhile, defined in Section 4.2. Adversaries are
specified as abstract procedures with oracle access; these oracles must be instantiated
by other procedures defined within a game. An abstract procedure representing an
adversary in a game may only call those procedures which it is given access to. Ad-
ditionally, a game typically (though not necessarily) implements a main procedure
describing the overall game.

20



4.2 The Language

4. pRHL judgments. The next step is to provide logical judgments in the probabilistic
relational Hoare logic implemented by EasyCrypt. These judgments establish logical
equivalences between the games; for instance, the return value of a procedure P1 in
a game G1 may always be equal to the return value of a procedure P2 in a game G2.
The form of a pRHL judgment in EasyCrypt is ⊢ G1.P1 ∼ G2.P2 : Ψ =⇒ Φ, where
G1, G2 are games, P1, P2 are procedures, and Ψ,Φ are relational first-order formulae
representing pre-conditions (resp. post-conditions) that must hold before (resp. after)
the execution of both P1 and P2. This logic is briefly outlined in Section 4.3.

5. Probability claims. Finally, one writes probability claims relating the probabilities of
events in one or more games using arithmetic operators and mathematical relations.
For instance, one may want to derive that Pr [G1 : b] = Pr [G2 : b], i.e. the probability
that the games G1 and G2 output the same bit b is equal. The validity of such claims
can be automatically derived by EasyCrypt, using either previously verified pRHL
judgments, or by applying some hard-coded rules to compute bounds on the proba-
bility of elementary events. The final claim is typically a bound on the probability
of an adversary performing a successful attack on the cryptosystem in consideration.
We investigate reasoning about probabilities in more detail in Section 4.4.

4.2 The Language

Games in EasyCrypt are defined in the language pWhile, a strongly-typed, probabilistic,
procedural, imperative programming language. The language pWhile includes types rang-
ing over Booleans, integers, fixed-length bitstrings, lists, finite maps, as well as product,
option and sum types. The grammar of the language is defined inductively by the following
commands:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

where V is a set of variables, P is a set of procedures, E is a set of expressions, and DE
is a set of distribution expressions. Expressions are built from operators and predicates as
usual. Distribution expressions represent distributions from which values can be randomly
sampled. In this thesis, we consider only the distribution expression {0, 1}n, which denotes
the uniform distribution on bitstrings of length n. That is, the command y $← {0, 1}n

samples uniformly at random a bitstring of length n and assigns it to the variable y.
A program memory maps global and local variables to values. We denote by M the

set of program memories; then, the semantics of a command c is defined as a function
JcK :M→D(M) from program memories to sub-distributions on memories (if a command
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does not always terminate, it generates a sub-distribution with total probability less than 1).
The precise definition of the semantics is given in [15], but is not relevant in the remainder
of the thesis.

4.3 The Logic

At the heart of EasyCrypt lies a probabilistic relational Hoare logic, called pRHL for short.
Using this logic, one can express that a relation Φ over program memories must hold after
the execution of two commands c1 and c2, under the assumption that a relation Ψ over
program memories held before their execution; the general form a pRHL judgment is a
quadruple of the form

⊢ c1 ∼ c2 : Ψ =⇒ Φ,

where c1, c2 are commands, and Ψ and Φ are first-order formulae built with the usual
connectives:

Ψ,Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ⇒ Φ | ∀x. Φ | ∃x. Φ

Here, e is a Boolean expression built from constants and variables that occur in the com-
mands c1 or c2 (possibly involving previously defined predicates). These expressions are
tagged with 〈1〉 or 〈2〉, denoting their interpretation in the left or right command, respec-
tively. Additionally, an expression e may contain the keyword res, which denotes the return
value of a procedure. Furthermore the short-hand notation ={x} may be used to denote
x〈1〉 = x〈2〉.
The first-order formulae Ψ and Φ are interpreted as relations over memories: For example,

the formula x〈1〉 ≤ y〈2〉 is interpreted as the relation R = {(m1,m2) | m1(x) ≤ m2(y)}.
Then, the validity of a pRHL judgment is defined as follows. For any memories m1,m2

that satisfy the pre-condition Ψ, the sub-distributions Jc1K(m1) and Jc2K(m2) must satisfy
the lifting of post-condition Φ, i.e. it must hold Jc1K(m1)L(Φ) Jc2K(m2) (recall that since
pWhile is probabilistic, its semantics maps program memories to sub-distributions over
program memories). The lifting µ1 L(R)µ2 of a relation R ⊆ A × B (for discrete A and
B) to µ1 and µ2 is defined by

∃µ : D(A×B). π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ ∀(a, b) : A×B. µ(a, b) > 0⇒ aR b,

where π1(µ) and π2(µ) denote respectively the projection of µ on its first and second
components. We refer the reader to [13] for more details.
Finally, the above definition can be used to derive rules for valid pRHL judgments for

commands, in the style of

⊢ c1 ∼ c2 : Φ =⇒ Φ′ ⊢ c′1 ∼ c′2 : Φ
′ =⇒ Φ′′

⊢ c1; c
′
1 ∼ c2; c

′
2 : Φ =⇒ Φ′′

[Seq]

We refer the reader to [8] or [15] for an ample selection of pRHL rules, and comments about
them. These rules are hard-coded into EasyCrypt, but have been verified in the CertiCrypt
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framework (improving the base of trust by making it possible to export an EasyCrypt proof
into CertiCrypt).
To support the verification of pRHL judgments, these rules are implemented as tactics

in EasyCrypt that can be applied in a goal-oriented fashion. These tactics may generate ad-
ditional proof obligations that are passed to SMT solvers and automated theorem provers.
Additionally, EasyCrypt implements a weakest pre-condition calculus that computes for a
(deterministic loop-free) program and a set of post-conditions a set of sufficient verification
conditions (see [13]), which must be implied by the pre-conditions. We conclude by ob-
serving that for the verification of a pRHL judgment, some preparation by the user is still
required (specifying invariants, axioms and lemmas, sensible application of tactics, . . . ),
but the involved effort is minimal when compared to a tool such as CertiCrypt.

4.4 Reasoning about Probabilities

As mentioned earlier, the last step in an EasyCrypt proof is to derive probability claims
about the cryptosystem in question. These probabilities can be derived from previous pRHL
judgments. First, we denote by Pr [c,m : A] the probability of event A after the execution
of command c with initial memory m. We simply write Pr [c : A] when the initial memory
is not relevant (i.e., the claim holds for any memory). The two basic rules applicable in
EasyCrypt to derive probability claims from pRHL judgments are:

m1 Ψm2 ⊢ c1 ∼ c2 : Ψ =⇒ Φ Φ⇒(A〈1〉⇔B〈2〉)

Pr [c1,m1 : A] = Pr [c2,m2 : B]
[PrEq]

m1Ψm2 ⊢ c1 ∼ c2 : Ψ =⇒ Φ Φ⇒(A〈1〉⇒B〈2〉)

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]
[PrLe]

In particular, for Ψ = true (interpreted as the total relation on memories), we obtain
Pr [c1 : A] = Pr [c2 : B] and Pr [c1 : A] ≤ Pr [c2 : B], respectively.
However, these rules alone would not be sufficient in many instances. Indeed, often

cryptographic proofs make use of failure events ; typically, one argues that unless some
specific failure event F is triggered in a program c1 and in a program c2, an event A occurs
in c1 if and only if an event B occurs in c2. Then, the difference in probability of event
A in c1 and event B in c2 is bounded by the probability of this specific event F . The
lemma which formalizes this argument is known as the Fundamental Lemma of Game-
Playing [23, 68]. EasyCrypt implements this lemma using its probabilistic relational Hoare
logic as follows [13].

Lemma 4.1 (Fundamental Lemma). Let c1 and c2 be two terminating commands, m1 and
m2 be two initial memories, and A,B, F events such that

⊢ c1∼c2 : Ψ =⇒ (F 〈1〉⇔F 〈2〉)∧(¬F 〈1〉⇒(A〈1〉⇔B〈2〉))

Then, if m1 Ψm2,
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1. Pr [c1,m1 : A∧¬F ] = Pr [c2,m2 : B∧¬F ], and
2. |Pr [c1,m1 : A]− Pr [c2,m2 : B]| ≤ Pr [c1,m1 : F ] = Pr [c2,m2 : F ].

It still remains to compute a concrete bound on the probability of the failure event F .
Typically, failure events are only triggered by oracle calls made by an adversary; when the
adversary can only make a known bounded number of oracle queries, the following lemma
can be used in EasyCrypt to compute such a bound [8].

Lemma 4.2 (Failure event lemma). Consider a program c1; c2, an integer expression i, an
event F , and u ∈ R. Assume the following:

1. Free variables in F and i are only modified by c1 or oracles in some set O;
2. After executing c1, F does not hold and 0 ≤ i;
3. Oracles O ∈ O do not decrease i and strictly increase i when F is triggered;
4. For every oracle O in O, ¬F ⇒ Pr [O : F ] ≤ u.

Then, Pr [c1; c2 : F ∧ i ≤ q] ≤ q · u.

Lastly, we note that EasyCrypt can also derive probability claims using previously proven
probability claims using standard arithmetics, and furthermore provides mechanisms to
compute bounds on elementary events. For instance, it is possible to derive mechanically
that the probability that a value v sampled uniformly at random from a set X belongs to
a list of n values which are elements of X and independent of v is at most n/|X|.

4.5 Selected Techniques

Two techniques will be of particular interest later on. Since we will use random oracles, we
will first discuss how these can be formalized in EasyCrypt. Furthermore, for a transition
described in Section 5.4, we explain how to justify equivalences between games that sample
random values across different procedures.

4.5.1 Random Oracles

It is easy to formalize random oracles in EasyCrypt. Indeed, a random oracle can simply
be implemented as a stateful procedure that maintains a map storing answers for previous
queries. Upon a fresh query, a random oracle samples uniformly at random a value from
its output domain, stores this value in its map, and returns it; for a repeated query, the
random oracle simply retrieves the old answer from its map, and returns this value.
Figure 4.1 shows an implementation of a random oracle O : X → Y in EasyCrypt,

where the variable T is a globally defined and initially empty finite map, usually modified
exclusively by the procedure O.
In Chapter 5, we will consider fixed input length and variable input length random oracles.

The only difference is that the input domain of O is either the set of bitstrings of a fixed
length, or the set of bitstrings of variable length. Concretely, we will use a fixed input
length random oracle of type {0, 1}k × {0, 1}n → {0, 1}n, which can equivalently be seen
as a fixed input length random oracle that takes bitstrings of length k + n.
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Oracle O(x) :
if x /∈ dom(T ) then
T [x] $← Y

return T [x]

Figure 4.1: A random oracle in EasyCrypt

4.5.2 Lazy and Eager Sampling

When considering in a transformation two games that both sample random values, the
actual sampling of these values in the games may happen across different procedures,
meaning that they may be sampled at different points in time. In particular, we distinguish
scenarios where values are sampled lazily, and scenarios where values are sampled eagerly.
Lazy sampling means that values are sampled only at that point in time where they are
first needed, e.g. when an adversary queries a random oracle on a particular input for the
first time. By contrast, eager sampling means that such values may be sampled much
earlier, for instance at the beginning of the main procedure of a game, where the variables
of the game are initialized. This is best explained by an example: Figure 4.2 illustrates
the difference between both scenarios (a similar example is discussed in [16, 75]).

Game Glazy :
T ← ∅;
b← DOlazy();
return b

Oracle Olazy(x) :
if x /∈ dom(T ) then
T [x] $← Y

return T [x]

Game Geager :
T ← ∅; ŷ $← Y ;
b← DOeager();
return b

Oracle Oeager(x) :
if x /∈ dom(T ) then
if x = x̂ then T [x]← ŷ else T [x] $← Y

return T [x]

Figure 4.2: An example illustrating lazy and eager sampling

In both games, a distinguisher is given access to some random oracle, and returns a
bit which is the output of the game. The only difference between the two games is the
following. In the eager game, for some constant x̂, the return value ŷ of oracle Oeager is
sampled eagerly, in this case in the initialization phase of the game. By contrast, in the lazy
game, oracle Olazy samples this value lazily, i.e. only upon the call Olazy(x̂). We expect the
two games to behave identically, since the value ŷ is uniformly distributed and independent
of the adversary’s view – that is, it remains unknown to the adversary until it makes the
corresponding call, at which point it is sampled uniformly at random in the lazy scenario.

One of the main motivations for switching from an eager sampling scenario to a lazy
sampling scenario is precisely to capture this kind of informal argument. Since the sampling
of the value ŷ takes place in the main procedure of game Geager, but in the random oracle
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Olazy in the game Glazy, the problem of switching between these two scenarios can be seen
as a problem of inter-procedural code motion; see [16] for further details.
To formally deal with this kind of a situation, EasyCrypt reduces this problem to a

problem of swapping statements. Generally speaking (but continuing with the same names
as in the above example for clarity), let Oeager be an oracle that uses a value ŷ that has been
sampled eagerly, and Olazy the same as Oeager, except that it samples ŷ when first needed.
To formalize in EasyCrypt the argument that ŷ is uniformly distributed and independent of
the adversary’s view, we show that if the adversary has obtained no information about ŷ,
then re-sampling the value ŷ preserves the semantics of the program. More precisely,
we identify some condition used that holds whenever the adversary has obtained some
information about ŷ (e.g. in the above example, a sensible condition would be the condition
x̂ ∈ dom(T )). Then, we show that the piece of code Sŷ := if ¬used then ŷ $← Y , which
re-samples the value ŷ if the adversary has obtained no information about it, swaps with
calls to oracles Olazy and Oeager, namely

⊢ y ← Olazy(~e);Sŷ ∼ Sŷ; y ← Oeager(~e) : ={~e}∧Φ =⇒ ={y}∧Φ,

where Φ implies equality over all global variables.
Continuing with our above example, to show that the games Glazy and Geager behave

identically, we would introduce the intermediate games shown in Figure 4.3.

Game Glazy′ :
T ← ∅;
b← DOlazy();
if x̂ /∈ dom(T ) then ŷ $← Y
else ŷ ← T [x̂];
return b

Oracle Olazy(x) :
if x /∈ dom(T ) then
T [x] $← Y

return T [x]

Game Geager′ :
T ← ∅;
if x̂ /∈ dom(T ) then ŷ $← Y
else ŷ ← T [x̂];
b← DOeager();
return b

Oracle Oeager(x) :
if x /∈ dom(T ) then
if x = x̂ then T [x]← ŷ else T [x] $← Y

return T [x]

Figure 4.3: An example illustrating lazy and eager sampling, continued

Showing in EasyCrypt that Pr [Glazy : b] = Pr [Glazy′ : b] and Pr [Geager : b] = Pr [Geager′ : b]
is easy and is not further detailed here. The step from a lazy sampling scenario to an
eager sampling scenario happens in the transition between the games Glazy′ and Geager′ . As
outlined above, we show that

⊢
y ← Olazy(x);
if x̂ /∈ dom(T ) then ŷ $← Y
else ŷ ← T [x̂]

∼
if x̂ /∈ dom(T ) then ŷ $← Y
else ŷ ← T [x̂];
y ← Oeager(x)

: ={x,T , ŷ} =⇒ ={y,T , ŷ}.

By using a logic for swapping statements that is built into pRHL [16], this judgment then
extends to the following judgment, which EasyCrypt can conclude automatically:
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⊢
b← DOlazy();
if x̂ /∈ dom(T ) then ŷ $← Y
else ŷ ← T [x̂]

∼
if x̂ /∈ dom(T ) then ŷ $← Y
else ŷ ← T [x̂];
b← DOeager()

: ={T , ŷ} =⇒ ={b,T , ŷ}

The latter then trivially implies

⊢ Glazy′ ∼ Geager′ : true =⇒ ={b}.

We conclude Pr [Glazy′ : b] = Pr [Geager′ : b] (see rule [PrEq] in Section 4.4) and hence
Pr [Glazy : b] = Pr [Geager : b]. We refer the reader to [16] for a formal discussion of this
topic.
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5
High-level proof

I
ndifferentiability from a random oracle for the prefix-free Merkle-Damg̊ard construc-
tion was first shown by Coron et al. [39] (see Section 3.2), as a pen-and-paper proof.

We closely followed that proof in our EasyCrypt formalization, which we will describe in
detail in this chapter. Our proof slightly differs from that of Coron in that the latter is
based on a Davies-Meyer compression function [73] and is performed in the ideal cipher
model (where the underlying block cipher is assumed to be ideal), whereas our proof sees
the entire compression function as an ideal primitive and is therefore in the random oracle
model — that is, we assume that the compression function is a fixed-input-length random
oracle. More precisely, we claim the following.

Theorem 5.1 (Indifferentiability of pfMD). The Merkle-Damg̊ard construction MD with an
ideal compression function f , prefix-free padding function pad, and initialization vector IV is
(tS , qD, ǫ)-indifferentiable from a variable-input-length random oracle Fq : {0, 1}

∗ → {0, 1}n,
where

ǫ =
3ℓ2 · q2D

2n
tS = O(ℓ · q

2
D)

and ℓ is an upper bound on the block length of pad(m) for any message m appearing in a
query of the distinguisher.

The precise axiomatization of the function pad (and its inverse unpad) is given in
Section 6.1.2.
To perform the proof in EasyCrypt, we first define two games Greal and Gideal. The first

game represents the scenario where the distinguisher D is given access to the Merkle-
Damg̊ard construction, implemented by the procedure Fq : {0, 1}∗ → {0, 1}n, and the
compression function, implemented as a fixed input length random oracle by the procedure
fq : {0, 1}k × {0, 1}n → {0, 1}n. We call this scenario the real world since it models
the actual MD-construction (based on an idealized compression function). The second
game represents the scenario where the hash function behaves like a random oracle itself.
Therefore, here the procedure Fq implements a variable-input-length random oracle. Since
this hash function is idealized, we call this scenario the ideal world. The games Greal and
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Game Greal :
qf ← 0;
T ← ∅;
b← DFq,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs| ≤ q then

qf ← qf + |xs|;
while xs 6= nil do

y ← f(hd(xs), y);
xs ← tl(xs)

return y

Oracle f(x, y) :
if (x, y) /∈ dom(T ) then
z $← {0, 1}n;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then

qf ← qf + 1;
z ← f(x, y)

else z ← IV;
return z

Game Gideal :
qf ← 0;
R,T ′ ← ∅;
b← DFq,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs| ≤ q then

qf ← qf + |xs|;
z ← F (m)

else z ← IV

return z

Oracle F (m) :
if m /∈ dom(R) then
z $← {0, 1}n;
R[m]← z

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′);
if xs 6= None then

m ← πunpad(mapfst(πxs)‖[x]);
T ′[x, y]← F (m)

else

T ′[x, y] $← {0, 1}n;
z ← T ′[x, y]; qf ← qf + 1

else z ← IV

return z

Figure 5.1: The games Greal and Gideal

Gideal are defined in Figure 5.1. Our goal is to show that the probabilities of the outcomes
of the games Greal and Gideal differ at most by a negligible amount, i.e. the advantage of the
distinguisher in differentiating the two games is negligible, which proves the claim.
Note that in order to limit the number of oracle queries allowed to the simulator, we

increase a global counter qf in both the procedures fq and Fq. A call to the procedure fq
increments the value qf . A call to the procedure Fq increases the value of qf by the number
of blocks associated with the padding of the parameter m – the idea is that one call to the
Merkle-Damg̊ard iteration results in that many calls to the compression function. Thus,
the counter qf counts the number of evaluations of the FIL-RO f in game Greal. This is
more permissive than the proof of Coron et al. [39], which uses separate counters for the
two oracles accessible to the distinguisher. Indeed, our formalization gives the distinguisher
the freedom to decide how to distribute his queries among Fq and fq. The bound which we
enforce on this counter is q := ℓ · qD; if the value of qf exceeds q, then all oracles accessible
to the distinguisher in all games always simply return the value IV. This effectively means
that if the distinguisher makes nf queries to fq and nF queries to Fq, we require

qf ≤ nf + ℓ · nF ≤ ℓ · (nf + nF ) = ℓ · qD = q.

For instance, if the distinguisher makes only queries to fq but none to Fq, we obtain
qf = nf = qD = q. On the other hand, it it makes only queries to Fq (with a maximum
query length of ℓ) but none to fq, we get qf ≤ ℓ·nF = ℓ·qD = q. Therefore, the distinguisher
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is always allowed at least qD queries in the two games, as required in Theorem 5.1.

To enable us to perform the proof, the simulator fq implemented in the game Gideal must
sensibly simulate the role of the idealized compression function fq in the game Greal. That
is, the simulator Gideal.fq has to behave towards the oracle Gideal.Fq similarly as the idealized
compression function Greal.fq behaves towards the MD-construction Greal.Fq.

The connection between procedures Fq and fq in the real world is the following. Let m
be a message with pad(m) = [x1, . . . , xj ]. Then, if the distinguisher makes the query Fq(m)
in the game Greal, the result will be the return value of f(xj, yj), where yj is some chaining
value sampled during the Merkle-Damg̊ard iteration. Thus, the idealized compression
function fq will return the same value upon the query fq(xj, yj), since it relays to the
FIL-RO f . The simulator needs to achieve the same thing in the ideal world. Whenever
the distinguisher queries Fq(m) in the game Gideal and then reconstructs the MD-chain
associated with m using queries to simulator fq, the simulator should return the same
answer as Fq(m) upon the query fq(xj, yj). Conversely, if the distinguisher first builds
an MD-chain using queries to fq and later queries Fq for the associated message of this
chain, the answer of Fq should be consistent with the last query to fq. To achieve this
in the ideal world, the simulator must detect when a fresh query it receives may be the
last element of an MD-chain, and relay to the VIL-RO F in this case. We will see later
that up to some negligible probability, the distinguisher can only construct an MD-chain
using calls to fq by querying all its elements in the correct order, because it cannot guess
the intermediate chaining values. Therefore, if the distinguisher constructs an MD-chain
using calls to fq, when it queries for the last element, it must already have queried fq for
all preceding elements of this chain. Hence, the simulator is able to detect that a chain
has been completed (as it maintains a table of its previous queries), and it can reconstruct
the entire message m and forward it to oracle F to maintain consistency with Fq.

To better express this idea, we introduce the notion of a complete chain. Intuitively, a
complete chain is an MD-chain whose elements are all in the domain of the map maintained
by the simulator, except for the ultimate element of this chain. Formally, it is defined as
follows.

