
computer science

saarland
university

Saarland University
Information Security & Cryptography Group

Prof. Dr. Michael Backes

Android Security Lab WS 2014/15

Lab 1: Android Application Programming

M.Sc. Sven Bugiel

Version 1.0 (October 6, 2014)

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

Login on Lab Machines

Username: smartseclab
Password: android

Introduction

In this Lab, we provide a simple introduction to application programming on Android, with focus on
familiarizing the students with the most important IDE elements and on inter-application communication
based on Intents and Services.

1 Development environment

In this lab we use theAndroid Development Tools (ADT)1, which are based on the Eclipse IDE. Alternative
IDEs exist, e.g., Android Studio based on IntelliJ IDEA2.

1. Open the ADT from your desktop

2. As workspace chose the /usr/local/home/smartseclab/androidlab directory

3. On the bottom you see Android development specific tools such as Logcat, Emulator control, etc.,
which you will use later.

Figure 1: Android development specific tools

4. In the top right corner you can switch to DDMS, the debugging view for Android if required.

5. Further, in the Menu Bar, you see two new entries:

(a) for the Android SDK Manager (left)

(b) for the Android AVD (Android Virtual Device) Manager (right)

Figure 2: Android Menu Bar entries

1http://developer.android.com/sdk/index.html
2http://developer.android.com/sdk/installing/studio.html

– 2 –

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/studio.html

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

2 Creating an Android Virtual Device

1. Open the AVD Manager.

2. Use the wizard to create a new Intel Atom (x86) Android v4.3 AVD by either configuring it
according to your wishes (first tab) or using a pre-configured device definition (second tab).

3. Start your new virtual device

4. Open a terminal (using the panel entry on top of your screen or from the desktop link) and use the
Android Debug Bridge (adb) to observe the device’s log output:

$ adb logcat

For a full list of the adb features (e.g., emulator control), please refer to the adb help page.

5. Once the device has been fully booted, switch to the DDMS view in ADT and briefly familiarize
yourself with available options (e.g., overview of device’s processes, colored logcat view at the
bottom, etc.). In particular, use the emulator control to send an SMS message to your device and
verify your virtual device has received the message.

6. The emulator control is essentially just a GUI for a telnet-based service to send commands to the
emulator. Sending an SMS message could, thus, also be accomplished from the terminal using a
telnet client:

$ telnet localhost 5554
$ sms send 5556 "Your␣message"

where 5554 is the ID of the emulator (check the emulator window name) and 5556 the sender number
of the SMS.

7. Create and boot a second virtual device using the same configuration for SDK version as for the
first device.

8. Once this second device has booted, go to the SMS (“Messaging”) app and send a test SMS to the
first emulator device. The phone number of each device equals the number (e.g., 5554) in the title
bar of the emulator window.

9. To end emulators, simply close their windows, no special shutdown procedure is required.

10. Close both emulators and the AVD window.

3 Creating a first Android App

1. Switch back to the Java view in Eclipse.

2. Create a new Android Application Project (cf. Figure 3).

Figure 3: Creating a new Android Application Project

3. Since we will extend this app in the next lab session, please use the following settings:

(a) Application Name “App1”

– 3 –

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

(b) Minimum required SDK API 8 (Froyo)
(c) Leave the rest in this option dialog and all following dialogs as default

4. Once the project has been created, you should see a screen similar to Figure 4, which shows a simple
application skeleton with a “Hello World” Activity.

5. To quickly test your app, start one of your virtual devices and wait until it has booted up. Then
right-click on your App1 project and chose “Android Application” in the “Run as” context menu
(cf. Figure 5). When there is only one emulator running, the app will be automatically started on
this one. Otherwise a menu pops up in which you can chose the target virtual device.

Figure 4: New app template

Figure 5: Run as Android application

6. In the following, we will extend this app with a simple Service and a BroadcastReceiver component.

3.1 Adding a BroadcastReceiver component

1. Create a new class “Receiver.java” in your package (i.e., com.example.app1.Receiver)

2. The following Listing presents a minimal implementation of the BroadcastReceiver component:

package com.example.app1;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class Reciever extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

// This code is called when the receiver is triggered
}

}

– 4 –

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

3. Add the following line of code to the onReceive method in order to log the received Intent message:

Log.d("App1.Receiver", "Called␣with␣Intent␣"+intent.toString());

4. To actually register the BroadcastReceiver in the system upon app installation, we have to extend
the application entry of the AndroidManifext.xml of App1. You could do this using the GUI of
ADT. For now, however, we will edit the XML directly by adding the following lines of XML:

<application ...>
...
<receiver android:name="com.example.app1.Receiver">
<intent-filter>
<action android:name="com.example.intent.action.BROADCAST"/>

</intent-filter>
</receiver>

...
</application>

This registers the BroadcastReceiver component in this system. It defines an Intent filter, which means
the BroadcastReceiver will only receive broadcasted Intents that match the action string
com.example.intent.action.BROADCAST.

5. To quickly test your new BroadcastReceiver, re-install your modified app by running it again on
the virtual device. Start monitoring the logcat output, either in the DDMS view or in a terminal
by filtering for the string App1. Run in a (second) terminal the following command to instruct
the ActivityManager on the device to send a broadcast that fits the Intent filter of the receiver
component:

$ adb shell am broadcast -a com.example.intent.action.BROADCAST

6. If done correctly, you should be able to see debug output similar to:

D/App1.Receiver(2136): Called with Intent Intent{ act=com.example.intent.action.BROADCAST flgy
=0x10 cmp=com.example.app1/.Reciever }

7. A broadcast receiver can also be registered dynamically at runtime through an application’s context.
However, at this point, we refer you to the documentation3 for more information on this.