Definition 5.2 (Complete chain). A complete chain in a map T : {0, 1}k × {0, 1}n →
{0, 1}n is a list [(x1, y1), . . . , (xj, yj)] such that

1. y1 = IV,
2. ∀i ∈ {1, . . . , j − 1}. (xi, yi) ∈ dom(T ) ∧ T [xi, yi] = yi+1, and
3. [x1, . . . , xj] is in the domain of unpad.

To detect complete chains, the simulator uses the function findseq (see Section 6.1.4 for
its axiomatization). The function findseq((x, y),T ′) searches in the map T ′ for a complete
chain of the form [(x1, y1), . . . , (xj−1, yj−1), (x, y)] and returns [(x1, y1), . . . , (xj−1, yj−1)], or
None if no such chain is found. Thus, upon a query fq(x, y) in game Gideal, the simulator
relays to F whenever there is a complete chain of the form [(x1, IV), . . . , (xj−1, yj−1), (x, y)]
in the simulator’s map T ′. Otherwise, the simulator answers with a uniformly distributed
random value.
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An example illustrating how the simulator works is depicted in Figure 5.2. Here, the
simulator receives a sequence of queries

y2 ← fq(x1, IV); y3 ← fq(x2, y2); y4 ← fq(x3, y3)

where [x1, x2, x3] = pad(m) for some message m. The first two queries do not complete a
chain – note that because of the prefix-freeness of pad there is no message m′ such that
pad(m′) = [x1] or pad(m′) = [x1, x2]. Therefore the simulator samples random values for
these queries; indeed, in both worlds the corresponding chaining values are unknown to
the distinguisher until it has queried fq for them. The third query completes a chain, and
so the simulator answers it by querying F for the hash of unpad([x1, x2, x3]). Hence, the
simulator’s answer to query fq(x3, y3) is consistent with the random oracle’s answer to
query Fq(m), exactly as in the real world.

(x1, IV )
︸ ︷︷ ︸

T ′[x1,IV ]←y2

incomplete chain
y2 $← {0, 1}n

(x2, y2)
︸ ︷︷ ︸

T ′[x2,y2]←y3

incomplete chain
y3 $← {0, 1}n

(x3, y3)
︸ ︷︷ ︸

T ′[x3,y3]←y4

complete chain
y4 ← F (m)

Figure 5.2: An example illustrating how the simulator works

To show that the probabilities of the outcomes of the two games Greal and Gideal differ
only by a negligible amount, we introduce a sequence of hybrid games. We then upper-
bound the probability by which each two consecutive games may differ; by summing up
over these probabilities, we obtain a concrete bound for the advantage of the distinguisher
in telling apart the initial and final games. Specifically, we prove:

|Pr [Greal : b]− Pr [Gideal : b]| ≤
3q2

2n
(5.1)

Recall that q = ℓ · qD, which justifies the bound stated in Theorem 5.1. The overall
running time of the simulator is bounded by O(ℓ · q2D), as the function findseq runs in time
O(ℓ ·qD) and the simulator may be called up to qD times. The running time of the function
findseq is justified since the length of any possible chain in T is upper-bounded by q; see
Section 6.1.4 for a pseudocode implementation of findseq. The functions unpad and mapfst
(see Sections 6.1.2 and 6.1.3 respectively for their definitions) are easily seen to run in time
O(ℓ · qD) as well.
To bound the amount by which the probabilities of the outcomes of two consecutive

games may differ, we may introduce failure events in the hybrid games. We then apply the
Fundamental Lemma of Game-Playing (see Theorem 4.1) to conclude that the probability
of some event in the two games is bounded by the probability of this failure event. The
event which we are interested in is usually the outcome of the game, but we may also be
interested e.g. in relating the probability of some failure events in two games with each
other.
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Figure 5.3: High-level overview of the games

Figure 5.3 shows a high-level overview over the sequence of games which we use. The
arrows show in which way the procedures may call each other; the distinguisher is always
given access to the two procedures Fq : {0, 1}

∗ → {0, 1}n and fq : {0, 1}
k×{0, 1}n → {0, 1}n,

as depicted by the black arrows in the figure. In all cases, these two procedures may call
further internal procedures, as depicted by the gray arrows. Note that the distinguisher
has no knowledge of the existence of these internal procedures, or of the calls made by Fq

and fq.

The two most difficult steps are those from Greal′ to GrealRO, and from GidealEager to GidealLazy.
All other steps are easy and essentially concern the introduction or removing of some failure
events, or some code cleanup. In the step from Greal′ to GrealRO, we perform the step from
the actual Merkle-Damg̊ard iteration using an idealized compression function to a variable-
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Game Greal′ :
qf ← 0;
T ,T ′ ← ∅;
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs| ≤ q then
qf ← qf + |xs|;
while |xs| > 1 do

y ← fbad(hd(xs), y);
xs ← tl(xs)

y ← fbad(hd(xs), y)
return y

Oracle f(x, y) :
if (x, y) /∈ dom(T ) then

z $← {0, 1}n;
Z ← z::Z; Y ← y::Y ;
T [x, y]← z

return T [x, y]

Oracle fbad(x, y) :
if (x, y) /∈ dom(T ) then

z $← {0, 1}n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then
if (x, y) /∈ dom(T ′) then

xs ← findseq((x, y),T ′)
if xs 6= None then

T ′[x, y]← fbad(x, y)
else

if set bad3(y,T ′,T ) then
bad3 ← true;
T ′[x, y]← f(x, y)

else
T ′[x, y]← fbad(x, y)

z ← T ′[x, y]; qf ← qf + 1
else z ← IV
return z

Figure 5.4: The game Greal′

input-length random oracle and a consistent simulator. The step from GidealEager to GidealLazy

concerns the step from eager sampling to lazy sampling, which we will address in more
detail in the concerned section. For all the transformations except the one from Greal′ to
GrealRO, we have that the probabilities of the outcomes are equal; the difference of the
probabilities of the outcomes of Greal′ and GrealRO is bounded by 3q2/2n, which leads to the
final bound stated in Equation 5.1. In the following sections, we will consider each of these
transformations in detail.

5.1 From Greal to Greal′

The first hybrid game that we consider is the game Greal′ , defined in Figure 5.4. In this
game, three easy but essential modifications to the game Greal are being made to prepare
for the next transformation:

1. The events bad1, bad2 and bad3 and some related changes are introduced;

2. the relay procedure fq is transformed into a simulator that still behaves as a relay;

3. the last loop iteration in Fq is unrolled.

The first change means that we instrument the code such that under certain conditions,
a failure event is raised. We will explain the precise meaning of those events in the next
transformation, where they are needed. We also introduce a copy of oracle f , called fbad,
which behaves like f except that it may set the flags bad1 and bad2. The lists Y and Z

are introduced to allow us to appropriately detect these events. We note that modifying
the global variables Y , Z, bad1, bad2 or bad3, all unknown to the distinguisher, does not
change the observable behavior of the procedures Fq and fq.
The second change, concerning procedure fq, introduces a new map T ′ of queries known

to the distinguisher. Observe that T ′ ⊆ T , because queries to Fq result in entries being
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added only to T , whereas queries to fq result in the same entries being added to both T

and T ′. Additionally, the procedure fq now behaves in two ways depending on whether
findseq((x, y),T ′) 6= None; this distinction is a central element of the simulator. Indeed, if
this condition holds, then there is a complete chain in map T ′ ending in (x, y). This means
that the simulator should call the VIL-RO F to maintain consistency with the oracle Fq

in the ideal world. If it does not hold, then the simulator should simply sample a fresh
random value, i.e. behave like a FIL-RO. In this game, oracle fq still returns the same
answer in both cases, and only sets bad{1,2,3} accordingly.

The unrolling of the last loop iteration will also be important in the next transformation,
where the last call to the procedure fbad will be replaced by a call to the VIL-RO introduced
there. Here, to be able to show that the unrolling of the last iteration is sound, EasyCrypt
needs to know that after the assignment xs ← pad(m), the variable xs contains at least
one element, which follows immediately from Lemma 6.17.

Since none of the transformations change the behavior of the procedures Fq or fq acces-
sible to the distinguisher, it is easy to conclude in EasyCrypt that

⊢ Greal ∼ Greal′ : true =⇒ ={b},

which implies

Pr [Greal : b] = Pr [Greal′ : b] . (5.2)

5.2 From Greal′ to GrealRO

This transformation lies at the heart of our proof. Intuitively, we replace the FIL-ROs f
and fbad by a VIL-RO F , and modify the oracle Fq such that it behaves as a relay for F ,
while the simulator now maintains consistency with Fq by calling F whenever a new query
completes a chain in T ′. To prove the validity of this transformation, we have to show that
the simulator indeed behaves consistently with Fq.

Broadly speaking, we introduce the following changes:

1. The VIL-RO F is substituted for the FIL-ROs f and fbad;

2. the Merkle-Damg̊ard iteration in Fq is split into three phases;

3. the last call to the procedure fbad in oracle Fq of the game Greal′ is replaced by a call
to the procedure F in the game GrealRO;

4. the simulator also calls oracle F in case it gets a new query which completes a chain,
so as to be consistent with oracle Fq;

5. the new maps I and T ′

i
are introduced, along with a modification to map T and

further related changes, to allow for a more powerful book-keeping.
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Game GrealRO :
qf ← 0;
q′
f
← 1;

T ,T ′,T ′

i
,R, I ← ∅;

I[0]← (IV, false);
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if qf + |xs| ≤ q then
qf ← qf + |xs|;
while |xs| > 1∧

(hd(xs), y) ∈ dom(T ′) do
i← T ′

i
[hd(xs), y];

y ← T ′[hd(xs), y];
xs ← tl(xs);

while |xs| > 1∧
(hd(xs), i) ∈ dom(T ) do
i← T [hd(xs), i];
y ← fst(I[i]);
xs ← tl(xs);

while |xs| > 1 do

z $← {0, 1}n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [hd(xs), i]← q′

f
;

I[q′
f
]← (z, true);

i← q′
f
;

y ← z;
q′
f
← q′

f
+ 1;

xs ← tl(xs)
y ← fst(F (m, y))

return y

Oracle F (m, y) :
if m /∈ dom(R) then

z $← {0, 1}n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
R[m]← (z,q′

f
)

I[q′
f
]← (z, false)

q′
f
← q′

f
+ 1

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then
if (x, y) /∈ dom(T ′) then

xs ← findseq((x, y),T ′)
if xs 6= None then

m ← πunpad(mapfst(πxs )‖[x]);
(z, j)← F (m, y);
T ′[x, y]← z; T ′

i
[x, y]← j;

else
found , found bad3 ← false;
j, k′ ← 0;
while k′ < q′

f
do

if snd(I[k′]) then
found bad3 ← (fst(I[k′]) = y);

else if ¬found ∧ fst(I[k′]) = y∧
(x, k′) ∈ dom(T )∧
snd(I[T [x, k′]]) then
found ← true; j ← T [x, k′];

k′ ← k′ + 1;
if found then

z ← fst(I[j]); I[j]← (z, false);
T ′[x, y]← z; T ′

i
[x, y]← j;

else
if found bad3 then

bad3 ← true;

z $← {0, 1}n;
I[q′

f
]← (z, false);

T ′[x, y]← z;
T ′

i
[x, y]← q′

f
;

q′
f
← q′

f
+ 1;

else

z $← {0, 1}n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
I[q′

f
]← (z, false);

T ′[x, y]← z;
T ′

i
[x, y]← q′

f
;

q′
f
← q′

f
+ 1

z ← T ′[x, y]; qf ← qf + 1
else z ← IV
return z

Figure 5.5: The game GrealRO

Replacing the FIL-ROs by a VIL-RO is a significant modification. Indeed, now the
oracle Fq does not use a FIL-RO to perform a normal Merkle-Damg̊ard iteration any
longer. Instead, the last call to fbad is replaced by a call to the new VIL-RO F . However,
Fq still performs an iteration similar to Merkle-Damg̊ard in order to sample values eagerly,
as was also the case in game Greal′ – we will further discuss these loops later. As for the
simulator fq, it now behaves differently depending on the condition findseq((x, y),T ′) 6=
None; specifically, whenever a query (x, y) to fq completes a chain in T ′, the simulator now
calls F , to maintain consistency with Fq from the distinguisher’s perspective.

We introduce several new maps in this game. Firstly, we introduce a map I : N →
{0, 1}n × B which enumerates all values randomly sampled so far in game GrealRO through
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5.2 From Greal′ to GrealRO

means of the counter q′f . Each time when a new value is sampled at random, this newly
sampled value is written to I[q′f ], with an additional tainted flag that keeps track of values
known to the distinguisher (here false means that a value is known to the distinguisher,
and true means it is not). Then, the counter q′f is incremented. As before, the simulator

maintains a map T ′ : {0, 1}k × {0, 1}n → {0, 1}n of previously answered queries; we
additionally introduce the map T ′

i
: {0, 1}k×{0, 1}n → N, also maintained by the simulator,

to be able to relate the maps T ′ and I. The VIL-RO F maintains its previous queries
in a table R : {0, 1}∗ → {0, 1}n × N, where the integer indicates the value of counter
q′f at the point at which the corresponding value was sampled. Finally, the map T :

{0, 1}k×{0, 1}n → {0, 1}n from game Greal′ is transformed into a map T : {0, 1}k×N→ N
in game GrealRO. Now, instead of immediately storing the query-answer pairs mapping
pairs of blocks and chaining values to chaining values, it simply stores the indices of those
chaining values enumerated in table I. All of these modifications allow us to precisely
keep track of the order in which queries were made, and of which values are known to the
distinguisher. It is necessary to formulate explicitly several invariants about the relation
of these maps first so as to allow EasyCrypt to derive more powerful invariants. We list
them here for reference, and the purpose of completeness. We start off with very basic
invariants:

1. T ′〈1〉 ⊆ T 〈1〉

2. 1 ≤ q′f 〈2〉

3. q′f 〈2〉 /∈ dom(I〈2〉)

4. ∀i ∈ dom(I〈2〉). 0 ≤ i < q′f 〈2〉

5. ∀i. 0 ≤ i < q′f 〈2〉 ⇒ i ∈ dom(I〈2〉)

6. fst(I〈2〉[0]) = IV

Further, relating the new maps I〈2〉, T ′

i
〈2〉, R〈2〉 and T 〈2〉 between each other and with

the old map T ′〈1〉, we derive

7. ∀(x, y) ∈ dom(T ′〈1〉). (x, y) ∈ dom(T ′

i
〈2〉)

8. ∀(x, y) ∈ dom(T ′

i
〈2〉). (x, y) ∈ dom(T ′〈1〉) ∧ T ′

i
〈2〉[(x, y)] ∈ dom(I〈2〉) ∧

fst(I〈2〉[T ′

i
〈2〉[(x, y)]]) = T ′〈1〉[(x, y)]

9. ∀m ∈ dom(R〈2〉). snd(R〈2〉[m]) ∈ dom(I〈2〉) ∧
fst(I〈2〉[snd(R〈2〉[m])]) = fst(R〈2〉[m])

10. ∀(x, i) ∈ dom(T 〈2〉). i ∈ dom(I〈2〉) ∧ (x, fst(I〈2〉[i])) ∈ dom(T 〈1〉) ∧
T 〈2〉[(x, i)] ∈ dom(I〈2〉) ∧ fst(I〈2〉[T 〈2〉[(x, i)]]) = T 〈1〉[(x, fst(I〈2〉[i]))]
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5 High-level proof

Certain (highly improbable) events may occur that may lead to the games Greal′ and
GrealRO being distinguishable; we capture these using appropriate failure events, and prove
that the difference of the probabilities of the outcomes of the games is bounded by the
probability that these events occur. We use three different failure events bad1, bad2 and
bad3.

1. bad1 is triggered whenever oracle fbad samples a random value that is either IV or
has already been sampled for a distinct query before. The role of this event is twofold:
on the one hand, if IV is sampled as a random value, then there could exist a complete
chain in T that is a suffix of another complete chain in T as illustrated in the first
example of Figure 5.6 (here T [x2, y2] = IV). The problem is that oracle Fq in the
game Greal will generate the same values for the two messages corresponding to those
two chains, while Fq in the game Gideal most likely will not. On the other hand, if
a sampled value has been sampled for another query before, then there could exist
two complete chains in T that collide at some point and are identical from that point
on as illustrated in the second example of Figure 5.6. Again the two corresponding
messages would yield the same answer in Greal but most likely not in Gideal on queries
to Fq.

2. bad2 is triggered whenever oracle fbad samples a random value that has already been
used as a chaining value in a previous query. This means that this query may be
part of an MD-chain of which the distinguisher has already queried later points in
the chain, which should never happen. The event also captures that no fixed-points
(i.e. entries of the form T [x, y] = y) should be sampled.

3. bad3 is triggered whenever a chaining value y in a query has already been sampled
as a random value and is in the range of T for some previous query (x′, y′), but
(x′, y′) does not appear in the domain of T ′ and (x′, y′) is not the last element of a
complete chain in T . Intuitively, this means that y was never returned by fq or Fq

and hence the distinguisher managed to guess a previously randomly sampled value
which should be unknown to it.

(x1, IV) (x2, y2) (x3, IV) (x4, y4) (x5, y5)

(x3, IV) (x4, y4) (x5, y5)

(x1, IV) (x2, y2) (x3, y3)

(x′1, IV) (x
′
2, y
′
2) (x

′
3, y
′
3)

(x4, y4) (x5, y5)

Figure 5.6: Two examples illustrating the necessity of event bad1

Event bad1 gives us two important invariants, namely
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5.2 From Greal′ to GrealRO

1. Injective(T 〈1〉) (see Definition 6.1 for the straightforward definition of this predicate)

2. IV /∈ T 〈1〉

These two conditions are the well-formedness conditions of table T 〈1〉, and they play an
important role for many lemmas described in Chapter 6. Before we get to the more involved
invariants, we need to derive a few more rather technical invariants which hold up to some
failure event, or are related in some other way to the failure events.

3. Injective fst(I〈2〉)

4. ∀i. (IV, i) /∈ R〈2〉

5. ∀(x, y) ∈ dom(T 〈1〉). y ∈ Y 〈1〉

6. ∀z ∈ ran(T 〈1〉). z ∈ Z〈1〉

7. ∀(z, i) ∈ ran(R〈2〉). z ∈ Z〈1〉

8. ∀i ∈ dom(I〈2〉). fst(I〈2〉[i]) ∈ Z〈1〉

9. ∀z ∈ Z〈1〉. ∃i. i ∈ dom(I〈2〉) ∧ fst(I〈2〉[i]) = z

10. ∀(x, y) ∈ dom(T 〈1〉). (x, y) ∈ dom(T ′〈1〉) ∨ y = IV ∨ y ∈ ran(T 〈1〉)

11. ∀x, y, i. (x, y) ∈ dom(T 〈1〉) ∧ (x, y) /∈ dom(T ′〈1〉) ∧ i ∈ dom(I〈2〉) ∧
fst(I〈2〉[i]) = y ∧ (x, i) /∈ dom(T 〈2〉)⇒ findseq(x, y,T 〈1〉) 6= None

12. ∀i ∈ dom(I〈2〉). set bad3(fst(I〈2〉[i]),T ′〈1〉,T 〈1〉)⇔ snd(I〈2〉[i])

The predicate Injective fst is defined as

Injective fst(I) := ∀i, j. i ∈ dom(I)⇒ j ∈ dom(I)⇒ fst(I[i]) = fst(I[j])⇒ i = j.

Now, we show in EasyCrypt an invariant of elementary importance. Intuitively, we want
to say that the distinguisher can only make queries to fq “in order”. That is, it can
only make queries associated with an MD-chain by first querying for the first chaining
value, then for the second, and so on, since the intermediate chaining values are always
unknown to it until it has made a query to fq for the preceding element in the MD-chain.
The simulator checks for this ordering in game Greal′ by using the predicate set bad3 (see
Definition 6.16); in game GrealRO, it uses the map I to iterate over all preceding chaining
values. Furthermore the failure event bad2 in both games ensures that a randomly sampled
value was not accidentally already used as a chaining value in a previous query from the
distinguisher to fq, since this may otherwise destroy the correct ordering of a possible chain
(which the simulator might not notice through the use of event bad3).

Knowing this, we now turn our attention to the three loops in oracle Fq. Indeed, although
oracle Fq eventually behaves as a simple relay for procedure F , it still samples random
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5 High-level proof

values eagerly as was the case in game Greal′ . The first loop in Fq reconstructs chaining
values that may already have been sampled by previous queries of the distinguisher to fq
and are therefore in the domain of T ′. Since the distinguisher can only make queries that
belong to an MD-chain in order, these values can only occur in the prefix of such a chain.
The second and third loops then take care of the rest of the MD-chain, i.e. the suffix not
yet queried by the distinguisher, except for the very last element (which is always taken
care of by a call to F at the end). The purpose of the second loop is to re-use chaining
values that might already have been sampled by a previous call to Fq, e.g. because the
padding of the input from a previous call and the padding of the current input have the
same prefix, or simply because the same query was made more than once. Finally, the
third loop samples fresh chaining values if needed. Lastly, observe that in the case that
found is set to true in the procedure fq of game GrealRO, the corresponding chaining value
pre-sampled eagerly by the third loop in Fq is re-used by reading it from the map I, and
the tainted flag is updated in map I to reflect that the current value is no longer unknown
to the distinguisher. Thus fq and Fq use consistent intermediate chaining values, as is the
case in game Greal′ , where both procedures call oracle fbad (resp. f).
The invariant we derive to express that the simulator can only make queries in order is

Claim5(T ′〈1〉,T 〈1〉).

The predicate Claim5, named thus in reminiscence of the Claim 5 from the proof of in-
differentiability of the prefix-free Merkle-Damg̊ard construction appearing in the extended
version of Coron’s paper [39], is defined as follows.

Definition 5.3 (Predicate Claim5). Let T and T ′ be two maps of type {0, 1}k×{0, 1}n →
{0, 1}n. Then

Claim5(T ′,T ) := ∀(x, y), (x′, y′). (x′, y′) ∈ dom(T ) ∧ (x, y) ∈ dom(T ′) ∧

T [(x′, y′)] = y ∧ findseq(x′, y′,T ) = None⇒ (x′, y′) ∈ dom(T ′).

Intuitively, this means that whenever we have some element (x, y) in the domain of
map T ′ that succeeds an element (x′, y′) of an MD-chain in T , this preceding element
(x′, y′) must also be in the domain of T ′, except if (x′, y′) is already the last element of a
complete chain in T (in that case, y is known to the distinguisher). The latter restriction
is expressed by the premise findseq(x, y,T ) = None. We refer to Section 6.1.6 for a more
detailed discussion of this predicate.
The restriction that the distinguisher may only query chaining values in order has one

essential implication. Namely, it means that any chain in the table T ′ maintained by the
simulator will always be completed by the last element of that chain (both in the games
Greal′ and GrealRO). Therefore, in the game GrealRO, upon a query fq(x, y) where (x, y) is the
last element of an MD-chain, the simulator will always detect that this query corresponds
to the last element of this MD-chain (by the completeness of the function findseq, see
Axiom 6.14). Hence, for any query Fq(m) that the distinguisher could make, the simulator
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will always be consistent with Fq’s answer whenever the distinguisher tries to construct the
MD-chain associated to m by repeatedly calling fq. We formalize this in a final invariant:

RinT(R〈2〉,T 〈1〉),

and we define the predicate RinT as follows.

Definition 5.4 (Predicate RinT). Let T : {0, 1}k × {0, 1}n → {0, 1}n and R : {0, 1}∗ →
{0, 1}n × N be two maps. Then

RinT(R,T ) :=
(
∀m ∈ dom(R). ∃(x, y). findseq(x, y,T ) 6= None ∧

m = πunpad(mapfst(πfindseq(x,y,T ))‖[x]) ∧

(x, y) ∈ dom(T )
)
∧

(
∀(x, y). findseq(x, y,T ) 6= None⇒

πunpad(mapfst(πfindseq(x,y,T ))‖[x]) ∈ dom(R)⇒

(x, y) ∈ dom(T )
)
∧

(
∀(x, y). findseq(x, y,T ) 6= None⇒

(x, y) ∈ dom(T )⇒

πunpad(mapfst(πfindseq(x,y,T ))‖[x]) ∈ dom(R) ∧

fst(R[πunpad(mapfst(πfindseq(x,y,T ))‖[x])]) = T [(x, y)]
)
.

Intuitively, the invariant says that the map R〈2〉 contains every message associated to
every complete chain in map T 〈1〉, and nothing else. More precisely, for every message
m in the domain of R〈2〉, there is a corresponding complete chain of the form c ‖ [(x, y)]
in the map T 〈1〉 with (x, y) ∈ dom(T 〈1〉). Conversely, for every complete chain of the
form c ‖ [(x, y)] in the map T 〈1〉 with (x, y) ∈ dom(T 〈1〉), its associated message m is in
the domain of R〈2〉. Thus, in oracle fq, in the case where findseq((x, y),T ′) 6= None, the
transformation can be proven valid because EasyCrypt can infer from the above invariant
that (x, y) ∈ dom(T 〈1〉) in game Greal′ if and only if m ∈ dom(R〈2〉) in game GrealRO.
Finally, we can show in EasyCrypt the following pRHL judgment:

⊢ Greal′ ∼ GrealRO : true =⇒ ={bad1,bad2,bad3} ∧ ¬(bad1 ∨ bad2 ∨ bad3)〈1〉 ⇒ ={b}

We now apply Theorem 4.1 to conclude that the advantage of the distinguisher in differen-
tiating between the games Greal′ and GrealRO is upper bounded by the probability of any of
the failure events occurring in game GrealRO, i.e.

|Pr [Greal′ : b]− Pr [GrealRO : b]| ≤ Pr [GrealRO : bad1 ∨ bad2 ∨ bad3] . (5.3)

We are left to bound the probability of the failure events bad1, bad2 and bad3. Here,
the bounds for bad1 and bad2 can be computed in the same fashion. Both events are
triggered when a freshly sampled random value is already in a list of size at most q (list Z
for event bad1, and list Y for event bad2). Therefore, the probability of either event is
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upper-bounded by q/2n, for each of the possible q queries. To derive this in EasyCrypt, we
first observe that the code which samples random values and raises the events bad1 and
bad2 is the same in the oracles fq, Fq and F of game GrealRO, namely

z $← {0, 1}n;

bad1 ← bad1 ∨ z ∈ Z;

Z ← z::Z; Y ← y::Y ;

bad2 ← bad2 ∨ z ∈ Y ;

In a meta-game ĜrealRO, we outline this code fragment in all three procedures into a new
procedure samplez . We can then apply Lemma 4.2 in this game by taking u = q/2n and
i = |Z|−1 (resp. i = |Y |) to bound the probability of event bad1 (resp. bad2). We obtain

Pr [GrealRO : bad1] = Pr
[

ĜrealRO : bad1

]

≤
q2

2n
(5.4)

Pr [GrealRO : bad2] = Pr
[

ĜrealRO : bad2

]

≤
q2

2n
(5.5)

The bounding of event bad3 is more complex, since it relates to values that have already
been sampled eagerly, and therefore the distribution of those values is not locally known.
Hence, we leave the bounding of this event to the next sections, until after the step to
a scenario where values are sampled lazily. Nevertheless, we already reveal here that the
upper bound that we will ultimately obtain for event bad3 in game GrealRO is equal to those
for bad1 and bad2, namely q2/2n. Summing up over Equations 5.3, 5.4, 5.5 and 5.13, we
finally get:

|Pr [Greal′ : b]− Pr [GrealRO : b]| ≤
3q2

2n
(5.6)

5.3 From GrealRO to GidealEager

The transformation considered in this section is an easy one, since it simply serves as a
preparation for the next transformation, which will be concerned with the step from an
eager sampling scenario to a lazy sampling scenario. In the game GidealEager, defined in
Figure 5.7, the following changes are introduced:

1. The main body of the game GrealRO is instrumented with a loop which re-samples
chaining values that are unknown to the adversary;

2. the failure events bad1, bad2 and bad3 are removed, and the resulting code is
simplified;

3. the oracle F (m, y) is transformed into an oracle F (m);

4. a new event bad4 is introduced that will be used to bound the probability of event
bad3 in game GrealRO.
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Game GidealEager :

Game GidealLazy :

qf ← 0;
q′
f
← 1;

T ,T ′,T ′

i
,R, I ← ∅;

I[0]← (IV, false);
Y ′ ← nil;
bad4 ← false;
l← 0;

l← 0;
while l < q′

f
do

if snd(I[l]) then

z $← {0, 1}n;
I[l]← (z, true);

l← l+ 1;

b← DFq ,fq ();

l← 0;
while l < q′

f
do

if snd(I[l]) then

z $← {0, 1}n;
I[l]← (z, true);

l← l+ 1;

return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if (0 < q′

f
∧

qf + |xs| ≤ q) then
qf ← qf + |xs|;
while |xs| > 1∧

(hd(xs), y) ∈ dom(T ′) do
i← T ′

i
[hd(xs), y];

y ← T ′[hd(xs), y];
xs ← tl(xs);

while |xs| > 1∧
(hd(xs), i) ∈ dom(T ) do
i← T [hd(xs), i];
xs ← tl(xs);

while |xs| > 1 do

z $← {0, 1}n;
T [hd(xs), i]← q′

f
;

I[q′
f
]← (z, true);

i← q′
f
;

q′
f
← q′

f
+ 1;

xs ← tl(xs);
y ← fst(F (m));

return y

Oracle F (m) :
if m /∈ dom(R) then

z $← {0, 1}n;
R[m]← (z,q′

f
)

I[q′
f
]← (z, false)

q′
f
← q′

f
+ 1;

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then
if (0 < q′

f
∧

(x, y) /∈ dom(T ′)) then
xs ← findseq((x, y),T ′)
if xs 6= None then

m ← πunpad(mapfst(πxs )‖[x]);
(z, j)← F (m);
T ′[x, y]← z; T ′

i
[x, y]← j;

else
found ← false; j, k′ ← 0;
while (k′ < q′

f
∧ ¬found) do

if (I[k′] = (y, false)∧
(x, k′) ∈ dom(T )∧
snd(I[T [x, k′]])∧
k′ < T [x, k′]∧
T [x, k′] < q′

f
) then

found ← true; j ← T [x, k′];
else

k′ ← k′ + 1;
if found then

z ← fst(I[j]); z $← {0, 1}n;

bad4 ← bad4 ∨ z ∈ Y ′;
I[j]← (z, false);
T ′[x, y]← z; T ′

i
[x, y]← j;

else

z $← {0, 1}n;
I[q′

f
]← (z, false);

T ′[x, y]← z;
T ′

i
[x, y]← q′

f
;

q′
f
← q′

f
+ 1;

Y ′ ← y::Y ′;
z ← T ′[x, y]; qf ← qf + 1;

else
z ← IV;

return z

Figure 5.7: The games GidealEager and GidealLazy

The loop which re-samples chaining values in the main body of game GidealEager will be
discussed in more depth in the next section, since it is important for the transition from
eager to lazy sampling. Here, simply observe that the loop has no effect in this game,
except that it increments the value of l (unknown to the distinguisher) once: at the point
where the loop is executed, we have q′f = 1 and snd(I[0]) = false. Therefore there is only
one iteration and the guard of the if-statement is not fulfilled.

Next, we remove events bad{1,2,3} and their related lists Y and Z. Because of this, we
can also merge the two branches under the “if found bad3 . . . ”-statement of the simulator
fq in game GrealRO. Additionally, we transform the oracle F (m, y) into an oracle F (m).
Indeed, the only reason why we needed to pass y as an argument to F in the previous
game was so that we could appropriately set event bad2 – by removing this event we can
now get rid of the superfluous parameter y. Lastly, because F does not need this parameter
any longer, we do not need to keep track of the intermediate chaining values y in the second
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5 High-level proof

and third loops of oracle Fq; it becomes even more clear now that Fq behaves as a relay
and that the three loops have no effect on its return value.
Similarly to the transformation described in Section 5.1, we observe that the removal or

introduction of failure events (unknown to the distinguisher) does not otherwise influence
the behavior of either the procedures fq or Fq.
Finally, because we still have to bound the probability of event bad3 in game GrealRO, we

introduce a new event bad4 along with an associated list Y ′ (named so to distinguish it
from the list Y ). This event plays a similar role to event bad3 used in the previous game,
albeit not the same. It ensures that a random value pre-sampled by procedure Fq and
re-used by the distinguisher has not already been used as a chaining value in a previous
query to fq; event bad3 did the same in game GrealRO, but for random values sampled by
the simulator itself, not for those pre-sampled by Fq. Therefore, event bad4 on its own is
not enough to bound the probability of event bad3. We need it because we want to bound
the probability of bad3 by the probability of a more general event in game GidealEager: We
show that if bad3 occurs in game GrealRO, then either bad4 is is triggered in game GidealEager,
or there exists a positive value i ≤ q′f such that I〈2〉[i] = (y, true) and y ∈ Y 〈2〉. To
achieve this, we first define the following predicate.

Definition 5.5 (Predicate I∃). Let q
′
f ∈ N be an integer, I : N→ {0, 1}n × B a map and

Y ′ : {0, 1}n list a list of chaining values. Then

I∃(q
′
f , I,Y

′) := ∃i. 0 ≤ i ≤ q′f ∧ snd(I[i]) ∧ fst(I[i]) ∈ Y ′.

Intuitively, this means that there is a chaining value appearing in map I which should
be unknown to the distinguisher, but the distinguisher used it as part of a query to fq –
this should be impossible. We now show in EasyCrypt:

⊢ GrealRO ∼ GidealEager : true =⇒ ={b} ∧ (bad3〈1〉 ⇒ (bad4〈2〉 ∨ I∃(q
′
f , I,Y

′)〈2〉))

This yields the following (in-)equations:

Pr [GrealRO : b] = Pr [GidealEager : b] (5.7)

Pr [GrealRO : bad3] ≤ Pr
[
GidealEager : bad4 ∨ I∃(q

′
f , I,Y

′)
]

(5.8)

To derive the above pRHL judgment, for technical reasons we need to show a few generic
invariants that hold in game GrealRO. We list them here for the sake of completeness.

1. 0 < q′f 〈1〉

2. ∀m ∈ dom(R〈1〉). snd(R〈1〉[m]) < q′f

3. ∀(x, y) ∈ dom(T ′〈1〉). (x, y) ∈ dom(T ′

i
〈1〉)

4. ∀(x, y) ∈ dom(T ′

i
〈1〉). T ′

i
〈1〉[x, y] < q′f

5. ∀(x, i) ∈ dom(T 〈1〉). i < T 〈1〉[x, i] < q′f

We postpone the computation of the probability of bad4 ∨ I∃(q
′
f , I,Y

′) in game GidealEager

to the next section, since again this will be easier when the values are sampled lazily and
their distribution is locally known.
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5.4 From GidealEager to GidealLazy

5.4 From GidealEager to GidealLazy

In this step, we will make the transition from a simulator which re-uses eagerly sampled
random values to a simulator which lazily samples its own random values upon fresh queries.
In the new game GidealLazy, defined in Figure 5.7, we introduce the following two changes:

1. The simulator fq now samples a new random value in the case where found is true,
instead of re-using the corresponding value in map I;

2. the loop in the main body introduced in the last section is swapped with the call to
the distinguisher D.

We have investigated the difference between eager and lazy sampling in Section 4.5.2.
At this point, we highlight that the initial game Greal samples values eagerly, while the
final game Gideal samples values lazily. To clarify this, let m be a message with pad(m) =
[x1, . . . , xn], and assume for simplicity that the distinguisher has made no calls to oracles
fq or Fq yet in the two games. Now, observe the following fundamental difference: If the
distinguisher makes the query Fq(m) in game Greal, the FIL-RO f is called repeatedly before
an answer is returned, and therefore n random values are sampled. If the distinguisher
makes the query Fq(m) in game Gideal, then Fq calls the VIL-RO F once, and therefore only
a single random value is sampled. Now, if the distinguisher queries fq(x1, IV) in game Greal,
oracle fq will query f and therefore the corresponding random value which was pre-sampled
by the call Fq(m) will be used. In game Gideal, the simulator fq will sample a new random
value instead. That is, in game Greal, some random values may be sampled earlier than
in game Gideal. Additionally, some values which were randomly sampled in game Greal may
not be sampled at all in game Gideal – the distinguisher needs not reconstruct the entire
MD-chain associated to m by queries to fq. Notwithstanding, the delaying of this sampling
of random values does not make any difference from the distinguisher’s perspective; the
cryptographical argument is that these values are uniformly distributed and independent
of the adversary’s view. Indeed, the intermediate chaining values generated in a Merkle-
Damg̊ard iteration remain unknown to the distinguisher until it queries the oracle fq for
them, at which point they are sampled uniformly at random if needed. Therefore we
see that a sequence of games from Greal to Gideal must involve a transition of lazy/eager
sampling, as described in Section 4.5.2. The purpose of the present transformation is to
tackle this particular issue.

The main difference between the games GidealEager and GidealLazy considered here is that
the oracle fq in game GidealEager re-uses values that were eagerly pre-sampled by the oracle
Fq, while the oracle fq in game GidealLazy re-samples those random values. Intuitively, this
is sound because these eagerly sampled values have not been revealed to the distinguisher;
we know this because at that point it holds that snd(I[j]) = true (the second component of
the pairs in map I keeps track of whether a value is unknown to the distinguisher). Now,
we would like to show that the re-sampling of these eagerly sampled values, unknown to
the distinguisher, preserves the semantics of the program.
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5 High-level proof

However, the values pre-sampled by Fq are not locally known in the context of the proce-
dure fq, such that it is difficult if not impossible to argue about them in the local context
of procedure fq. This is where the loop of the main body (depicted in the inner boxes of
the two games in Figure 5.7) comes into play. This loop eagerly samples all random values
for I in the game GidealEager (i.e., it is executed before the call to the distinguisher). In
game GidealLazy, this loop is swapped with the call to the distinguisher (i.e., it is executed
after the call to the distinguisher). In game GidealLazy, the purpose of the loop is to sample
all random values that have not been lazily sampled during the execution of the distin-
guisher. For readability, let loop denote the code of the loop. Focusing now on the pieces
of code loop;GidealEager.Fq(m) and GidealLazy.Fq(m); loop (respectively loop;GidealEager.fq(x, y)
and GidealLazy.fq(x, y); loop), we can address all randomly sampled variables locally, and by
showing that this loop swaps with the calls to the eager and lazy oracles in a semantic-
preserving way, we prove that the re-sampled values are independent of the view of an
adversary with access to these oracles. This is the main trick in a transition of lazy/ea-
ger sampling; referring to the discussion in Section 4.5.2, the condition used here is the
condition snd(I[j]) = false for any value j in the domain of I (meaning that the value
fst(I[j]) has been revealed to the distinguisher), and the statement Sŷ which re-samples
values unknown to the distinguisher is loop.

Concretely, we show

⊢

l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;
r ← GidealEager.Fq(m);

∼

r ← GidealLazy.Fq(m);
l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;

: ={m, l} ∧=Φ =⇒ ={r, l} ∧=Φ

and

⊢

l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;
r ← GidealEager.fq(x, y);

∼

r ← GidealLazy.fq(x, y);
l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;

: ={x, y, l} ∧=Φ =⇒ ={r, l} ∧=Φ,

where Φ :=
{
qf ,q

′
f ,T ,T ′,T ′

i
,R, I,Y ′,bad4

}
is the set of all global variables. From this,

we immediately conclude

⊢

l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;
b← DGidealEager.fq,GidealEager.Fq ();

∼

b← DGidealLazy.fq,GidealLazy.Fq ();
l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;

: ={l} ∧=Φ =⇒ ={b, l} ∧=Φ.
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An additional instruction l ← 0 situated before the loop was introduced along with said
loop in GidealEager (see Figure 5.7). This is needed to satisfy the pre-condition ={l} in the
latter pRHL judgment, since we want to use this judgment to conclude equivalence of the
two entire games. Indeed, using this it is now a trivial task for EasyCrypt to derive

⊢ GidealEager ∼ GidealLazy : true =⇒ ={b,bad4, I,q
′
f ,Y

′}.

This implies that the games GidealEager and GidealLazy have the same probabilities of outcome,
and the same probability of event bad4 ∨ I∃(q

′
f , I,Y

′):

Pr [GidealEager : b] = Pr [GidealLazy : b] (5.9)

Pr
[
GidealEager : bad4 ∨ I∃(q

′
f , I,Y

′)
]
= Pr

[
GidealLazy : bad4 ∨ I∃(q

′
f , I,Y

′)
]

(5.10)

The hardest part here is the proof of the above judgment for oracle fq (i.e., the second
judgment) in the case where found = true, since here GidealEager.fq uses the chaining value
I[j], whereas GidealLazy.fq re-samples a fresh random value. In this case, observe the follow-
ing. In the lazy program (the one on the right-hand side), since we have found = true, we
know (from the while loop which was responsible for setting found = true) that j ∈ dom(I)
and snd(I[j]) = true. Let us fix the value j at this point in the lazy program as ̂. Now,
since I was not modified in this program before, we must already have had ̂ ∈ dom(I) and
snd(I [̂]) = true at the start of the lazy program. In the pRHL judgment, we have as a pre-
condition that all global variables are equal at the start of the two programs, in particular
I. So, we must also have ̂ ∈ dom(I) and snd(I [̂]) = true at the start of the eager program
(the one on the left-hand side). Furthermore, we know – using an analogous argument –
that ̂ < q′f at the start of the eager program. Thus, the value I [̂] will be sampled at the
start of the eager program by the loop which samples random values. We can “cancel out”
this random sampling against the fresh random sampling performed in procedure fq of the
lazy program (the other random samplings in the loop at the start of the eager program can
be canceled out against the random samplings in the loop at the end of the lazy program).
Technically, we derandomize the two random samplings of I [̂] on both sides, that is, we
assume that ẑ is a uniformly distributed random value and we replace these two samplings
on both sides by deterministic assignments of the value ẑ. After the execution of both pro-
grams, we need to show that upd(upd(I〈1〉, ̂, (ẑ, true)), ̂, (ẑ, false)) = upd(I〈2〉, ̂, (ẑ, false)),
as the value I [̂] has been updated twice in the eager game, but only once in the lazy game.
Note that we have I〈1〉 = I〈2〉, so the only thing we need to do to finish this argument is
to formalize an extensionality axiom:

Axiom 5.6 (Extensionality of I). Let I, I ′ : N→ {0, 1}n × B be two maps. Then

I = I ′ ⇔
(
(∀i. i ∈ dom(I)⇔ i ∈ dom(I ′)) ∧

(∀i ∈ dom(I). I[i] = I ′[i])
)
.

Lastly, we want to bound the probability of event bad4 ∨ I∃(q
′
f , I,Y

′) in game GidealLazy.
We define a meta-game G′idealLazy, whose only modification is that the loop which re-samples
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values in the main body of the game now also sets an event bad4. More precisely, we replace
the instruction z $← {0, 1}n in the loop of the main body with

z $← {0, 1}n;

bad4 ← bad4 ∨ z ∈ Y ′

Because of this modification, we can say the following: If I∃(q
′
f , I,Y

′) holds at the end of
game GidealLazy, then clearly I∃(q

′
f , I,Y

′) also holds at the end of G′idealLazy. If I∃(q
′
f , I,Y

′)
holds at the end of game G′idealLazy, then necessarily bad4 must have been set to true in this
game, either by the simulator or later by the loop in the main body. Therefore, the event
I∃(q

′
f , I,Y

′) in game GidealLazy implies bad4 = true in game G′idealLazy. Further, clearly the
event bad4 = true in game GidealLazy also implies bad4 = true in game G′idealLazy. Thus we
can easily derive in EasyCrypt that

Pr
[
GidealLazy : bad4 ∨ I∃(q

′
f , I,Y

′)
]
≤ Pr

[
G′idealLazy : bad4

]
. (5.11)

Finally, we use the same technique to bound the probability of event bad4 in game G′idealLazy
that we also used to bound the probability of events bad1 and bad2 in game GrealRO. We
outline the code fragment z $← {0, 1}n;bad4 ← bad4 ∨ z ∈ Y ′ in both the procedures fq
and the main body of G′idealLazy into an oracle samplez to obtain a new meta-game Ĝ′idealLazy.
We apply Lemma 4.2 in this game by taking u = q/2n and i = |Y ′|, and obtain:

Pr
[
G′idealLazy : bad4

]
= Pr

[

Ĝ′idealLazy : bad4

]

≤
q2

2n
(5.12)

Pulling Equations 5.8, 5.10, 5.11 and 5.12 together, we finally obtain the bound for the
probability of event bad3 in the game GrealRO:

Pr [GrealRO : bad3] ≤ Pr
[

Ĝ′idealLazy : bad4

]

≤
q2

2n
(5.13)

5.5 From GidealLazy to Gideal

Finally, we are only left to show that the probabilities of the outcomes of the game GidealLazy

and of the final game Gideal (see Figure 5.1) are equal. This only amounts to some rather
simple code cleanup:

1. The loop which re-samples values in the main body of GidealLazy is removed;

2. the three loops in procedure Fq are also removed;

3. in the simulator, the loop which looks for values pre-sampled in map I and may set
found to true is removed;

4. the global variables bad4, Y
′, q′f , I, T

′

i
, and T and all associated instructions are

removed;
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5. the two branches under the conditional statement “if found . . . ” in the simulator are
merged.