3.2 Adding a simple Service component

1. Next, we will add a simple Service component to the application to which other apps can bind and
then interact with in a client-server fashion. First, define the interface of the new service through
the Android Interface Definition Language (AIDL)4. Create in your App1 source code package a
new file IRemoteService.aidl with the following content:

package com.example.app1;

interface IRemoteService {
int getPID();

}

3http://developer.android.com/reference/android/content/BroadcastReceiver.html
4http://developer.android.com/guide/components/aidl.html

– 5 –

http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/guide/components/aidl.html

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

2. Now we will implement this interface in a dedicated Service component (cf. Figure 8 and Figure 9
in Appendix A for an illustration of a Service’s life-cycle). Thus, add a new class to your App1
package called RemoteService.java. The following shows its implementation:

package com.example.app1;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.Process;
import android.os.RemoteException;

public class RemoteService extends Service {

@Override
public IBinder onBind(Intent intent) {

// Object to be returned to caller apps for RPC
return mBinder;

}

// Stub of our service, i.e., implementation of the interface
private final IRemoteService.Stub mBinder = new IRemoteService.Stub() {
@Override
public int getPID() throws RemoteException {

// We use android.os.Process
return Process.myPid();

}
};

}

The Stub implements the Service interface. The only remotely callable function getPID() simply returns
the service’s process ID to the caller. Callers that bind to this service, receive an IBinder interface object
for this service, which they can use for RPC.

3. Of course, we also have to register this service in the system through the AndroidManifest.xml
upon installation:

<application ...>
<service android:name="com.example.app1.RemoteService">
<intent-filter>
<action android:name="com.example.app1.IRemoteService"/>

</intent-filter>
</service>
...

</application>

4. To test this service, we create a simple second caller application.

3.3 Creating a second Android App

1. Repeat the steps for the creation of App1, however, call this new app App2.

2. Since App2, as a caller to the service of App1, has to know the Service interface, we have to copy
the AIDL file from the package of App1 to the package of App2 as shown in the following Figure 6.

3. For this setup, we keep binding and calling to App1’s service very simple and integrate them strictly
into the life-cycle of App2’s main activity (cf. Figure 7 in Appendix A for an illustration of the
Activity life-cycle). Add the following code to the MainActivity.java of App2:

– 6 –

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

Figure 6: Setup for App2 to be able to create a Proxy for App1’s service.

IRemoteService mIRemoteService;

private ServiceConnection mConnection = new ServiceConnection() {
// Called when the connection with the service is established
public void onServiceConnected(ComponentName className, IBinder service) {

// This gets an instance of the IRemoteInterface, which we can use to call on the service
mIRemoteService = IRemoteService.Stub.asInterface(service);
int pid = -1;
try {

pid = mIRemoteService.getPID();
} catch (RemoteException e) {

Log.e("App2.MainActivity", "Error␣calling␣getPID()", e);
}
Log.d("App2.MainActivity", "getPID()="+pid);

}

// Called when the connection with the service disconnects unexpectedly
public void onServiceDisconnected(ComponentName className) {
mIRemoteService = null;

}
};

@Override
protected void onResume()
{
super.onResume();

if(bindService(new Intent(IRemoteService.class.getName()), mConnection, Context.y
BIND_AUTO_CREATE))

{
Toast.makeText(this, "Binding␣to␣successful", Toast.LENGTH_LONG).show();

} else {
Toast.makeText(this, "Binding␣to␣failed!", Toast.LENGTH_LONG).show();

}
}

@Override
protected void onPause()
{
super.onPause();
if(mIRemoteService != null)
{
unbindService(mConnection);

}
}

This code will bind to the service every time the Activity comes back to the foreground on the screen
(onResume()) and will directly use the IBinder object received upon binding to call the remote service.
The received PID from App1 is logged. The result of the binding operation is briefly shown as a pop-up
(Toast) on the screen to the user. To correctly cast the IBinder object to the interface of App1’s service,
App2 requires the AIDL file. To avoid leaking service connections, the activity unbinds from the service
as soon as the activity is not longer in the foreground on the screen (onPause()).

– 7 –

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

4. Install first App1 and afterwards App2 by running them as Android applications. Observe the
screen for successful binding and the logcat output for the logged PID.

5. For simpler service implementations, such as IntentServices, we refer to the Android documen-
tation5.

5http://developer.android.com/reference/android/app/IntentService.html

– 8 –

http://developer.android.com/reference/android/app/IntentService.html

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

A Activity and Service Life-Cycle

Figure 7: Activity lifecycle (Source http://developer.android.com/reference/android/app/
Activity.html)

– 9 –

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

Figure 8: General Service life-cycle (left: service creation with startService(); right: service creation
with bindService(); source http://developer.android.com/guide/components/services.html)

– 10 –

http://developer.android.com/guide/components/services.html

Android Security Lab WS 2014/15 Lab 1: Android Application Programming

Figure 9: Bound-Services life-cycle (Source http://developer.android.com/guide/components/
bound-services.html).

– 11 –

http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/bound-services.html