The modification which we introduced in the last section means that the simulator is no
longer dependent of the pre-sampled values in map I. Therefore, the simulator does not
need to look for these pre-sampled values any longer, and we can remove the loop with the
assignment found ← true. Further, it is now easy to remove all loops in the main body
and in procedure Fq. Indeed, the variables modified in these loops are disregarded by the
procedures Fq and fq; Fq always behaves as a relay for F , while the simulator fq always
forwards calls to F in the case where findseq((x, y),T ′) 6= None and samples a uniformly
distributed random value otherwise.
Next, we remove all global variables which are of no further use. Specifically, we remove

the global variables bad4, Y
′, q′f , I, T

′

i
, and T . Furthermore we remove all associated

assignments from or to these variables. Since we removed q′f , we modify the types of
procedure F : {0, 1}∗ → {0, 1}n × N and of map R : {0, 1}∗ → {0, 1}n × N to simply
F : {0, 1}∗ → {0, 1}n and R : {0, 1}∗ → {0, 1}n, and adapt the associated code accordingly.
Finally, the code which remains under the two branches of the statement “if found . . . ” in
procedure fq is only “z $← {0, 1}n; T ′[x, y]← z”, and we merge these branches.
The resulting game is the game Gideal. Because none of the above modifications influence

the behavior of the oracles accessible to the distinguisher, we can show in EasyCrypt that

⊢ GidealLazy ∼ Gideal : true =⇒ ={b}

and hence

Pr [GidealLazy : b] = Pr [Gideal : b] . (5.14)

Here we need the same generic invariants as those used to prove the equivalence in Sec-
tion 5.3. Finally, using Equations 5.2, 5.6, 5.7, 5.9 and 5.14 we obtain Equation 5.1, which
finishes the proof of Theorem 5.1.
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The manual part

I
n this chapter, we will consider the axiomatization of the functions used in the games
described in Chapter 5, and build increasingly complex lemmas about their properties.

Indeed, to enable the SMT solvers and automated theorem provers used by EasyCrypt to
successfully verify proof obligations arising within the proof, EasyCrypt needs to feed these
automated tools with appropriate characteristics of those functions. As an obvious example,
in the step from Greal′ to GrealRO, where the case distinction on findseq(x, y,T ′) 6= None plays
a central role, it is often necessary to provide the automated tools with the knowledge that
the function findseq is both sound and complete (we will formalize this in two axioms); in
practice, the lemmas needed to prove the validity of logical side conditions can become
much more complex than that.

As discussed in Section 4.1, those axioms and lemmas are stated in EasyCrypt before
the proof of some pRHL judgment is performed; during the proof of this judgment, they
can then be passed to the automated tools as needed. We normally start by postulating
some basic axioms on which a proof relies; from there, we state more involved lemmas.
EasyCrypt is often able to derive the validity of some easier lemmas automatically from
those axioms and/or from prior lemmas. However, as the lemmas get more involved, this
does not typically work; even the validity of some easier statements cannot normally be
derived if their proof involves so much as a simple induction (inductive proofs seem to
be hard for automated tools). In these cases, the concerned lemmas can be exported to
the Coq proof assistant, and proven there. Then, they can simply be stated as axioms in
EasyCrypt, as they are proven elsewhere.

In this chapter, we will describe the axioms that we needed to state for our proof of
indifferentiability, and the lemmas that we derived from them. In many cases, these lemmas
had to be proven manually in the Coq proof assistant: The corresponding Coq file contained
over 4200 lines of code, and is available upon request, or from:

http://easycrypt.gforge.inria.fr/csf12/

Here, we additionally describe all of those proofs in a human-readable manner.
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6.1 Predicates, Definitions, and Axioms

In this section, we outline the basic definitions and axioms that we will build on later in
the chapter.

6.1.1 Maps

Since many lemmas in this chapter concern the maps maintained in the games described in
Chapter 5, we introduce here a few notions to deal with them more easily. The type of maps
that we are interested in these lemmas always have the type {0, 1}k × {0, 1}n → {0, 1}n,
i.e. maps that map pairs of a block and a chaining value to a chaining value; these maps
are used to keep track of the previous answers of oracle fq (the simulator) in the games.
In the games Greal′ and GrealRO, whose equivalence is discussed in Section 5.2, we use

several failure events that are raised whenever such a map may be updated with a value
that exhibits certain dependencies to values already contained in this map. Therefore, the
maps in these games possess certain properties (up to the failure events) which are essential
for many lemmas.
Two of these properties are particularly important, and are both guaranteed by the

failure event bad1. The first is that these maps are injective. We define a straight-forward
predicate in EasyCrypt to express this as follows.

Definition 6.1 (Predicate Injective). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map. The
predicate Injective is defined as

Injective(T ) := ∀xy, xy′. xy ∈ dom(T )⇒ xy′ ∈ dom(T )⇒ T [xy] = T [xy′]⇒ xy = xy′.

The second property is that the constant IV does not appear in the range of a map.
Together, we call these properties the well-formedness conditions of a map T .

Definition 6.2 (Well-formedness). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map. T is
called well-formed iff it holds that Injective(T ) and IV /∈ ran(T ).

Recall from Section 5.2 that in game Greal′ , two maps T ′ and T are maintained such that
it holds that T ′ ⊆ T , i.e. all elements in the domain of T ′ are also in the domain of T , and
they map to the same values. We define the following predicate to express this property.

Definition 6.3 (Predicate Inclusion). Let T and T ′ be two maps of type {0, 1}k×{0, 1}n →
{0, 1}n. Then the predicate Inclusion is defined as

Inclusion(T ′,T ) := ∀xy. xy ∈ dom(T ′)⇒ xy ∈ dom(T ) ∧ T [xy] = T ′[xy].

We use the statements T ′ ⊆ T and Inclusion(T ′,T ) equivalently. EasyCrypt also provides
a polymorphic update function upd such that

upd(T , xy, z)[xy′] = if xy = xy′ then return z else returnT [xy′],

which is internally defined by the elementary properties that one expects of such an oper-
ator. In the above statement we say that T gets updated with the pair (xy, z). It is easy
to automatically derive additional properties related to our predicates, such as:
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1. If Inclusion(T ′,T ) and Injective(T ), then Injective(T ′);
2. If Inclusion(T ′,T ) and xy /∈ dom(T ), then xy /∈ dom(T ′);
3. If Inclusion(T ′,T ) and z /∈ ran(T ), then z /∈ ran(T ′).

Later, we will often need such properties and we note them here once and for all; they will
be implicit in the proofs performed in this chapter.
Lastly, we introduce the notion of a benign update. Intuitively, a benign update of a

well-formed map T is an update which preserves the well-formedness of T , and does not
modify values that were already present in T . Formally, we define it as follows.

Definition 6.4 (Benign update). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, xy be
a pair of a block and a chaining value, and z be a chaining value. Assume that T is
well-formed. The update of the map T with the pair (xy, z) is benign iff it holds that
T ⊆ upd(T , xy, z), and upd(T , xy, z) is still well-formed.

Remark. The definition does not exclude the case xy ∈ dom(T ). Indeed, in this case the
update of T with the pair (xy,T [xy]) is benign.

In the games described in Section 5.2, all updates of T are benign up to the failure
events described there. Similarly as above, we note that we can automatically derive
certain related properties of the upd function.

1. If xy /∈ dom(T ), then ∀z. Inclusion(T , upd(T , xy, z));
2. If Injective(T ) and z /∈ ran(T ), then ∀xy. Injective(upd(T , xy, z));
3. If z′ /∈ ran(T ) and z 6= z′, then ∀xy. z′ /∈ ran(upd(T , xy, z)).

Thus it is easy to see that if a map T is well-formed and gets updated with a pair (xy, z)
such that xy /∈ dom(T ), z /∈ ran(T ) and z 6= IV, then this update is benign. Similarly,
if we consider two well-formed maps T ′ ⊆ T and some element xy ∈ dom(T ), then the
update of T ′ with the pair (xy,T [xy]) is benign.

6.1.2 Operators pad and unpad

The first operators that we define are the functions pad and unpad, which are used to
decompose a message into a padding, respectively to reassemble a message from a padding.

Definition 6.5 (Operators pad and unpad). The operator pad is a function which maps
messages to paddings, i.e. a function of type {0, 1}∗ → {0, 1}k list. Conversely, the operator
unpad is a function of type {0, 1}k list→ {0, 1}∗ option which maps paddings in the range
of pad back to messages.

We characterize the desired behavior of the functions pad and unpad and their mutual
relation using the following axioms.

Axiom 6.6. It holds that unpad(nil) = None.

Axiom 6.7 (Soundness of unpad). Let p be a padding such that unpad(p) 6= None. Then
there exists a message m such that pad(m) = p.
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Axiom 6.8 (Completeness and correctness of unpad). Let m be a message. Then it holds
true that unpad(pad(m)) = Some(m).

Further, we need the obvious property that the function unpad is injective (in other
words, no message has two distinct paddings).

Axiom 6.9 (Injectivity of unpad). Let p and p′ be paddings. Assume that unpad(p) 6= None
and that unpad(p) = unpad(p′). Then it holds that p = p′.

Lastly, we formalize our assumption that the padding function is prefix-free as follows.

Axiom 6.10 (Prefix-freeness). Let m and m′ be two messages with m 6= m′. Then for all
paddings p, it holds that pad(m) 6= pad(m′) ‖ p.

6.1.3 Operator mapfst

The operator mapfst is a simple operator which maps the operator fst to a list. It is used
to recover a padding from a list returned by the function findseq, since the function findseq
returns a chain of the form [(x1, y1), . . . , (xj, yj)], consisting of pairs of blocks and chaining
values.

Definition 6.11 (Operator mapfst). The operator mapfst is a function of type ({0, 1}k ×
{0, 1}n) list→ {0, 1}k list defined by the following equations:

mapfst(nil) := nil

mapfst((x, y)::c) := x::mapfst(c),

where x is a block, y a chaining value and c : ({0, 1}k × {0, 1}n) list is a list of pairs of
blocks and chaining values.

6.1.4 Operator findseq

As discussed in Chapter 5, the operator findseq is used to find a complete chain (see
Definition 5.2) in a map T . That is, the function call findseq(x, y,T ) searches in map T
for a complete chain of the form c ‖ [(x, y)]. It returns Some(c), or None if there is no such
chain. All elements of c are required to be in the domain of T , however the last element
of the complete chain, namely (x, y), is not.

To define this operator, we first define an auxiliary predicate ischain.

Definition 6.12 (Predicate ischain). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, y and
z be chaining values, and xy and xy′ be pairs of blocks and chaining values. Furthermore
let c : ({0, 1}k × {0, 1}n) list be a list. Then the predicate ischain is recursively defined by

54



6.1 Predicates, Definitions, and Axioms

the following equations:

ischain(T , y, nil, z) := (y = z)

ischain(T , y, xy::nil, z) :=
(
xy ∈ dom(T ) ∧ y = snd(xy)∧

T [xy] = z
)

ischain(T , y, xy::xy′::c, z) :=
(
xy ∈ dom(T ) ∧ y = snd(xy)∧

T [xy] = snd(xy′)∧

ischain(T , snd(xy′), xy′::c, z)
)

Now, instead of giving a concrete implementation for the function findseq, we simply
define it by the properties we expect it to have. On the one hand, this yields a higher
level of abstraction as we do not commit to a specific implementation; on the other, this
also means that we have to believe that there indeed exists a function which exhibits these
properties. Specifically, we characterize the function findseq by two axioms stating that it
is sound and complete, respectively.

Axiom 6.13 (Soundness of findseq). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, x a
block and y a chaining value. Assume that findseq(x, y,T ) 6= None. Then, it holds that
ischain(T , IV, πfindseq(x,y,T ), y) and unpad(mapfst(πfindseq(x,y,T )) ‖ [x]) 6= None.

Axiom 6.14 (Completeness of findseq). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, x a
block, y a chaining value, and c : ({0, 1}k × {0, 1}n) list a list. Assume the following:

1. Injective(T )
2. IV /∈ ran(T )
3. ischain(T , IV, c, y)
4. unpad(mapfst(c) ‖ [x]) 6= None

Then, it holds that findseq(x, y,T ) 6= None.

Note that for the completeness, we require that T is injective and that IV /∈ ran(T ),
i.e. T is well-formed. Requiring the well-formedness of T for the completeness of findseq
is not strictly necessary to perform our indifferentiability proof, but it makes the function
findseq much easier to implement in practice, since findseq needs only be successful in
well-formed maps. We will also see later that we can use these well-formedness conditions
to prove that given the premises of the completeness axiom, we can not only say that
findseq(x, y,T ) 6= None, but indeed that findseq(x, y,T ) = Some(c) (see Lemma 6.34). A
possible pseudocode implementation of findseq that fulfills the above axioms is given below.

function findseq(x, y,T ) =
c← nil;
len ← 0;
while len < q ∧ y ∈ ran(T ) ∧ y 6= IV do

(x′, y′)← T
−1[y];

c← (x′, y′)::c; len ← len + 1; y ← y′;
if y = IV ∧ unpad(mapfst(c) ‖ [x]) 6= None then

return c

else return None
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As in Chapter 5, we use q := ℓ · qD to bound the maximal length of a chain (recall that the
number of oracle queries that the distinguisher can perform is upper-bounded by q). This
ensures termination even in the highly unlikely event where there are loops in a chain, and
yields a running time of O(ℓ · qD) for the function findseq.

Lastly, we also define a related predicate valid chain. Intuitively, valid chain(T , c) holds
whenever c is a complete chain in T whose last element is also in the domain of T .

Definition 6.15 (Predicate valid chain). Let T : {0, 1}k×{0, 1}n → {0, 1}n be a map and
c : ({0, 1}k × {0, 1}n) list a list. Then the predicate valid chain is defined by

valid chain(T , c) := ∃z. ischain(T , IV, c, z) ∧ unpad(mapfst(c)) 6= None

6.1.5 Predicate set bad3

The predicate set bad3 is used in game Greal′ to detect the failure event bad3, as discussed
in Section 5.2. In this chapter, we will see several lemmas involving this predicate which
are necessary to prove the validity of the transformation described in that section.

Definition 6.16 (Predicate set bad3). Let y be a chaining value and let T and T ′ be two
maps of type {0, 1}k × {0, 1}n → {0, 1}n. Then

set bad3(y,T ′,T ) := y ∈ ran(T ) ∧ T−1[y] /∈ dom(T ′) ∧ ∀c. ¬valid chain(c ‖ [T−1[y]],T ).

The idea is the following. Whenever the distinguisher makes a query fq(x, y) in game
Greal′ and there is some preceding element (x′, y′) := T−1[y] in the domain of T that maps
to the given chaining value y, then the current query is a continuation of a chain in T .
But if this preceding element (x′, y′) does not appear in the domain of the map T ′, then
this means that the distinguisher has never made the query fq(x

′, y′); now if additionally,
(x′, y′) is not the last element of a complete chain in T , then y should be unknown to
the distinguisher. Indeed, the distinguisher cannot guess the intermediate chaining values
generated in a Merkle-Damg̊ard iteration until it queries for them, which it can only do in
the correct order; the distinguisher may only learn the last value generated in a Merkle-
Damg̊ard iteration beforehand, by querying the oracle implementing the hash function,
since the last chaining value is the final hash. Thus if set bad3(y,T ′,T ) evaluates to true
in the procedure Greal′ .fq, then the distinguisher has used in the current query a chaining
value which should be unknown to it, and bad3 is set to true.

Note that we use a map T−1 in this predicate. This is possible because in the game Greal′

where this predicate is used, we have that the map T is injective. In our actual EasyCrypt
implementation, we update a map Tinv along with the map T , prove as an invariant that
Tinv is the inverse of T throughout the game Greal′ , and pass Tinv as an additional parameter
to set bad3 – we omitted these technical details in the description of the games for the sake
of the reader. In all the lemmas described in the remainder of this chapter that involve an
inversion on T , we will have as a premise that T is injective, such that it makes sense to
speak about the map T−1.
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6.1.6 Predicate Claim5

Lastly, we recall the definition of the predicate Claim5 as presented in Definition 5.3 of
Section 5.2. We will see several lemmas concerning this predicate at the end of this chapter.

Claim5(T ′,T ) = ∀(x, y), (x′, y′). (x′, y′) ∈ dom(T ) ∧ (x, y) ∈ dom(T ′)∧

T [(x′, y′)] = y ∧ findseq(x′, y′,T ) = None⇒ (x′, y′) ∈ dom(T ′).

Recall that in game Greal′ , the simulator fq maintains a map T ′ of previously answered
queries, while the FIL-RO f (resp. fbad) maintains a map T , and we have that T ′ ⊆ T :
Indeed, a fresh call of the distinguisher to procedure Fq generates an MD-chain whose
elements are all contained in map T , while a fresh call to fq generates a single element
in the maps T ′ and T . Then, the statement Claim5(T ′,T ) means that the distinguisher
has only made queries to fq associated to an MD-chain in the correct order; essentially, for
all elements (x, y) that belong to a chain in map T , it holds that the preceding element
(x′, y′) ∈ dom(T ), for which T [(x′, y′)] = y, is also in the domain of T ′ whenever (x, y)
is in the domain of T ′. That is, for any element (x, y) that belongs to a chain in T ′, all
preceding elements of the chain are also in the domain of T ′, meaning that the distinguisher
has made the corresponding queries.
In the corner case where (x, y) is the first element of a chain in a well-formed map T , the

statement is trivially fulfilled where we consider it. Indeed, in this case it holds that y = IV,
and therefore the premises (x′, y′) ∈ dom(T ) and T [(x′, y′)] = y imply that IV ∈ ran(T ),
which is false if T is well-formed.

Similarly, the case where (x′, y′) is the last element of a chain in T also represents a
corner case, since in this case the element T [(x′, y′)] = y corresponds to the final hash
of a message (instead of an intermediate chaining value) and is therefore known to the
distinguisher. So, the distinguisher could extend this chain by making additional queries
(consider e.g. a length extension attack). This is not a problem in our setup as we assume
the padding function to be prefix-free; however, for the statement Claim5(T ′,T ) to hold
as an invariant, we need to explicitly exclude this case, since here the fact that an element
(x, y) is in the domain of T ′ does not necessarily mean that all preceding elements of the
original chain are also in the domain of T ′. This is why the predicate uses the premise
findseq(x′, y′,T ) = None, meaning that (x′, y′) is not the end of a complete chain in T .
In the game Greal′ where this predicate is used, we always have the invariants that T

′ ⊆ T ,
and that T is well-formed. Therefore we are able to eventually obtain that Claim5(T ′,T )
is also an invariant of that game.

6.2 Padding Lemmas

In this section, we will prove two simple lemmas concerning the padding function, based
on the axioms stated in Section 6.1.2. The first lemma states that nil is not a valid padding.
This is needed to be able to conclude that any padding contains at least one element, which
is relevant e.g. in the transformation described in Section 5.1.
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Lemma 6.17. There is no message m such that pad(m) = nil.

Proof. We prove the statement by contradiction. Let m be a message, and assume for
contradiction that pad(m) = nil. By Axiom 6.8, we know that unpad(pad(m)) = Some(m)
and hence we obtain unpad(nil) = Some(m), contradicting Axiom 6.6.

The second padding lemma that we want to show is an alternative description of the
prefix-freeness of the padding function, based on unpad instead of pad. This will later be
useful as a helper lemma.

Lemma 6.18. Let p1 and p2 be two paddings. Assume that unpad(p1 ‖ p2) 6= None and
that p2 6= nil. Then it holds that unpad(p1) = None.

Proof. We know by Axiom 6.7 that there exists a message m such that pad(m) = p1 ‖ p2.
Now, assume for contradiction that unpad(p1) 6= None. Then we also know that there
exists a message m′ such that pad(m′) = p1. Therefore we get pad(m) = pad(m′) ‖ p2. We
now perform a case distinction:

Case m = m′. If m = m′, then pad(m) = pad(m′), and thus p2 = nil, contradicting our
assumptions.

Case m 6= m′. In this case, we obtain a contradiction to prefix-freeness: Using Axiom 6.10,
we conclude that pad(m) 6= pad(m′) ‖ p2, which immediately yields the contradiction.

6.3 Lemmas on mapfst

We note here that the operator mapfst is distributive.

Lemma 6.19 (Distributivity of mapfst). Let c1 and c2 be two lists of type ({0, 1}k ×
{0, 1}n) list. Then it holds that mapfst(c1 ‖ c2) = mapfst(c1) ‖ mapfst(c2).

Proof. We prove the claim by structural induction over the list c1.

Base case: c1 = nil. Trivial.

Induction step: c1 = a::al.

Induction hypothesis:

mapfst(al ‖ c2) = mapfst(al) ‖ mapfst(c2)

We need to show that mapfst(a::al ‖ c2) = mapfst(a::al) ‖ mapfst(c2). This is easy:

mapfst(a::al ‖ c2) = mapfst(a::(al ‖ c2))

= fst(a)::mapfst(al ‖ c2) (by Definition 6.11)

= fst(a)::(mapfst(al) ‖ mapfst(c2)) (by IH)

= fst(a)::mapfst(al) ‖ mapfst(c2)

= mapfst(a::al) ‖ mapfst(c2) (by Definition 6.11)
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In the remainder of this chapter, we will assume an intuitive understanding of this
operator. For instance, we assume that it is clear that a list mapfst(c ‖ [(x, y)]) can be
rewritten as mapfst(c) ‖ [x]. We strive to write such lists in their simplest possible form,
except where it makes sense to do otherwise for the purpose of clarity.

6.4 Lemmas on ischain

In this section, we will discuss several lemmas concerning the predicate ischain. Many of
these lemmas are not immediately needed for the proof of indifferentiability performed in
EasyCrypt; rather, they serve as helper lemmas on which to build more complex lemmas
later on.
We start with a very basic lemma that makes explicit a property of the statement

ischain(T , y, c, z) where c is not empty: the value y is the first chaining value used in c.

Lemma 6.20. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c : ({0, 1}k × {0, 1}n) list a
list, x be a block, and y, y′ and z be chaining values. Assume that ischain(T , y, (x, y′)::c, z)
holds. Then we have y = y′.

Proof. We only need to distinguish the cases where c = nil and where c has the form a::al.
In each case the statement follows immediately from Definition 6.12.

The next lemma can be thought of as an alternative definition of the predicate ischain,
in the case where the chain in question is not nil. It is an extremely helpful tool in many
of the lemmas that follow.

Lemma 6.21. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c1, c2 : ({0, 1}
k × {0, 1}n) list

be lists, x′ be a block, and y, y′ and z be chaining values. Then it holds:

ischain(T , y, c1 ‖ (x
′, y′)::c2, z)⇔ ischain(T , y, c1, y

′)∧

(x′, y′) ∈ dom(T )∧

ischain(T ,T [(x′, y′)], c2, z)

Proof. To prove the claim, we prove both directions of the claim separately. In both cases
we use a structural induction over the list c1. In the respective base cases, we distinguish
the cases where c2 = nil and where c2 has the form b::bl and apply Definition 6.12. For the
direction “⇐”, we additionally need to to apply Lemma 6.20 to obtain T [(x′, y′)] = snd(b)
in the case where c2 = b::bl, since the definition of ischain requires that the second argument
of the predicate ischain is equal to the second projection of the first element of the chain.
In the respective induction steps, we distinguish the cases where c1 = nil and where c1 has
the form a::al and use Definition 6.12 on the induction premises to fulfill the premises of
the respective induction hypotheses, and easily obtain the conclusion.
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The previous lemma gives us two corollaries. The first corollary permits the automated
tools used in EasyCrypt to perform a case distinction on the statement ischain(T , IV, c, z):
If c = nil, then it holds that z = IV; if c is not empty, then there is an element in the
domain of T (namely, the last element of c) that maps to the chaining value z.

Corollary 6.22. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c : ({0, 1}k × {0, 1}n) list
be a list, and z be a chaining value. Assume that ischain(T , IV, c, z) holds. Then it holds
true that z = IV ∨ ∃xy. xy ∈ dom(T ) ∧ T [xy] = z.

Proof. If c = nil, then we immediately get z = IV from Definition 6.12. If c has the form
al ‖ [a], then Lemma 6.21 applies and we conclude a ∈ dom(T ) and ischain(T ,T [a], nil, z)
which implies T [a] = z.

The second corollary, useful later, states that any element that belongs to a chain in a
map T is in the domain of T .

Corollary 6.23. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c : ({0, 1}k × {0, 1}n) list
be a list, xy be a pair of a block and a chaining value and z be a chaining value. Assume
the following:

1. ischain(T , IV, c, z)
2. xy ∈ c

Then it holds that xy ∈ dom(T ).

Proof. Since xy ∈ c then c has the form cℓ ‖ xy::cr, for appropriate cℓ and cr. Hence
Lemma 6.21 applies and we find xy ∈ dom(T ).

In the transformations presented in Chapter 5, to show that some invariant of a game
relating to maps maintained in that game is valid, it is often necessary to state under
which conditions a map may be updated without afflicting the validity of the statement
expressed by this invariant. In turn, the validity of these conditions is usually guaranteed
by the failure events. The invariants described in Section 5.2 involve predicates such as
set bad3 or Claim5, which in turn involve the predicates valid chain or the operator findseq.
This are built upon the predicate ischain. Hence, when breaking down the necessary lemmas
that ensure that some assertion in a game holds after a map update when it held before
the map update, it often comes to show that under sensible conditions, a chain in a map
T remains a chain when T gets updated. This is what the next two lemmas are used for.
The first states that when a map T contains a chain and gets updated with a value not
part of this chain, then this chain is still contained in the updated map.

Lemma 6.24. Let T : {0, 1}k×{0, 1}n → {0, 1}n be a map, c : ({0, 1}k×{0, 1}n) list be a
list, xy be a pair of a block and a chaining value and z and z′ be chaining values. Assume
the following:

1. ischain(T , IV, c, z)
2. xy /∈ c

Then it holds that ischain(upd(T , xy, z′), IV, c, z).
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Proof. We first generalize the constant IV as an arbitrary chaining value y; that is, we
show the claim for arbitrary values y where the claim focuses only on the instance where
y = IV. This is necessary so as to obtain a strong enough induction hypothesis. We prove
the resulting generalized statement by a structural induction over the list c.

Base case: c = nil. We know ischain(T , y, nil, z) which implies y = z. This implies
ischain(upd(T , xy, z′), y, nil, z) (see Definition 6.12).

Induction step: c = a::al.

Induction hypothesis:

∀y. ischain(T , y, al, z)⇒ xy /∈ al⇒ ischain(upd(T , xy, z′), y, al, z)

We must show that ischain(upd(T , xy, z′), y, a::al, z). By Lemma 6.21, this is equiva-
lent to the following three conditions:

(i) ischain(upd(T , xy, z′), y, nil, snd(a)): By Definition 6.12 we have to show that
y = snd(a). This is immediately implied by the premise ischain(T , y, a::al, z)
(Lemma 6.20).

(ii) a ∈ dom(upd(T , xy, z′)): By Lemma 6.21, ischain(T , y, a::al, z) implies that
a ∈ dom(T ), and therefore it also holds that a ∈ dom(upd(T , xy, z′)).

(iii) ischain(upd(T , xy, z′), upd(T , xy, z′)[a], al, z): Here we need the induction hy-
pothesis. First note that xy 6= a since we know that xy /∈ a::al. There-
fore it holds true that upd(T , xy, z′)[a] = T [a]. Hence, it suffices to show
ischain(upd(T , xy, z′),T [a], al, z). This is implied by taking y := T [a] in the
induction hypothesis, and we are only left to show the two premises of the
induction hypothesis: First, we know ischain(T , y, a::al, z), and thus it holds
that ischain(T ,T [a], al, z) by Lemma 6.21. Second, we know xy /∈ a::al, which
implies xy /∈ al.

Next, we prove that a chain in a map T ′ remains a chain in an updated map T as
long as it holds that T ⊇ T ′. That is, a map T ′ containing a chain can be updated
with arbitrarily many values outside of its domain and still contain the same chain. The
proof is mostly analogous to the proof of the previous lemma, except in the case where the
induction hypothesis needs to be applied.

Lemma 6.25. Let T ,T ′ : {0, 1}k×{0, 1}n → {0, 1}n be two maps, c : ({0, 1}k×{0, 1}n) list
be a list, and y and z be chaining values. Assume the following:

1. ischain(T ′, y, c, z)
2. Inclusion(T ′,T )

Then it holds that ischain(T , y, c, z).

Proof. As in Lemma 6.24, we perform a structural induction over the list c.
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Base case: c = nil. As in the proof of Lemma 6.24.

Induction step: c = a::al.

Induction hypothesis:

∀y. ischain(T ′, y, al, z)⇒ ischain(T , y, al, z)

As in the previous lemma, we show the three necessary and sufficient conditions
according to Lemma 6.21:

(i) ischain(T , y, nil, snd(a)): We know ischain(T ′, y, a::al, z), and therefore it holds
that y = snd(a), which yields the conclusion by Definition 6.12.

(ii) a ∈ dom(T ): We know that ischain(T ′, y, a::al, z), which implies a ∈ dom(T ′)
by Lemma 6.21. Since Inclusion(T ′,T ) this further implies a ∈ dom(T ).

(iii) ischain(T ,T [a], al, z): This is the case where we apply the induction hypothesis.
We instantiate the induction hypothesis taking y := T ′[a]. From the premise
ischain(T ′, y, a::al, z), we obtain using Lemma 6.21 that a ∈ dom(T ′) and that
ischain(T ′,T ′[a], al, z); the latter fulfills the premise of the induction hypothesis.
Therefore we obtain that ischain(T ,T ′[a], al, z), which is almost our goal. It
only remains to show that T ′[a] = T [a]. But this is clear since we have
a ∈ dom(T ′) and Inclusion(T ′,T ).

The previous lemma also yields an immediate corollary that allows a single update to a
map T with a value outside of the domain of T .

Corollary 6.26. Let T : {0, 1}k×{0, 1}n → {0, 1}n be a map, c : ({0, 1}k×{0, 1}n) list be
a list, xy be a pair of a block and a chaining value, and y, z, z′ be chaining values. Assume
the following:

1. ischain(T , y, c, z)
2. xy /∈ dom(T )

Then it holds that ischain(upd(T , xy, z′), y, c, z).

Proof. This follows immediately from Lemma 6.25 since xy /∈ dom(T ) clearly implies that
Inclusion(T , upd(T , xy, z′)).

A dual of Lemma 6.24 is the following statement. If a list c is not a chain in some map
T , but becomes a chain after a single update of this map, then the element which was used
to update the map must be part of the chain.

Lemma 6.27. Let T : {0, 1}k×{0, 1}n → {0, 1}n be a map, c : ({0, 1}k×{0, 1}n) list be a
list, xy be a pair of a block and a chaining value, and z and z′ be chaining values. Assume:

1. ¬ischain(T , IV, c, z).
2. ischain(upd(T , xy, z′), IV, c, z).

62



6.4 Lemmas on ischain

Then it holds that xy ∈ c.

Proof. We generalize the constant IV as an arbitrary variable y, and perform a structural
induction over the list c.

Base case: c = nil. In this case we get a contradiction since the first premise implies y 6= z,
but the second premise implies y = z (see Definition 6.12).

Induction step: c = a::al.

Induction hypothesis:

∀y. ¬ischain(T , y, al, z)⇒ ischain(upd(T , xy, z′), y, al, z)⇒ xy ∈ al

We must show that xy ∈ a::al. That is, we have to show that xy = a ∨ xy ∈ al.
To accomplish this, assume that xy 6= a; under this hypothesis we will prove that
xy ∈ al. We perform a case distinction on the structure of al.

Case al = nil. In this case, we obtain a contradiction. On the one hand, we know
¬ischain(T , y, [a], z). On the other hand, we know ischain(upd(T , xy, z′), y, [a], z)
and xy 6= a. We show below that this implies ischain(T , y, [a], z), yielding the
contradiction. In fact, the latter is easily seen, since it suffices to unfold the
definition of ischain and show the following:

(i) a ∈ dom(T ): This follows from a ∈ dom(upd(T ), xy, z′) and xy 6= a.

(ii) y = snd(a): This immediately follows from ischain(upd(T , xy, z′), y, [a], z).

(iii) T [a] = z: This follows from upd(T , xy, z′)[a] = z and xy 6= a.

Case al = a′::al′. We have to show xy ∈ a′::al′. We instantiate the induction hy-
pothesis taking y := upd(T , xy, z′)[a], which yields the goal. It remains to
show the two premises of the induction hypothesis. The second premise of the
induction hypothesis, namely ischain(upd(T , xy, z′), upd(T , xy, z′)[a], a′::al′, z),
follows quickly since it holds that ischain(upd(T , xy, z′), y, a::a′::al′, z), and we
apply Lemma 6.21. We are only left to show the first premise of the in-
duction hypothesis, namely ¬ischain(T , upd(T , xy, z′)[a], a′::al′, z). Recall that
¬ischain(T , y, a::a′::al′, z), that is

¬
(
a ∈ dom(T ) ∧ y = snd(a) ∧ T [a] = snd(a′) ∧ ischain(T , snd(a′), a′::al′, z)

)
.

Next, recall that ischain(upd(T , xy, z′), y, a::a′::al′, z). Hence, by Definition 6.12
we know (i ) a ∈ dom(upd(T ), xy, z′) and hence a ∈ dom(T ) since xy 6= a;
(ii ) y = snd(a), and (iii ) upd(T , xy, z′)[a] = snd(a′), implying T [a] = snd(a′)
since xy 6= a. Hence, it must hold that ¬ischain(T , snd(a′), a′::al′, z). Lastly, as-
sume for contradiction that ischain(T , upd(T , xy, z′)[a], a′::al′, z) were true. By
Lemma 6.20 this would imply ischain(T , snd(a′), a′::al′, z), yielding a contradic-
tion. Therefore, we obtain ¬ischain(T , upd(T , xy, z′)[a], a′::al′, z), which finishes
the proof.
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Next, we show that any chain in a map T and the value that it hashes to are uniquely
defined by the padding associated to it.

Lemma 6.28. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c1, c2 : ({0, 1}
k × {0, 1}n) list

be lists, and let z1 and z2 be chaining values. Assume the following:
1. ischain(T , y, c1, z1)
2. ischain(T , y, c2, z2)
3. mapfst(c1) = mapfst(c2)

Then it holds that c1 = c2 and z1 = z2.

Proof. We perform a structural induction over c1.

Base case: c1 = nil. If c2 6= nil, we obtain a contradiction to mapfst(c1) = mapfst(c2). If
c2 = nil, it only remains to show that z1 = z2. From the first and second premises,
we obtain y = z1 and y = z2 (unfolding Definition 6.12), which finishes this case.

Induction step: c1 = a::al.

Induction hypothesis:

∀c2. mapfst(al) = mapfst(c2)⇒ ∀y. ischain(T , y, al, z1)⇒ ischain(T , y, c2, z2)⇒

al = c2 ∧ z1 = z2

If c2 = nil, we obtain a contradiction to mapfst(c1) = mapfst(c2). Therefore as-
sume that c2 has the form b::bl. We instantiate the induction hypothesis with the
list bl. From mapfst(a::al) = mapfst(b::bl), we obtain that fst(a) = fst(b) and that
mapfst(al) = mapfst(bl). The former hypothesis will yet be important later; the latter
can be used to fulfill the first premise of the induction hypothesis. We obtain a new
induction hypothesis:

∀y. ischain(T , y, al, z1)⇒ ischain(T , y, bl, z2)⇒ al = bl ∧ z1 = z2

Next, we show that snd(a) = snd(b). Indeed, from the first and second premises we
obtain (using Lemma 6.21) that ischain(T , y, nil, snd(a)) and ischain(T , y, nil, snd(b)).
By unfolding Definition 6.12, we obtain y = snd(a) and y = snd(b). Since we now
know snd(a) = snd(b) and we already knew fst(a) = fst(b), we conclude a = b.
Further, we conclude from the first and second premises (again using Lemma 6.21)
that ischain(T ,T [a], al, z1) and ischain(T ,T [b], bl, z2). As we have a = b, we rewrite
the latter hypothesis as ischain(T ,T [a], bl, z2). We can now instantiate the induction
hypothesis taking y := T [a], and we have already proven the two resulting premises
of the induction hypothesis. Thus we conclude al = bl and z1 = z2. Since a = b, we
immediately get c1 = a::al = b::bl = c2.
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Now, we want to show a central property of chains arising from the well-formedness
conditions of maps (see Section 6.1.1). Namely, we will show that any chain in a well-
formed map T is uniquely defined by the value that it hashes to. Formally, two chains in
a well-formed map T that hash to the same value are, in fact, equal. This lemma also has
many important implications that we will see later. However, the induction needed for the
proof of this statement is somewhat tricky. To make it go through easier, we first show two
closely related claims, considering the cases where the two chains have the same length or
a different length, respectively.

Lemma 6.29. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c1, c2 : ({0, 1}
k × {0, 1}n) list

be lists, and let y1, y2 and z be chaining values. Assume the following:
1. |c1| = |c2|
2. Injective(T )
3. ischain(T , y1, c1, z)
4. ischain(T , y2, c2, z)

Then it holds that c1 = c2.

Proof. Fix c1. Given the premise Injective(T ), we show that

∀c2, y1, y2. |c1| = |c2| ⇒ ischain(T , y1, c1, z)⇒ ischain(T , y2, c2, z)⇒ c1 = c2,

using a structural induction over c1.

Base case: c1 = nil.
If c2 = nil, the claim is trivial. If c2 has the form b::bl, we get a contradiction since
we assume |c1| = |c2|, i.e. |nil| = |b::bl|.

Induction step: c1 = a::al.

Induction hypothesis:

∀c2, y1, y2. |al| = |c2| ⇒ ischain(T , y1, al, z)⇒ ischain(T , y2, c2, z)⇒ al = c2

We must show a::al = c2. If c2 = nil, we get a contradiction to the premise |c1| = |c2|.
Therefore assume that c2 has the form b::bl. We can now sensibly instantiate the
induction hypothesis as follows:

|al| = |bl| ⇒ ischain(T ,T [a], al, z)⇒ ischain(T ,T [b], bl, z)⇒ al = bl.

The first premise of this hypothesis follows easily since we know that |a::al| = |b::bl|.
Further, we know that ischain(T , y1, a::al, z) and ischain(T , y2, b::bl, z). Hence, the
second and third premises follow by using Lemma 6.21. We conclude that al = bl.
Thus it only remains to show that a = b. Note that we now have ischain(T , y1, a::al, z)
and ischain(T , y2, b::al, z). Using Lemma 6.21 we obtain that a ∈ dom(T ) and b ∈
dom(T ). Further, we also know that T [a] = T [b]: Indeed, in the case where al 6= nil,
we have T [a] = hd(al) and T [b] = hd(al) (from Lemma 6.20), and in the case where
al = nil, we have T [a] = z and T [b] = z (from Definition 6.12). Thus, we can use
the injectivity of T to conclude that a = b, which finishes the proof.
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Lemma 6.30. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c1, c2 : ({0, 1}
k × {0, 1}n) list

be lists, and let y1, y2 and z be chaining values. Assume the following:
1. |c1| > |c2|
2. Injective(T )
3. ischain(T , y1, c1, z)
4. ischain(T , y2, c2, z)

Then there exists a list pl and a chaining value p such that c1 = pl ‖ p::c2.

Proof. Fix c2. Given the premise Injective(T ), we show that

∀c1, y1, y2. |c1| > |c2| ⇒ ischain(T , y1, c1, z)⇒ ischain(T , y2, c2, z)⇒

∃p′, pl′. c1 = pl′ ‖ p′::c2

using a structural induction over c2.

Base case: c2 = nil.
If c1 = nil, we get a contradiction to |c1| > |c2|. Therefore assume that c1 has the
form a::al. We must show that there exist pl, p such that a::al = pl ‖ [p], which is
easily seen.

Induction step: c2 = b::bl.

Induction hypothesis:

∀c1, y1, y2. |c1| > |bl| ⇒ ischain(T , y1, c1, z)⇒ ischain(T , y2, bl, z)⇒

∃p′, pl′. c1 = pl′ ‖ p′::bl

We must show that there exist p, pl such that c1 = pl ‖ p::b::bl. If c1 = nil, we get a
contradiction to the premise |c1| > |c2|. Therefore assume that c1 has the form a::al.
We can now sensibly instantiate the induction hypothesis as follows:

|al| > |bl| ⇒ ischain(T ,T [a], al, z)⇒ ischain(T ,T [b], bl, z)⇒ ∃p′, pl′. al = pl′ ‖ p′::bl

The first premise of this hypothesis follows easily since we know that |a::al| > |b::bl|.
Further, we know that ischain(T , y1, a::al, z) and ischain(T , y2, b::bl, z). Hence, the
second and third premises follow by using Lemma 6.21. We conclude that that there
exist p′, pl′ such that al = pl′ ‖ p′::bl, and we fix p′ and pl′. We still have to show that
there exist p, pl such that a::al = pl ‖ p::b::bl. Since we have al = pl′ ‖ p′::bl, this
means that we have to show that there exist p, pl such that a::pl′ ‖ p′::bl = pl ‖ p::b::bl.
It is easily seen that there exist p, pl such that a::pl′ = pl ‖ [p]. Thus it only remains to
show that p′ = b. Note that we have ischain(T , y1, a::al, z), which can be rewritten as
ischain(T , y1, a::pl

′ ‖ p′::bl, z). Using Lemma 6.21, this implies ischain(T ,T [p′], bl, z)
and p′ ∈ dom(T ). On the other hand, we also know that ischain(T , y2, b::bl, z), which
similarly implies ischain(T ,T [b], bl, z) and b ∈ dom(T ). Hence we obtain T [p′] = T [b]
(using Definition 6.12 if bl = nil, and Lemma 6.20 if bl 6= nil). Finally, using the
injectivity of T , we conclude that p′ = b, which finishes the proof.
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The previous two lemmas only included one of two well-formedness conditions, namely
that T is injective. Basically, we saw that if an injective map T contains two chains c1 and
c2 that hash to the same value, then by the injectivity of T this means that the shorter
chain is a suffix of the longer chain. At this point we can exploit the other well-formedness
condition, namely that IV /∈ ran(T ). Indeed, if two chains using IV as a first chaining value
hash to the same value, and one of the two chains is longer than the other, then the longer
chain includes an element that maps to the chaining value IV at the boundary of its suffix
that is equal to the shorter chain. However, as IV is not in the range of a well-formed map,
there cannot be two chains (starting with the chaining value IV) of different length in a
well-formed map. We formally derive the contradiction in the following corollary.

Corollary 6.31. Let T : {0, 1}k×{0, 1}n → {0, 1}n be a map, c1, c2 : ({0, 1}
k×{0, 1}n) list

be lists, and let z be a chaining value. Assume the following:
1. |c1| > |c2|
2. Injective(T )
3. IV /∈ ran(T )
4. ischain(T , IV, c1, z)
5. ischain(T , IV, c2, z)

Then we obtain a contradiction, i.e. the above premises cannot hold all at once.

Proof. Using all but the third premise, we obtain using Lemma 6.30 a chaining value p
and a list pl such that c1 = pl ‖ p::c2. Thus, the fourth premise can be rewritten as
ischain(T , IV, pl ‖ p::c2, z). We now use a case distinction on the structure of c2.

Case c2 = nil. By applying Lemma 6.21 we obtain p ∈ dom(T ) and ischain(T ,T [p], nil, z).
By Definition 6.12, the latter implies T [p] = z. Therefore z ∈ ran(T ). By the fifth
premise we know ischain(T , IV, nil, z) which implies z = IV, and thus IV ∈ ran(T ).
Contradiction to the third premise.

Case c2 = b::bl. This case is analogous, but the value T [p] is equal to snd(b) instead of z,
and we use that snd(b) is equal to IV, yielding a contradiction.

Finally, using both Lemma 6.29 and Corollary 6.31, it is straightforward to conclude
the uniqueness lemma mentioned above: We show that any chain in a well-formed map is
uniquely defined by its final hash.

Lemma 6.32 (Uniqueness of chains). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map,
c1, c2 : ({0, 1}

k × {0, 1}n) list be lists, and let z be a chaining value. Assume the following:
1. Injective(T )
2. IV /∈ ran(T )
3. ischain(T , IV, c1, z)
4. ischain(T , IV, c2, z)
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Then it holds that c1 = c2.

Proof. It cannot hold that either |c1| > |c2| or |c2| > |c1|, since in both cases we ob-
tain a contradiction using Corollary 6.31. Therefore it must hold that |c1| = |c2|. Thus
Lemma 6.29 applies and we obtain c1 = c2.

The last lemma of this section is another important one, with many consequences seen
in later sections. Essentially, it states that there can be no colliding chains in a well-formed
map T , as illustrated in Figure 6.1. It is named Claim 4 in reminiscence of the same claim
appearing in the proof by Coron [39], which our proof of indifferentiability is based on.
It is a consequence of the uniqueness of chains described above, and the assumption that
the padding function is prefix-free. Figures 6.1 and 6.2 illustrate the idea. They depict
respectively two complete chains c1 and c2, ending respectively in (x1, y2) and (x2, y2), in
a well-formed map T . By the uniqueness of chains, the chain c1 is a prefix of chain c2, but
this contradicts our assumption of prefix-freeness.

Lemma 6.33 (Claim 4). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c1, c2 : ({0, 1}k ×
{0, 1}n) list be lists, let x1, x2 be blocks, and let y1, y2 be chaining values. Assume the
following:

1. Injective(T )
2. IV /∈ ran(T )
3. ischain(T , IV, c1, y1)
4. unpad(mapfst(c1) ‖ [x1]) 6= None
5. ischain(T , IV, c2, y2)
6. unpad(mapfst(c2) ‖ [x2]) 6= None

Then it holds that (x1, y1) /∈ c2.

Proof. We prove the claim by contradiction. Assume (x1, y1) ∈ c2. Then, clearly c2 has the
form cℓ2 ‖ (x1, y1)::c

r
2, for appropriate cℓ2 and cr2. Thus, we can rewrite the fifth premise as

ischain(T , IV, cℓ2 ‖ (x1, y1)::c
r
2, y2). By Lemma 6.21 this implies ischain(T , IV, cℓ2, y1). Now,

since we also know ischain(T , IV, c1, y1) and additionally the well-formedness conditions on
map T hold, Lemma 6.32 applies and we conclude that cℓ2 = c1. Hence, we can rewrite
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the sixth premise as unpad(mapfst(c1 ‖ (x1, y1)::c
r
2) ‖ [x2]) 6= None. From this we will

obtain a contradiction to the prefix-freeness of pad. By the distributivity of mapfst, the
latter statement can be rewritten as unpad(mapfst(c1) ‖ [x1] ‖ mapfst(cr2) ‖ [x2]) 6= None.
Now, taking p1 := mapfst(c1) ‖ [x1] and p2 := mapfst(cr2) ‖ [x2] in Lemma 6.18, we get
unpad(mapfst(c1) ‖ [x1]) = None, yielding a contradiction to the fourth premise.

6.5 Lemmas on findseq

We will now discuss several lemmas concerning the function findseq. Many of these are
immediately relevant to enable the automated tools used in the EasyCrypt proof to solve
arising side conditions, since the function findseq is directly used in the games presented
in Chapter 5 – by contrast, the lemmas discussed in the previous section are more often
relevant as a basis to prove the lemmas in this section, or in later sections.
The first statement presented here is a more powerful variant of the completeness of

the function findseq (see Axiom 6.14). Indeed, the definition of findseq’s completeness
postulates only that whenever there is a chain in a well-formed map T ending in (x, y),
then findseq(x, y,T ) will find something. Now, the uniqueness of chains presented in the
previous section gives us that there can be but a single chain ending in (x, y) in a well-
formed map T . Therefore, it can be derived from both the soundness and completeness of
findseq that the chain returned by findseq(x, y,T ) is indeed the very chain ending in (x, y).

Lemma 6.34 (Completeness and uniqueness of findseq). Let T : {0, 1}k×{0, 1}n → {0, 1}n

be a map, x a block, y a chaining value, and c : ({0, 1}k × {0, 1}n) list a list. Assume the
following:

1. Injective(T )
2. IV /∈ ran(T )
3. ischain(T , IV, c, y)
4. unpad(mapfst(c) ‖ [x]) 6= None

Then it holds that findseq(x, y,T ) = Some(c).

Proof. By the completeness of findseq, we obtain that findseq(x, y,T ) 6= None. By the
soundness of findseq, this implies ischain(T , IV, πfindseq(x,y,T ), y). Now, Lemma 6.32 applies
and we obtain πfindseq(x,y,T ) = c, which implies findseq(x, y,T ) = Some(c).

Dually, we observe that if there is a chain ending in (x, y) in a well-formed map T which
does not correspond to a valid padding, then findseq(x, y,T ) will return nothing at all.

Lemma 6.35. Let T : {0, 1}k ×{0, 1}n → {0, 1}n be a map, x a block, y a chaining value,
and c : ({0, 1}k × {0, 1}n) list a list. Assume the following:

1. Injective(T )
2. IV /∈ ran(T )
3. ischain(T , IV, c, y)
4. unpad(mapfst(c) ‖ [x]) = None

Then it holds that findseq(x, y,T ) = None.
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Proof. Assume for contradiction that findseq(x, y,T ) 6= None. Then, by the soundness
of findseq, we get ischain(T , IV, πfindseq(x,y,T ), y) and unpad(mapfst(πfindseq(x,y,T )) ‖ [x]) 6=
None. Furthermore, Lemma 6.32 implies that πfindseq(x,y,T ) = c. Therefore, we obtain that
unpad(mapfst(c) ‖ [x]) 6= None, which yields the contradiction.

We also show that the padding associated to a chain returned by findseq uniquely de-
termines this chain (similarly as in Lemma 6.28), and further uniquely determines the
arguments of findseq that must have been used to return this chain. Therefore, any com-
plete chain can only be retrieved using uniquely defined arguments to the function findseq.

Lemma 6.36. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, x1, x2 be blocks, and y1, y2 be
chaining values. Assume the following:

1. findseq(x1, y1,T ) 6= None
2. findseq(x2, y2,T ) 6= None
3. unpad(mapfst(πfindseq(x1,y1,T )) ‖ [x1]) = unpad(mapfst(πfindseq(x2,y2,T )) ‖ [x2])

Then it holds that (x1, y1) = (x2, y2).

Proof. First, since we have that the function unpad is injective (see Axiom 6.9) and that
unpad(mapfst(πfindseq(x1,y1,T )) ‖ [x1]) 6= None (by the soundness of findseq), we obtain that
mapfst(πfindseq(x1,y1,T )) ‖ [x1] = mapfst(πfindseq(x2,y2,T )) ‖ [x2]. Therefore, it holds that
mapfst(πfindseq(x1,y1,T )) = mapfst(πfindseq(x2,y2,T )) and x1 = x2. Additionally, the soundness
of findseq implies that ischain(T , IV, πfindseq(x1,y1,T ), y1) and ischain(T , IV, πfindseq(x2,y2,T ), y2).
Hence, Lemma 6.28 applies and we obtain πfindseq(x1,y1,T ) = πfindseq(x2,y2,T ) and y1 = y2,
which finishes the proof.

The following lemma makes explicit a relation between the function findseq and the pred-
icate ischain. Namely, as already discussed in Section 6.1.4, the function findseq searches in
a map T for a specific complete chain, but a complete chain does not require its last element
to be in T (see Definition 5.2); by contrast, the predicate ischain requires all the elements
of its list argument to be in the domain of T . Thus, for the predicate ischain(T , IV, c, z) to
hold for a complete chain c in T , we need that the last element of c is also in the domain
of T . We state this in a slightly generalized fashion.

Lemma 6.37. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y be a
chaining value. Assume the following:

1. Inclusion(T ′,T )
2. findseq(x, y,T ′) 6= None
3. (x, y) ∈ dom(T )

Then it holds that ischain(T , IV, πfindseq(x,y,T ′) ‖ [(x, y)],T [(x, y)]).

Proof. To show the conclusion of the statement, we show the three necessary and sufficient
conditions required by Lemma 6.21:

(i) ischain(T , IV, πfindseq(x,y,T ′), y): The soundness of the function findseq immediately
implies that ischain(T ′, IV, πfindseq(x,y,T ′), y). Therefore, we obtain this subgoal by
applying Lemma 6.25.
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(ii) (x, y) ∈ dom(T ): We require this as a premise in the main statement.

(iii) ischain(T ,T [(x, y)], nil,T [(x, y)]): This is obvious since this statement is equivalent
to T [(x, y)] = T [(x, y)] by Definition 6.12.

Similarly, if findseq(x, y,T ′) is successful in a well-formed map T ′ ⊆ T , and there is an
element in T which maps to y, then this element must be the penultimate element of the
chain found by findseq, and therefore it is also in the domain of T ′.

Lemma 6.38. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x, x′ be blocks, and y, y′ be
chaining values. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. (x′, y′) ∈ dom(T )
5. T [(x′, y′)] = y
6. findseq(x, y,T ′) 6= None

Then it holds that (x′, y′) ∈ dom(T ′).

Proof. First, by the soundness of findseq we know that ischain(T ′, IV, πfindseq(x,y,T ′), y). Next,
we will show that πfindseq(x,y,T ′) has the form c ‖ [(x′, y′)], for an appropriate list c. To do
this, we perform a case distinction on the structure of the list πfindseq(x,y,T ′).

Case πfindseq(x,y,T ′) = nil. Here we obtain a contradiction. Indeed, in this case it holds
ischain(T ′, IV, nil, y) and thus y = IV. Recall that we have (x′, y′) ∈ dom(T ) and
T [(x′, y′)] = y = IV, contradicting the assumption IV /∈ ran(T ).

Case πfindseq(x,y,T ′) = al ‖ [a]. It suffices to show that a = (x′, y′). From the assumption
ischain(T ′, IV, al ‖ [a], y) we conclude (using Lemma 6.21) that a ∈ dom(T ′) and
ischain(T ′,T ′[a], nil, y), implying T ′[a] = y by Definition 6.12. Therefore, it also
holds a ∈ dom(T ) and T [a] = y. So by the injectivity of T , we conclude (x′, y′) = a.

Now we know that πfindseq(x,y,T ′) has the form c ‖ [(x′, y′)]. We fix c, and finally obtain
ischain(T ′, IV, c ‖ [(x′, y′)], y). By Lemma 6.21, we therefore obtain (x′, y′) ∈ dom(T ′).

In the next few lemmas, we will compare the behavior of the calls findseq(x, y,T ′) and
findseq(x, y,T ) where T ′ ⊆ T . More precisely, we are interested to see under which
conditions we have findseq(x, y,T ′) = findseq(x, y,T ), or if not, what conclusions we can
draw from this. We first introduce the notion of a completing update.

Definition 6.39 (Completing update). Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map,
x, x′ be blocks, and y, y′ and z′ be chaining values. Assume findseq(x, y,T ) = None and
findseq(x, y, upd(T , (x′, y′), z′)) 6= None. Then the update of T with the pair ((x′, y′), z′) is
called completing for the chain ending in (x, y).
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We show below that when an update is completing for some chain in a well-formed map,
then the element which the map was updated with is part of this chain.

Lemma 6.40. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, x, x′ be blocks, and y, y′ and
z′ be chaining values. Assume the following:

1. Injective(T )
2. IV /∈ ran(T )
3. findseq(x, y,T ) = None
4. findseq(x, y, upd(T , (x′, y′), z′)) 6= None

Then it holds that (x′, y′) ∈ πfindseq(x,y,upd(T ,(x′,y′),z′)).

Proof. First, note that the fourth premise implies by the soundness of the function findseq
that unpad(mapfst(πfindseq(x,y,upd(T ,(x′,y′),z′))) ‖ [x]) 6= None. Therefore, it must hold that
¬ischain(T , IV, πfindseq(x,y,upd(T ,(x′,y′),z′)), y): Assume for contradiction that it held true that
ischain(T , IV, πfindseq(x,y,upd(T ,(x′,y′),z′)), y), then the completeness of findseq would imply that
findseq(x, y,T ) 6= None, contradicting the third premise. Thus, it must indeed hold that
¬ischain(T , IV, πfindseq(x,y,upd(T ,(x′,y′),z′)), y). On the other hand, the fourth premise implies
that ischain(upd(T , (x′, y′), z′), IV, πfindseq(x,y,upd(T ,(x′,y′),z′)), y) by the soundness of findseq.
Hence we can apply Lemma 6.27 to conclude (x′, y′) ∈ πfindseq(x,y,upd(T ,(x′,y′),z′)).

As mentioned above, we will now see under which conditions we can indeed say that
findseq(x, y,T ′) = findseq(x, y,T ). Indeed, it is often relevant in the proof outlined in
Section 5.2 to know that whenever findseq finds a complete chain for some arguments x, y
in a well-formed map T ′, then it will still find the same chain after benign updates to T ′.
Similarly, if it does not find such a complete chain in T ′, then it should still not find any
chain after benign updates that are not completing. We will now see several lemmas that
describe different conditions under which we expect the behavior of findseq to be the same
before and after updates to a map.
We begin with the following helper lemma: Whenever the function call findseq(x, y,T ′)

finds a chain in a well-formed map T ′ for a block x and chaining value y, then it will still
find the same chain in a well-formed map T ⊇ T ′. This lemma is also interesting on its own.
For instance, in the transformation described in Section 5.2, this lemma intuitively implies
that any complete chain in the map T ′ maintained by the simulator is also a complete
chain in the bigger map T maintained by the FIL-RO f (resp. fbad) in the game Greal′ .

Lemma 6.41. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y be a
chaining value. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. findseq(x, y,T ′) 6= None

Then it holds that findseq(x, y,T ) = findseq(x, y,T ′).

Proof. By the soundness of function findseq, we find ischain(T ′, IV, πfindseq(x,y,T ′), y) and
unpad(mapfst(πfindseq(x,y,T ′)) ‖ [x]) 6= None. By Lemma 6.25, the former moreover implies
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that ischain(T , IV, πfindseq(x,y,T ′), y). Hence, by the completeness and uniqueness of findseq
(see Lemma 6.34), we conclude findseq(x, y,T ) = Some(πfindseq(x,y,T ′)), which implies the
main conclusion.

Using the above lemma, we can now easily derive a corollary which explicitly imposes a
single benign update, but allows arbitrarily many of them (as we speak about a well-formed
map T ⊇ T ′, which may be obtained from T ′ by a number of appropriate updates).

Corollary 6.42. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x, x′ be blocks, and y, y′

and z′ be a chaining values. Assume the following:
1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. (x′, y′) /∈ dom(T )
5. z′ /∈ ran(T )
6. z′ 6= IV
7. findseq(x, y,T ′) 6= None

Then it holds that findseq(x, y, upd(T , (x′, y′), z′)) = findseq(x, y,T ′).

Proof. The corollary quickly follows from Lemma 6.41. To be able to apply the latter
lemma, we need to fulfill its premises by showing that (i ) Inclusion(T ′, upd(T , (x′, y′), z′)),
(ii ) Injective(upd(T , (x′, y′), z′)) and (iii ) IV /∈ ran(upd(T , (x′, y′), z′)). The first condition
is easily fulfilled by the first and fourth premises. The second condition is fulfilled by the
the second and fifth premises. Finally, the last condition is fulfilled by the third and sixth
premises.

In the above corollary, we spoke about the same parameters x and y for the call of
findseq in the premises and the conclusion. We will now state two lemmas stating sensible
conditions under which findseq will yield the same return values for arbitrary parameters
x′, y′ in the conclusion. The first considers the case where a map T ′ is updated with a
value that corresponds to the last element of an already complete chain in T ′. It makes
use of Lemma 6.33: this lemma essentially stated that the end of any complete chain in a
map T ′ may not be part of any other complete chain in T ′. Therefore, if we know that
findseq(x, y,T ′) is successful, and therefore (x, y) is the end of a complete chain in T ′, then
extending the domain of T ′ with the element (x, y) will not influence the return value of
findseq for arbitrary parameters x′, y′: Neither in the case (x, y) = (x′, y′), since the end
of a complete chain is not required to be in T ′ for findseq to be successful; nor in the case
(x, y) 6= (x′, y′), since (x, y) cannot be part of any other chain in T ′.

Lemma 6.43. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x, x′ be blocks, and y, y′ be
chaining values. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. findseq(x, y,T ′) 6= None
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5. (x, y) ∈ dom(T )
Then it holds that findseq(x′, y′, upd(T ′, (x, y),T [(x, y)])) = findseq(x′, y′,T ′).

Proof. First, we perform a case distinction on the return value of findseq(x′, y′,T ′).

Case findseq(x′, y′,T ′) 6= None. In this case, the conclusion follows from Lemma 6.41, since
it is easily seen that the update with the pair ((x, y),T [(x, y)]) is benign, i.e. it holds
Inclusion(T ′, upd(T ′, (x, y),T [(x, y)])), and the map upd(T ′, (x, y),T [(x, y)]) is well-
formed.

Case findseq(x′, y′,T ′) = None. In this case, we have to show that the update of the map
T ′ with the pair ((x, y),T [(x, y)]) is not completing for any chain in T ′, i.e. it also
holds that findseq(x′, y′, upd(T ′, (x, y),T [(x, y)])) = None. For the sake of readability
in the remainder of the proof, let us define T ′′ := upd(T ′, (x, y),T [(x, y)]). Note
that T ′ ⊆ T ′′ ⊆ T , and that all these maps are well-formed. Now, assume for
contradiction that findseq(x′, y′,T ′′) 6= None. Then, on the one hand, the update
of T ′ was completing for the chain ending in (x′, y′): We can use Lemma 6.40 to
conclude that (x, y) ∈ πfindseq(x′,y′,T ′′). On the other hand, we also know (fourth
premise) that findseq(x, y,T ′) 6= None. Therefore, by Lemma 6.41 it also holds
that findseq(x, y,T ′′) 6= None. Hence, by the soundness of findseq it holds that
ischain(T ′′, IV, πfindseq(x,y,T ′′), y) and that unpad(mapfst(πfindseq(x,y,T ′′)) ‖ [x]) 6= None.
Furthermore, since we assume that findseq(x′, y′,T ′′) 6= None, it similarly holds
that ischain(T ′′, IV, πfindseq(x′,y′,T ′′), y

′) and that unpad(mapfst(πfindseq(x′,y′,T ′′)) ‖ [x
′]) 6=

None. Hence, Lemma 6.33 applies and we obtain (x, y) /∈ πfindseq(x′,y′,T ′′), which yields
the contradiction. Thus, we must indeed have findseq(x′, y′,T ′′) = None, which fin-
ishes the proof.

In a corollary, we state the restriction that the update has to be benign in a more
intuitive fashion, similarly as in Corollary 6.42.

Corollary 6.44. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x, x′ be blocks, and y, y′

and z be chaining values. Assume the following:
1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. (x, y) /∈ dom(T )
5. z /∈ ran(T )
6. z 6= IV
7. findseq(x, y,T ′) 6= None

Then it holds that findseq(x′, y′, upd(T ′, (x, y), z)) = findseq(x′, y′,T ′).

Proof. By instantiating Lemma 6.43 with the two maps T ′ and upd(T ′, (x, y), z), we obtain
the conclusion findseq(x′, y′, upd(T ′, (x, y), upd(T ′, (x, y), z)[(x, y)])) = findseq(x′, y′,T ′),
which is equivalent to the conclusion of this corollary, as clearly upd(T ′, (x, y), z)[(x, y)] = z.
We are left to fulfill the premises of Lemma 6.43. This is not difficult:
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(i) Inclusion(T ′, upd(T ′, (x, y), z)): By the premises 1 and 4.
(ii) Injective(upd(T ′, (x, y), z)): By the premises 1, 2 and 5.
(iii) IV /∈ ran(upd(T ′, (x, y), z)): By the premises 1, 3 and 6.
(iv) findseq(x, y,T ′) 6= None: By premise 7.
(v) (x, y) ∈ dom(upd(T ′, (x, y), z)): Trivial.

Lemma 6.43 considered the situation where an update to a map T with a pair ((x, y), z)
did not complete a chain in T by asserting that (x, y) is already the end of some complete
chain in T . The next lemma also ensures that the update is not completing, however it does
not require (x, y) to be the end of some complete chain; instead, it requires that (x, y) does
not fill a gap in an incomplete chain ending in (x′, y′). More precisely, it requires the update
to be benign along with the usual well-formedness conditions for T . Additionally, it also
requires that ((x, y), z) is not a fixed-point (in the transformation described in Section 5.2,
this is guaranteed by the failure event bad2), and that (x, y) is not the predecessor of
another element of a chain in T (this is guaranteed by the failure events bad2 and bad3).
Now, observe that if (x, y) is the penultimate element of an incomplete chain ending in
(x′, y′), and (x′, y′) is not in the domain of upd(T , (x, y), z), then the update with the pair
(x, y) may indeed be completing for the chain ending in (x′, y′) without violating any of
the other conditions (and therefore the results of the calls to findseq in the conclusion of
the following lemma would differ); the last assumption of the lemma allows us to exclude
this case.

Lemma 6.45. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x, x′ be blocks, and y, y′

and z be chaining values. Assume the following:
1. Injective(T )
2. IV /∈ ran(T )
3. (x, y) /∈ dom(T )
4. z /∈ ran(T )
5. z 6= IV
6. z 6= y
7. ∄x0. (x0, z) ∈ dom(T )
8. (x′, y′) ∈ dom(upd(T , (x, y), z))

Then it holds that findseq(x′, y′, upd(T , (x, y), z)) = findseq(x′, y′,T ).

Proof. In the case where findseq(x′, y′,T ) 6= None, the statement immediately follows from
Corollary 6.42. Therefore, let us concentrate on the case where findseq(x′, y′,T ) = None.
Then, we need to show that also findseq(x′, y′, upd(T , (x, y), z)) = None; that is, the up-
date of T is not completing for any chain. We prove the claim by contradiction: Assume
that findseq(x′, y′, upd(T , (x, y), z)) 6= None. We expect (and show below) that this yields
a contradiction to the premises of the statement. Since we assume findseq(x′, y′,T ) =
None and findseq(x′, y′, upd(T , (x, y), z)) 6= None, Lemma 6.40 applies and we conclude
(x, y) ∈ πfindseq(x′,y′,upd(T ,(x,y),z)). Furthermore, by the soundness of findseq we obtain that
ischain(upd(T , (x, y), z), IV, πfindseq(x′,y′,upd(T ,(x,y),z)), y

′). For the remainder of the proof, let
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us define c := πfindseq(x′,y′,upd(T ,(x,y),z)). Now, using only the premises (x, y) ∈ c and
ischain(upd(T , (x, y), z), IV, c, y′) and the premises 6 through 8 of the main statement, we
derive a contradiction using an induction over c, generalizing the constant IV as an arbitrary
value ŷ. That is, under the premises 6 through 8 we prove the following statement:

∀ŷ. ischain(upd(T , (x, y), z), ŷ, c, y′)⇒ (x, y) ∈ c⇒ ⊥

Base case: c = nil. This yields a contradiction immediately since we assume (x, y) ∈ nil.

Induction step: c = a::al.

Induction hypothesis:

∀ŷ. ischain(upd(T , (x, y), z), ŷ, al, y′)⇒ (x, y) ∈ al ⇒ ⊥

We treat the cases a 6= (x, y) and a = (x, y) separately.

Case a 6= (x, y). This is the easier case, since in this case we can use the induction
hypothesis to obtain the contradiction. Indeed, the two premises of the induc-
tion hypothesis are easily fulfilled: we have ischain(upd(T , (x, y), z), ŷ, a::al, y′),
which immediately implies ischain(upd(T , (x, y), z), upd(T , (x, y), z)[a], al, y′) by
Lemma 6.21. Furthermore, since we have a 6= (x, y) and (x, y) ∈ a::al, we
conclude (x, y) ∈ al.

Case a = (x, y). This case is slightly more difficult, since we cannot use the in-
duction hypothesis. However, since a = (x, y), we now have the assumption
ischain(upd(T , (x, y), z), ŷ, (x, y)::al, y′). We will now show that this yields a
contradiction to the premises 6 through 8. To achieve this, we need another
case distinction to distinguish whether there is another element in this chain
after the element (x, y).

Case al = nil. By Definition 6.12, we obtain that upd(T , (x, y), z)[(x, y)] = y′,
which immediately implies z = y′. Now, we quickly obtain a contradiction
using a last case distinction.

Case (x, y) = (x′, y′). Then y′ = y, and thus z = y, contradiction to the
sixth premise.

Case (x, y) 6= (x′, y′). We have that (x′, y′) ∈ dom(upd(T , (x, y), z)) (eighth
premise), and since (x, y) 6= (x′, y′) we know (x′, y′) ∈ dom(T ). Since
z = y′, we obtain (x′, z) ∈ dom(T ), contradiction to the seventh
premise.

Case al = a′::al′. By Definition 6.12, we get upd(T , (x, y), z)[(x, y)] = snd(a′),
implying z = snd(a′), and ischain(upd(T , (x, y), z), snd(a′), a′::al′, y′). Again,
we perform a last case distinction to derive the contradiction.

Case (x, y) = a′. Then snd(a′) = y, and thus z = y, contradiction to the
sixth premise.
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Case (x, y) 6= a′. We have ischain(upd(T , (x, y), z), snd(a′), a′::al′, y′). By
Lemma 6.21 this implies a′ ∈ dom(upd(T , (x, y), z)). Since (x, y) 6= a′,
we conclude a′ ∈ dom(T ). Because z = snd(a′), we obtain (fst(a′), z) ∈
dom(T ), contradiction to the seventh premise.

Finally, our original assumption that findseq(x′, y′, upd(T , (x, y), z)) 6= None led to a con-
tradiction. Thus, it must indeed hold that findseq(x′, y′, upd(T , (x, y), z)) = None and
therefore findseq(x′, y′, upd(T , (x, y), z)) = findseq(x′, y′,T ), which finishes the proof.

6.6 Lemmas on valid chain

The predicate valid chain (see Definition 6.15) is closely related to the function findseq.
Namely, valid chain(T , c ‖ [(x, y)]) means that c ‖ [(x, y)] is a complete chain in T and
additionally (x, y) ∈ dom(T ). By contrast, findseq(x, y,T ) = Some(c) only means that
c ‖ [(x, y)] is a complete chain in T , but the element (x, y) is not required to be in the
domain of T . Therefore the former statement (involving valid chain) is a slightly stronger
statement than the latter statement (involving findseq); we use this predicate to speak
about complete chains that are entirely contained in a map, i.e. in particular their last
element is also in the domain of T .
We begin by observing two basic properties concerning the predicate valid chain. First,

we formally state the relation between findseq and valid chain described above in a gener-
alized fashion as follows.

Lemma 6.46. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y be a
chaining value. Assume the following:

1. Inclusion(T ′,T )
2. findseq(x, y,T ′) 6= None
3. (x, y) ∈ dom(T )

Then it holds that valid chain(T , πfindseq(x,y,T ′) ‖ [(x, y)]).

Proof. By Lemma 6.37, we obtain ischain(T , IV, πfindseq(x,y,T ′) ‖ [(x, y)],T [(x, y)]). Further-
more, by the soundness of findseq we know unpad(mapfst(πfindseq(x,y,T ′)) ‖ [x]) 6= None. Thus
it holds valid chain(T , πfindseq(x,y,T ′) ‖ [(x, y)]) by the definition of valid chain.

We also observe that the predicate cannot hold for a non-empty list in the empty map
(clearly, it never holds for the empty list because of Axiom 6.6). This is needed in the game
transition outlined in Section 5.2 to conclude that there are no valid chains in the initial
games (i.e., before the simulator has made any calls).

Lemma 6.47. Let c : ({0, 1}k × {0, 1}n) list be a list and xy be a pair of a block and a
chaining value. Then it holds that ¬valid chain(∅, c ‖ [xy]).

Proof. Assume valid chain(∅, c ‖ [xy]), then we know ischain(∅, IV, c ‖ [xy], z) for some z.
By Lemma 6.21 we obtain xy ∈ dom(∅), yielding a contradiction.
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We also state an alternative variant of the completeness and uniqueness of the function
findseq (see Lemma 6.34), using the predicate valid chain.

Lemma 6.48 (Completeness and uniqueness of findseq under valid chain). Let T : {0, 1}k×
{0, 1}n → {0, 1}n be a map, x a block, y a chaining value, and c : ({0, 1}k × {0, 1}n) list a
list. Assume the following:

1. Injective(T )
2. IV /∈ ran(T )
3. valid chain(T , c ‖ [(x, y)])

Then it holds that findseq(x, y,T ) = Some(c).

Proof. We obtain from the premise valid chain(T , c ‖ [(x, y)]) that for some z it holds that
ischain(T , IV, c ‖ [(x, y)], z), and that unpad(mapfst(c) ‖ [x]) 6= None. The former implies
ischain(T , IV, c, y) by Lemma 6.21. Hence, the conclusion follows by the completeness and
uniqueness of findseq (Lemma 6.34).

Finally, we consider the behavior of predicate valid chain when the map that it relates to
gets updated. The first lemma simply states that we can extend a map T with an element
not present in its domain without afflicting the validity of the predicate.

Lemma 6.49. Let T : {0, 1}k × {0, 1}n → {0, 1}n be a map, c : ({0, 1}k × {0, 1}n) list be
a list, xy be a pair of a block and a chaining value, and z be a chaining value. Assume:

1. valid chain(T , c)
2. xy /∈ dom(T )

Then it holds that valid chain(upd(T , xy, z), c).

Proof. We have to show ∃z′. ischain(upd(T , xy, z), IV, c, z′) ∧ unpad(mapfst(c)) 6= None.
From valid chain(T , c) we obtain a z′ such that ischain(T , IV, c, z′) and unpad(mapfst(c)) 6=
None. It remains only to show ischain(upd(T , xy, z), IV, c, z′). This follows quickly from
Lemma 6.24; to apply it, we only need to show xy /∈ c. But this is clear: If we had xy ∈ c,
then by Corollary 6.23 it would hold xy ∈ dom(T ), yielding a contradiction.

The last two lemmas of this section are variants of Lemma 6.45. Intuitively, we would like
to say that when a well-formed map T gets updated with a pair ((x, y), z), and this update
is benign and not completing, then for any list c, we have valid chain(T , c) if and only if
valid chain(upd(T , (x, y), z), c). However, we need an additional condition for this to hold:
Indeed, it could happen that (x, y) is the last element of c. In this case, the latter statement
may hold, but the former may not, even though the update was not completing. This is
the main difference to Lemma 6.45; there, an additional assumption was needed to ensure
that the element (x, y) was not the penultimate element of the chain returned by findseq.
Both of the following two lemmas are needed at different points in the EasyCrypt proof
outlined in Section 5.2. The first uses the same premises as Lemma 6.45, and additionally
assumes findseq(x, y,T ) = None, thereby restricting the statement to the case where (x, y)
is not the last element of a complete chain in T .
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Lemma 6.50. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x, x′ be blocks, and y, y′

and z be chaining values. Assume the following:
1. Injective(T )
2. IV /∈ ran(T )
3. (x, y) /∈ dom(T )
4. z /∈ ran(T )
5. z 6= IV
6. z 6= y
7. ∄x0. (x0, z) ∈ dom(T )
8. (x′, y′) ∈ dom(upd(T , (x, y), z))
9. findseq(x, y,T ) = None

Then it holds that valid chain(upd(T , (x, y), z), c ‖ [(x′, y′)])⇔ valid chain(T , c ‖ [(x′, y′)]).

Proof. The direction “⇐” of the conclusion follows immediately from Lemma 6.49. The in-
teresting case is the direction “⇒”: Assume that valid chain(upd(T , (x, y), z), c ‖ [(x′, y′)]).
Then, we show that valid chain(T , c ‖ [(x′, y′)]). First, we apply the completeness and
uniqueness of findseq under valid chain to conclude that findseq(x′, y′, upd(T , (x, y), z)) 6=
None and πfindseq(x′,y′,upd(T ,(x,y),z)) = c (note that upd(T , (x, y), z) is still well-formed since
the update is benign). Now, since Lemma 6.45 implies findseq(x′, y′, upd(T , (x, y), z)) =
findseq(x′, y′,T ), we also know that findseq(x′, y′,T ) 6= None, and what we need to show
is valid chain(T , πfindseq(x′,y′,T ) ‖ [(x

′, y′)]). We perform a case distinction.

Case (x, y) = (x′, y′). This is the case where the new element used for the update is the
last element of a complete chain. It yields a contradiction to the ninth premise, since
we have findseq(x′, y′,T ) 6= None.

Case (x, y) 6= (x′, y′). In this case, the premise (x′, y′) ∈ dom(upd(T , (x, y), z)) implies
(x′, y′) ∈ dom(T ). Then, the claim follows by Lemma 6.46.

The next lemma uses the same premises as Lemma 6.45, except that the premise (x′, y′) ∈
dom(upd(T , (x, y), z)) is strengthened as (x′, y′) ∈ dom(T ): Thereby, as in the previous
lemma we exclude the case where the new element is the last element of a complete chain.

Lemma 6.51. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x, x′ be blocks, and y, y′

and z be chaining values. Assume the following:
1. Injective(T )
2. IV /∈ ran(T )
3. (x, y) /∈ dom(T )
4. z /∈ ran(T )
5. z 6= IV
6. z 6= y
7. ∄x0. (x0, z) ∈ dom(T )
8. (x′, y′) ∈ dom(T )
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Then it holds that valid chain(upd(T , (x, y), z), c ‖ [(x′, y′)])⇔ valid chain(T , c ‖ [(x′, y′)]).

Proof. Note that (x′, y′) ∈ dom(T ) implies (x′, y′) ∈ dom(upd(T , (x, y), z)). Now, the
proof is analogous to the proof of Lemma 6.50, except in the case where (x, y) = (x′, y′):
In this case, here we obtain a contradiction between the premises (x, y) /∈ dom(T ) and
(x′, y′) ∈ dom(T ).

6.7 Lemmas on set bad3

In this section, we discuss lemmas concerning the predicate set bad3, described in Sec-
tion 6.1.5. More precisely, we will see under which conditions the maps T and T ′ in game
Greal′ may be updated with the same pair ((x, y), z) (this may happen upon calls to the sim-
ulator fq) such that set bad3(z0,T

′,T ) = set bad3(z0, upd(T
′, (x, y), z), upd(T , (x, y), z)).

Essentially, as for the Lemmas 6.43 and 6.45 discussed at the end of Section 6.5, we need
to ensure that the update with ((x, y), z) is not completing for any chain in T . Firstly, we
need that T is well-formed and that the update is benign. Then, we again consider two
cases: either the pair (x, y) is the last element of a complete chain in T ′, but then (x, y)
cannot be part of any other chain in T ′ (this is the first lemma); or the pair (x, y) does
not correspond to the last element of any complete chain, but in this case we require that
it does not fill a gap by requiring that the pair ((x, y), z) is not a fixed-point and that z
was not already used as a chaining value in a query to the simulator (this is the second
lemma); in both cases, the update cannot complete a chain.
In the first lemma, to ensure that the newly added value is the end of a complete chain,

we require that findseq(x, y,T ′) 6= None, similarly as was the case in Corollary 6.44.

Lemma 6.52. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y, z and
z0 be chaining values. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. (x, y) /∈ dom(T )
5. z /∈ ran(T )
6. z 6= IV
7. findseq(x, y,T ′) 6= None

Then it holds that set bad3(z0, upd(T
′, (x, y), z), upd(T , (x, y), z))⇔ set bad3(z0,T

′,T ).

Proof. For the sake of readability of the proof, let us define T ′xyz := upd(T ′, (x, y), z) and
Txyz := upd(T , (x, y), z).

We begin with the direction “⇒”, which is the easier one. By unfolding Definition 6.16,
we obtain the assumptions z0 ∈ ran(Txyz ), T

−1
xyz [z0] /∈ dom(T ′xyz ) and ∀c. ¬valid chain(c ‖

[T−1xyz [z0]],Txyz ). Furthermore, observe that z0 6= z: otherwise, we would have T−1xyz [z0] =
(x, y), and the assumption (x, y) /∈ dom(T ′xyz ) in itself is contradictory. Therefore, we re-
spectively obtain z0 ∈ ran(T ), T−1 [z0] /∈ dom(T ′), and ∀c. ¬valid chain(c ‖ [T−1 [z0]],Txyz ).
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From the latter, we obtain ∀c. ¬valid chain(c ‖ [T−1 [z0]],T ) using Lemma 6.49. Hence, we
conclude set bad3(z0,T

′,T ).

For the direction “⇐”, we have the assumptions z0 ∈ ran(T ), T−1 [z0] /∈ dom(T ′) and
∀c. ¬valid chain(c ‖ [T−1 [z0]],T ). Again, observe that z0 6= z, since otherwise we obtain
a contradiction to the premise z /∈ ran(T ). Similarly, note that T−1 [z0] 6= (x, y), since we
have z0 ∈ ran(T ), but (x, y) /∈ dom(T ). We have to show the following:

(i) z0 ∈ ran(Txyz ): This is clear, since we have z0 ∈ ran(T ) and z0 6= z.

(ii) T−1xyz [z0] /∈ dom(T ′xyz ): This is also clear, since we have T−1 [z0] /∈ dom(T ′), z0 6= z
and T−1 [z0] 6= (x, y).

(iii) ∀c. ¬valid chain(c ‖ [T−1xyz [z0]],Txyz ): Note that T−1xyz [z0] = T−1 [z0] since z0 6= z.
To show the goal, assume for contradiction that valid chain(c ‖ [T−1 [z0]],Txyz ) for
some list c. This implies ischain(Txyz , IV, c ‖ [T−1 [z0]], z0) and unpad(mapfst(c ‖
[T−1 [z0]])) 6= None. Now, on the one hand, we have ¬valid chain(c ‖ [T−1 [z0]],T ),
and therefore it must hold that ¬ischain(T , IV, c ‖ [T−1 [z0]], z0). Thus we can ap-
ply Lemma 6.27 to conclude (x, y) ∈ c ‖ [T−1 [z0]], and since T−1 [z0] 6= (x, y), we
get (x, y) ∈ c. On the other hand, we have findseq(x, y,T ′) 6= None, which implies
findseq(x, y,T ′xyz ) 6= None by Corollary 6.42. Hence, we know from the soundness
of findseq that ischain(Txyz , IV, πfindseq(x,y,Txyz ), y) and unpad(mapfst(πfindseq(x,y,Txyz )) ‖
[x]) 6= None. From ischain(Txyz , IV, c ‖ [T

−1 [z0]], z0), we obtain by Lemma 6.21 that
ischain(Txyz , IV, c, snd(T

−1 [z0])). Recall that unpad(mapfst(c) ‖ fst([T−1 [z0]])) 6=
None. Finally, Lemma 6.33 applies and we obtain (x, y) /∈ c, which yields the contra-
diction.

In the second lemma, as mentioned above we ensure that the update of T with the pair
((x, y), z) is not completing by requiring that the pair ((x, y), z) is not a fixed-point and
that z was not previously used as a chaining value, similarly as for Lemma 6.45.

Lemma 6.53. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y, z and
z0 be chaining values. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. (x, y) /∈ dom(T )
5. z /∈ ran(T )
6. z 6= IV
7. z 6= y
8. ∄x0. (x0, z) ∈ dom(T )

Then it holds that set bad3(z0, upd(T
′, (x, y), z), upd(T , (x, y), z))⇔ set bad3(z0,T

′,T ).
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Proof. As in the previous lemma, let us define T ′xyz := upd(T ′, (x, y), z) and Txyz :=
upd(T , (x, y), z) for the sake of readability. The proof for the direction “⇒” is analo-
gous to the previous proof, and the proof for direction “⇐” is analogous for the cases
(i) z0 ∈ ran(Txyz ) and (ii) T−1xyz [z0] /∈ dom(T ′xyz ). For the case (iii) ∀c. ¬valid chain(c ‖
[T−1xyz [z0]],Txyz ), we note that T−1xyz [z0] = T−1 [z0] since z0 6= z. Again, assume for con-
tradiction valid chain(c ‖ [T−1 [z0]],Txyz ) for some list c. From this, as in the previous
proof, we eventually obtain (x, y) ∈ c. Therefore, c has the form cℓ ‖ (x, y)::cr for appro-
priate cℓ and cr. Hence we have valid chain(cℓ ‖ (x, y)::cr ‖ [T

−1 [z0]],Txyz ), which implies
ischain(Txyz , IV, cℓ ‖ (x, y)::cr ‖ [T

−1 [z0]], z0). We will now show that the latter statement
leads to a contradiction to the premises 7 and 8. We begin with a case distinction on the
structure of the list cr.

Case cr = nil. Using Lemma 6.21, we obtain ischain(Txyz ,Txyz [(x, y)], [T
−1 [z0]], z0), and

therefore ischain(Txyz , z, [T
−1 [z0]], z0). By Definition 6.12, this implies T−1 [z0] ∈

dom(Txyz ) and z = snd(T−1 [z0]). We use another case distinction.

Case T−1 [z0] = (x, y). In this case we obtain snd(T−1 [z0]) = y and therefore z = y,
contradiction to the seventh premise.

Case T−1 [z0] 6= (x, y). In this case we obtain T−1 [z0] ∈ dom(T ), and therefore
(fst(T−1 [z0]), z) ∈ dom(T ), contradiction to the eighth premise.

Case cr = a::al. By Lemma 6.21, it holds ischain(Txyz ,Txyz [(x, y)], a::al ‖ [T−1 [z0]], z0),
and therefore ischain(Txyz , z, a::al ‖ [T

−1 [z0]], z0). We perform another case distinc-
tion on the structure of al.

Case al = nil. Then, we have ischain(Txyz , z, a::T
−1 [z0]::nil, z0). By Definition 6.12,

this implies a ∈ dom(Txyz ) and z = snd(a). We use another case distinction.

Case a = (x, y). Then it holds that snd(a) = y, and therefore z = y, contradic-
tion to the seventh premise.

Case a 6= (x, y). Then it holds that a ∈ dom(T ), and therefore (fst(a), z) ∈
dom(T ), contradiction to the eighth premise.

Case al = a′::al′. In this case we have ischain(Txyz , z, a::a
′::al′ ‖ T−1 [z0]::nil, z0), and

the rest is analogous to the case where al = nil.

Hence, the assumption valid chain(c ‖ [T−1 [z0]],Txyz ) leads to a contradiction and thus,
since T−1xyz [z0] = T−1 [z0] we must indeed have ∀c. ¬valid chain(c ‖ [T−1xyz [z0]],Txyz ), which
finishes the last case, and the proof.

6.8 Lemmas on Claim5

In the last section of this chapter, we will discuss a few lemmas concerning the predicate
Claim5, described in Section 6.1.6. Recall that Claim5(T ′,T ), for well-formed maps T ′ ⊆ T ,
means that for any element (x, y) that belongs to a chain in T and that is also in the domain
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of T ′, all elements of this chain preceding the element (x, y) are also in the domain of T ′,
provided that there is no complete chain in T whose last element maps to the value y.

In a first lemma, we make this relation explicit: Assume that there is a complete chain of
the form c ‖ [(x′, y′), (x, y)] in T , and (x′, y′) is also in the domain of T ′. Then c ‖ [(x′, y′)]
is a chain in T ′, since we can reason inductively that all elements of c are in the domain
of T ′.

Lemma 6.54. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, c : ({0, 1}k × {0, 1}n) list
be a list, x, x′ be blocks, and y, y′ be chaining values. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. ischain(T , IV, c ‖ [(x′, y′)], y)
5. unpad(mapfst(c ‖ [(x′, y′)]) ‖ [x]) 6= None
6. (x′, y′) ∈ dom(T ′)
7. Claim5(T ′,T )

Then it holds that ischain(T ′, IV, c ‖ [(x′, y′)], y).

Proof. We will prove the claim by a structural induction over the list c. However, the
premise unpad(mapfst(c ‖ [(x′, y′)]) ‖ [x]) 6= None is not suitable for such an induction,
since in general the fact that some chain is in the domain of unpad does not imply that
the same holds for a suffix of this chain. Therefore, we replace this premise with a premise
more suitable for induction; namely,

∀x0, y0. (x0, y0) ∈ c⇒ findseq(x0, y0,T ) = None.

We eventually obtain the validity of this premise using Lemma 6.33: Fix an arbitrary
element (x0, y0) ∈ c, and assume for contradiction that findseq(x0, y0,T ) 6= None. By the
soundness of function findseq, this implies that ischain(T , IV, πfindseq(x0,y0,T ), y0) and that
unpad(mapfst(πfindseq(x0,y0,T )) ‖ [x0]) 6= None. Hence, Lemma 6.33 applies and we obtain
(x0, y0) /∈ c ‖ [(x′, y′)], which yields the contradiction since we have (x0, y0) ∈ c.

We will now show the claim using an induction over c, generalizing the constant IV as
an arbitrary value ŷ. That is, under the premises 1 through 3, 6 and 7 we show:

∀ŷ. ischain(T , ŷ, c ‖ [(x′, y′)], y)⇒ (∀x0, y0. (x0, y0) ∈ c⇒ findseq(x0, y0,T ) = None)⇒

ischain(T ′, ŷ, c ‖ [(x′, y′)], y)

Base case: c = nil. Since we have ischain(T , ŷ, [(x′, y′)], y) we know by Definition 6.12
that ŷ = y′ and T [(x′, y′)] = y, and we have to show (x′, y′) ∈ dom(T ′), ŷ = y′ and
T ′[(x′, y′)] = y. This is trivial using premises 1 and 6.

Induction step: c = a::al.
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Induction hypothesis:

∀ŷ. ischain(T , ŷ, al ‖ [(x′, y′)], y)⇒

(∀x0, y0. (x0, y0) ∈ al ⇒ findseq(x0, y0,T ) = None)⇒

ischain(T ′, ŷ, al ‖ [(x′, y′)], y)

We use a case distinction on the structure of the list al, and concentrate first on the
case where al = a′::al′.

Case al = a′::al′. First, from the assumption ischain(T , ŷ, a::a′::al′ ‖ [(x′, y′)], y) we
immediately obtain by Definition 6.12 that a ∈ dom(T ), ŷ = snd(a), T [a] =
snd(a′) and ischain(T , snd(a′), a′::al′ ‖ [(x′, y′)], y). The latter statement fulfills
the first premise of the induction hypothesis (instantiated with ŷ := snd(a′)).
The second premise of the induction hypothesis is also easily fulfilled: since
we know that ∀x0, y0. (x0, y0) ∈ a::al ⇒ findseq(x0, y0,T ) = None, clearly it
holds that ∀x0, y0. (x0, y0) ∈ al ⇒ findseq(x0, y0,T ) = None. Hence, we obtain
from the induction hypothesis that ischain(T ′, snd(a′), a′::al′ ‖ [(x′, y′)], y). Since
we also have ŷ = snd(a), to prove the goal ischain(T ′, ŷ, a::a′::al′ ‖ [(x′, y′)], y) it
only remains to show that a ∈ dom(T ′) and T ′[a] = snd(a′) (see Definition 6.12).
Note that we have Inclusion(T ′,T ), a ∈ dom(T ) and T [a] = snd(a′), so if
a ∈ dom(T ′) then T ′[a] = snd(a′) immediately follows. Therefore we are only
left to prove a ∈ dom(T ′). This is where we need the premise Claim5(T ′,T ),
which yields the conclusion since it implies that

a ∈ dom(T )⇒

T [a] = snd(a′)⇒

a′ ∈ dom(T ′)⇒

findseq(fst(a), snd(a),T ) = None⇒ a ∈ dom(T ′).

We have already fulfilled the first and second premises. Moreover, since we
have ischain(T ′, snd(a′), a′::al′ ‖ [(x′, y′)], y) then a′ ∈ dom(T ′) follows immedi-
ately by Lemma 6.21. Finally, the last premise also holds since we have that
∀x0, y0. (x0, y0) ∈ a::al ⇒ findseq(x0, y0,T ) = None, and we take x0 = fst(a)
and y0 = snd(a). Thus, we obtain a ∈ dom(T ′), which finishes this case.

Case al = nil. This case is analogous to the case al = a′::al′: Simply replace in the
above proof the list a′::al′ with nil, respectively the variable a′ (when on its own)
with the pair (x′, y′).

In a sense, both the predicates set bad3 and Claim5 ensure that queries of the distin-
guisher can only be made in order. The difference is that set bad3 does this locally, i.e. for
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a given chaining value y used in a query from the distinguisher, while Claim5 guarantees
a correct ordering of all queries globally, i.e. for all elements in map T ′. Therefore we
expect, and state formally below, the following relation between these two predicates. If
Claim5(T ′,T ) holds for given well-formed maps T ′ ⊆ T , then both maps can be updated
with a pair ((x, y), z) such that Claim5(upd(T ′, (x, y), z), upd(T , (x, y), z)) still holds, pro-
vided that the update is benign, and event bad3 is not triggered for the chaining value y
(i.e., it holds that ¬set bad3(y,T ′,T )). This lemma constitutes an important element to
derive that as long as none of the failure events is triggered, the statement Claim5(T ′,T )
is an invariant of game Greal′ , meaning that the distinguisher can only make queries in
order up to the failure events – this is an essential property needed in the transformation
described in Section 5.2.

Lemma 6.55. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y and z
be chaining values. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. (x, y) /∈ dom(T )
5. z /∈ ran(T )
6. z 6= IV
7. ¬set bad3(y,T ′,T )
8. Claim5(T ′,T )

Then it holds that Claim5(upd(T ′, (x, y), z), upd(T , (x, y), z)).

Proof. We want to show the following:

∀(x0, y0), (x
′
0, y
′
0). (x

′
0, y
′
0) ∈ dom(upd(T , (x, y), z))∧

(x0, y0) ∈ dom(upd(T ′, (x, y), z))∧

upd(T , (x, y), z)[(x′0, y
′
0)] = y0∧

findseq(x′0, y
′
0, upd(T , (x, y), z)) = None⇒

(x′0, y
′
0) ∈ dom(upd(T ′, (x, y), z)).

Fix x0, y0, x
′
0 and y′0. Assume that the four premises of the above statement hold. Then, we

show that (x′0, y
′
0) ∈ dom(upd(T ′, (x, y), z)). If (x′0, y

′
0) = (x, y), this is trivial. Therefore

assume that (x′0, y
′
0) 6= (x, y). Now, since we have (x0, y0) ∈ dom(upd(T ′, (x, y), z)), it

either holds that (x0, y0) = (x, y), or (x0, y0) ∈ dom(T ′). The basic idea of the proof is
that in the former case, we obtain the conclusion because we know ¬set bad3(y,T ′,T ), and
in the latter case, we obtain the conclusion because we know Claim5(T ′,T ). We perform
a case distinction.

Case (x0, y0) = (x, y). Then, we obtain upd(T , (x, y), z)[(x′0, y
′
0)] = y. Since (x′0, y

′
0) 6=

(x, y), we furthermore conclude (x′0, y
′
0) ∈ dom(T ) and T [(x′0, y

′
0)] = y. Moreover,

we also know findseq(x′0, y
′
0,T ) = None: If we had findseq(x′0, y

′
0,T ) 6= None, we
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would obtain by Corollary 6.42 that findseq(x′0, y
′
0, upd(T , (x, y), z)) 6= None, yield-

ing a contradiction. We will now use the premise ¬set bad3(y,T ′,T ) to conclude
(x′0, y

′
0) ∈ dom(T ′). Unfolding the definition of set bad3, this premise states:

¬
(
y ∈ ran(T ) ∧ T−1[y] /∈ dom(T ′) ∧ ∀c. ¬valid chain(c ‖ [T−1[y]],T )

)

First, note that since we know (x′0, y
′
0) ∈ dom(T ) and T [(x′0, y

′
0)] = y, we obtain

T−1[y] = (x′0, y
′
0). Therefore we can rewrite the above statement as

y /∈ ran(T ) ∨ (x′0, y
′
0) ∈ dom(T ′) ∨ ∃c. valid chain(c ‖ [(x′0, y

′
0)],T )

However, we know that y ∈ ran(T ) since (x′0, y
′
0) ∈ dom(T ) and T [(x′0, y

′
0)] = y.

Furthermore, if there existed a c such that valid chain(c ‖ [(x′0, y
′
0)],T ) were true,

then by the definition of valid chain (Definition 6.15) and the completeness of findseq
(Axiom 6.14) we would obtain findseq(x′0, y

′
0,T ) 6= None, contradicting the fact that

findseq(x′0, y
′
0,T ) = None. Hence, it must hold (x′0, y

′
0) ∈ dom(T ′). Thus it also holds

(x′0, y
′
0) ∈ dom(upd(T ′, (x, y), z)), which finishes this case.

Case (x0, y0) ∈ dom(T ′). Since (x′0, y
′
0) 6= (x, y), we obtain that (x′0, y

′
0) ∈ dom(T ) and

T [(x′0, y
′
0)] = y0. Furthermore, we also know that findseq(x′0, y

′
0,T ) = None by an

analogous argument as in the previous case. Therefore, all premises of Claim5(T ′,T )
are fulfilled, implying that (x′0, y

′
0) ∈ dom(T ′). Thus, it clearly also holds that

(x′0, y
′
0) ∈ dom(upd(T ′, (x, y), z)), which finishes the proof.

The final two statements described in this section concern the behavior of the function
findseq in the maps T ′ and T , where T ′ ⊆ T . Firstly, assume that findseq(x, y,T ) is
successful in the map T . Then, if Claim5(T ′,T ) holds and event bad3 is not triggered by
the simulator for a query using y as a chaining value, all elements of the chain returned
by findseq must already be in the domain of T ′, and therefore findseq(x, y,T ′) will also be
successful.

Lemma 6.56. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y be a
chaining value. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. ¬set bad3(y,T ′,T )
5. Claim5(T ′,T )
6. findseq(x, y,T ) 6= None

Then it holds that findseq(x, y,T ′) 6= None.

Proof. First, since findseq(x, y,T ) 6= None, by the soundness of function findseq, it holds
that ischain(T , IV, πfindseq(x,y,T ), y) and unpad(mapfst(πfindseq(x,y,T )) ‖ [x]) 6= None. First we
will consider the case where πfindseq(x,y,T ) = nil, which is easy. Next, we will prove the claim
in the case where πfindseq(x,y,T ) has the form c ‖ [(x′, y′)].
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Case πfindseq(x,y,T ) = nil. From ischain(T , IV, nil, y), we get that IV = y by Definition 6.12,
and therefore also ischain(T ′, IV, nil, y). Then, since furthermore unpad(mapfst([x])) 6=
None, and T ′ ⊆ T is well-formed, the completeness of function findseq implies that
findseq(x, y,T ′) 6= None.

Case πfindseq(x,y,T ) = c ‖ [(x′, y′)]. In this case, we perform a proof by contradiction: As-
sume that findseq(x, y,T ′) = None. Then, we show that event bad3 would have been
triggered for the value y, i.e. we show that set bad3(y,T ′,T ) holds true, contradict-
ing the fourth assumption. Unfolding the definition of set bad3, this means that we
have to prove the following:

y ∈ ran(T ) ∧ T−1[y] /∈ dom(T ′) ∧ ∀c. ¬valid chain(c ‖ [T−1[y]],T )

We prove each of the operands in the above conjunction below; the assumption
Claim5(T ′,T ) will only be needed for the proof of the second operand. In each of
the three instances, we will need the following. Since πfindseq(x,y,T ) has the form c ‖
[(x′, y′)], we have ischain(T , IV, c ‖ [(x′, y′)], y) and unpad(mapfst(c) ‖ [x′, x]) 6= None.
By Lemma 6.21, the former implies that (x′, y′) ∈ dom(T ) and T [(x′, y′)] = y. Thus,
we get T−1[y] = (x′, y′). We will henceforth speak only about (x′, y′).

(i) y ∈ ran(T ): Since (x′, y′) ∈ dom(T ) and T [(x′, y′)] = y, we immediately
conclude y ∈ ran(T ).

(ii) (x′, y′) /∈ dom(T ′): Assume for contradiction that (x′, y′) ∈ dom(T ′). Then, we
can make use of the assumption that Claim5(T ′,T ): by Lemma 6.54, we obtain
ischain(T ′, IV, c ‖ [(x′, y′)], y). Since furthermore unpad(mapfst(c) ‖ [x′, x]) 6=
None and the map T ′ ⊆ T is well-formed, by the completeness of findseq we
obtain that findseq(x, y,T ′) 6= None, contradicting our assumption. Therefore,
(x′, y′) /∈ dom(T ′).

(iii) ∀c. ¬valid chain(c ‖ [(x′, y′)],T ): Assume for contradiction that there exists a
chain c′ such that valid chain(c′ ‖ [(x′, y′)],T ) holds. That is, for some z′ we
have ischain(T ′, IV, c′ ‖ [(x′, y′)], z′) and unpad(mapfst(c′) ‖ [x′]) 6= None (see
Definition 6.15). Then, by Lemma 6.21 it also holds that ischain(T ′, IV, c′, y′).
Now, on the other hand, we also have that ischain(T , IV, c ‖ [(x′, y′)], y) and
unpad(mapfst(c ‖ [(x′, y′)]) ‖ [x]) 6= None. This yields a contradiction since now
Lemma 6.33 implies that (x′, y′) /∈ c ‖ [(x′, y′)], which is absurd. Hence, we
must indeed have ∀c. ¬valid chain(c ‖ [(x′, y′)],T ), and this finishes the proof.

A corollary of the above lemma is that, if findseq(x, y, upd(T , (x, y), z)) is successful, and
the update with ((x, y), z) is benign, then findseq(x, y,T ) must also have been successful
(since the last element of a complete chain is not required to be in the domain of the chain’s
map), and thus, as above, findseq(x, y,T ′) must also be successful.
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Corollary 6.57. Let T ,T ′ : {0, 1}k × {0, 1}n → {0, 1}n be maps, x be a block, and y and
z be chaining values. Assume the following:

1. Inclusion(T ′,T )
2. Injective(T )
3. IV /∈ ran(T )
4. (x, y) /∈ dom(T )
5. z /∈ ran(T )
6. z 6= IV
7. ¬set bad3(y,T ′,T )
8. Claim5(T ′,T )
9. findseq(x, y, upd(T , (x, y), z)) 6= None

Then it holds that findseq(x, y,T ′) 6= None.

Proof. We will first show that it holds that findseq(x, y,T ) 6= None. For this, assume
for contradiction that findseq(x, y,T ) = None. But then, by Lemma 6.40 we obtain that
(x, y) ∈ πfindseq(x,y,upd(T ,(x,y),z)), i.e. the last element of the complete chain found by findseq
also appears at another point in this chain. This cannot hold true. To see this, note that
from the soundness of findseq we get ischain(upd(T , (x, y), z), IV, πfindseq(x,y,upd(T ,(x,y),z)), y)
and unpad(mapfst(πfindseq(x,y,upd(T ,(x,y),z))) ‖ [x]) 6= None. By instantiating Lemma 6.33
twice with the same chain, we now find out that (x, y) /∈ πfindseq(x,y,upd(T ,(x,y),z)), which
yields the contradiction. Therefore, it must indeed hold findseq(x, y,T ) 6= None. Now,
we can apply Lemma 6.56 to immediately conclude that findseq(x, y,T ′) 6= None, which
finishes the proof.
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7
Conclusions

W
e formally showed that the plain Merkle-Damg̊ard construction, when used in con-
junction with a prefix-free padding function, is indifferentiable from a variable input

length random oracle, under the assumption that the underlying compression function be-
haves like a fixed input length random oracle. We learned about EasyCrypt and how it
comfortably enables the formalization and mechanical verification of game-based proofs.
We followed the proof of indifferentiability previously published by Coron et al. [39], and
implemented a similar sequence of game transformations in EasyCrypt. However, our game
sequence turned out to be slightly more complex, to account for the technical difficulties
encountered when formally verifying equivalence statements between games. For instance,
the difference between eager and lazy sampling exhibited by the initial and final games,
described in Section 5.4, was hardly tackled at all in [39]. Moreover, the latter paper also
described the games only in natural language, and accordingly that proof was conducted in
a rather semi-formal way. In our proof, all transformations were validated using the built-in
probabilistic relational Hoare logic of EasyCrypt, and the logical side conditions that were
needed to enable the supported automated tools to solve the necessary proof obligations
were verified in the Coq proof assistant. This result strengthens our belief that EasyCrypt
is a formidable tool to tackle the formal verification of real-world cryptographic construc-
tions, and that EasyCrypt makes a tremendous step towards the realization of Halevi’s
vision [49]. Our chief aim is to formally verify the indifferentiability of the finalists of the
SHA-3 competition; let us discuss how our present work applies to them.

7.1 Applicability to SHA-3 Finalists

First, we consider how closely our formalization of the Merkle-Damg̊ard iteration matches
the actual implementation of the five SHA-3 finalists. Second, we discuss if and how well
the assumption that the compression function behaves like a fixed input length random
oracle is applicable to the real-world compression functions of those algorithms.

As mentioned in Section 3.3, all finalists implement variants of the Merkle-Damg̊ard
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construction (see Definition 3.1). All finalists, except for BLAKE, additionally chop a num-
ber of bits off the last chaining value, with the purpose to discard some information; this
makes the compression function’s computations even more difficult to invert. Furthermore,
Grøstl also performs a final transformation before chopping. For a formal verification, those
operations would have to be explicitly implemented in the initial and final games. In fact,
such operations may actually be needed to perform an indifferentiability proof; for instance,
Coron et al. also showed in [39] that instead of using a prefix-free padding function in the
plain Merkle-Damg̊ard construction, one may alternatively chop a non-trivial number of
bits off the last chaining value, and this also yields an indifferentiable hash function.
In our formalization of Merkle-Damg̊ard, the compression function takes only two argu-

ments (a block and a chaining value). This is indeed the case for Grøstl, JH, and Keccak.
However, BLAKE’s compression function additionally takes (as specified by the HAIFA
framework [27]) a counter and a salt. Skein’s compression function is built on a tweakable
block cipher, and takes as additional input for its compression function a tweak (which
essentially encodes the number of bytes hashed so far, as well as some additional informa-
tion [45]). The counters in BLAKE and the tweaks in Skein play a similar role, namely,
each block is processed with a unique variant of its compression function. This is sup-
posed to increase their security, since it makes it much harder to exploit e.g. fixed-points.
We observe that it is possible to formalize the salt and counters (respectively the tweaks)
as an integral part of the padding rule of these hash functions, i.e. the padding function
can precompute the appropriate values and append them to the message blocks. Then,
these compression functions can be seen as taking only the usual two arguments, since
the additional arguments are simply encoded within the blocks. This makes it possible
to also map the compression functions of BLAKE and Skein onto our formalization of the
Merkle-Damg̊ard iteration.
Lastly, while all of the finalists use suffix-free padding rules, only the padding rules of

BLAKE and Skein are additionally prefix-free [5]. Factoring in this fact, we observe that the
closest candidate where our proof may apply is BLAKE; as for Skein, as mentioned above
the final chopping would have to be formalized. Unfortunately, the assumption that the
compression function is ideal is too strong in any case; we discuss this next.
As mentioned in Section 3.3, all of the SHA-3 finalists have been proven (on paper) to

be indifferentiable from a random oracle [2, 3, 20, 24, 26, 37]. Yet, as opposed to the proof
of indifferentiability presented here, all of those proofs are based on the assumption that
the underlying building blocks of the compression functions are ideal; these underlying
building blocks are block ciphers or permutations in all cases. As those underlying primi-
tives constitute lower building blocks than the compression function itself, assuming their
ideality is a weaker assumption than the assumption that the whole compression function
is ideal. In fact, assuming ideality of the whole compression function is not appropriate for
most of the finalists:

• The compression functions of JH and Keccak are trivially insecure, as collisions and
preimages can be found in only one query to the underlying permutation [5, 28];

• It is trivial to find fixed-points for the compression function of Grøstl [47];
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• The compression function of BLAKE has recently been shown to exhibit non-random
behavior: It is differentiable from a (fixed input length) random oracle even under
the assumption that its underlying block cipher is ideal [2, 37].

For Skein, there are no immediate results invalidating the assumption that its compression
function is indifferentiable from a random oracle. It should be noted however that non-
randomness has been proven for reduced round versions of Threefish [52], the tweakable
block cipher which Skein is based on.
Since our proof of indifferentiability of the prefix-free Merkle-Damg̊ard construction relies

on the assumption that the underlying compression function behaves like an ideal primitive,
it cannot be applied to BLAKE, as this assumption has been invalidated by aforementioned
result. As for Skein, although no such result is known, the assumption that its compression
function is ideal is also seriously weakened by the attacks on Threefish mentioned above.

7.2 Future Work

Our next aim is to formally verify the indifferentiability of the candidates of the SHA-3
competition. To achieve this, our formalization and proof has to be adapted so as to match
the actual implementations of those algorithms. Since only BLAKE and Skein employ a
prefix-free padding function, they constitute the most appealing candidates to concentrate
on first. For this, first the formalization of the respective iteration modes has to be adapted
as outlined in the previous section. Second, as explained above the proof has to be based
on weaker assumptions, namely that the underlying building blocks of the respective com-
pression functions are ideal. More precisely, both BLAKE and Skein are based on a block
cipher [7, 45], and their respective compression functions have to be formalized up to the
point where the respective block cipher is used. Then, the proof has to be performed in the
ideal cipher model, i.e. only under the assumption that the underlying block cipher is ideal.
Since a block cipher provides not only an encryption algorithm (used in the compression
function), but also a decryption algorithm, the distinguisher must additionally be given
access to a decryption oracle, which may constitute the main challenge.
Several (pen-and-paper) indifferentiability proofs of hash designs under such weaker as-

sumptions are known. In [39], Coron et al. proved the indifferentiability of the prefix-free
Merkle-Damg̊ard construction based on the Davies-Meyer compression function [73], de-
fined as f(x, y) := Ex(y)⊕ y, in the ideal cipher model for E, and for similar constructions
as well. For all the finalists, as mentioned above, direct indifferentiability proofs are avail-
able which only assume the ideality of the underlying block ciphers or permutations.
To conclude, our proof constitutes a non-trivial result about the prefix-free Merkle-

Damg̊ard construction, and a first, but significant step to formalize the indifferentiability
proofs of the SHA-3 finalists in EasyCrypt as well. Indeed, these proofs essentially use the
same techniques, albeit they are slightly more involved since they are based on weaker
assumptions. Our result provides a good starting point for formalizing these proofs, and
we will further this line of research in the future.
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