
computer science

saarland
university

Saarland University
Information Security & Cryptography Group

Prof. Dr. Michael Backes

Android Security Lab WS 2014/15

Lab 2: Android Permission System

M.Sc. Sven Bugiel

Version 1.2 (October 6, 2014)

Android Security Lab WS 2014/15 Lab 2: Android Permission System

Version History

Version 1.1 Marked questions more clearly with leftbar
Fixed error in code list for SMS broadcast receiver

Version 1.2 Improved code readability
Numbered questions

– 2 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

Login on Lab Machines

Username: smartseclab
Password: android

Introduction

In this Lab you will familiarize yourself with the basics of Android’s permission system. To this end, we
will 1) use permissions to access the Android API, 2) extend the interfaces of the both apps App1 and
App2 from the first lab session with permission-based protection, and 3) show permission inheritance in
case applications share UIDs.

Additionally, we will implement a more fine-grained access control than permissions on the interfaces of
App1, using the information provided by Binder and the PackageManager.

Android Permissions

Android defines roughly about 140 permissions.1 These permissions are used to regulate an app’s access
to sensitive resources such as the onboard GPS sensor, the user’s address book, or telephony functionality
(the corresponding permissions would be ACCESS_FINE_LOCATION, READ_CONTACTS/WRITE_CONTACTS,
and CALL_PHONE/CALL_PRIVILEGED).

Permissions are categorised in one of four protection levels:2

• Normal : Low-risk permission that will be automatically granted to an application without asking
the user for consent.

• Dangerous: Higher-risk permission that would give a requesting application access to private user
data or control over the device that can negatively impact the user. The user must confirm during
app installation that the app can use this permission.

• Signature: A permission that the system grants only if the requesting application is signed with
the same cryptographic key as the application that declared the permission. If the keys match,
the system automatically grants the permission without notifying the user or asking for the user’s
explicit approval.

• SignatureOrSystem: Permissions that the system grants only to applications that are in the Android
system image or that are signed with the same certificate as the application that declared the
permission.

Most of those permissions are merely Strings associated with the UID of the application (for instance,
ACCESS_FINE_LOCATION is a constant for the String “android.permission.ACCESS_FINE_LOCATION”).
A permission check then consists of looking up such an association for particular permission-UID pair.
However, a small subset of permissions are mapped to Groups of the underlying Linux kernel. That
means, that the UID of an application that holds such a permission is member of the GID (Group)
that Android maps the permission to.3 In general, this concerns all permissions that are associated with
privileged actions that are not proxied or provided by a system service or application, but with which
the app directly interacts with the Linux kernel. This concerns primarily file-system operations such as
access to the SDCard, opening a network socket, or accessing certain sysfs entries.

1See http://developer.android.com/reference/android/Manifest.permission.html for a complete list of
the available permissions.

2http://developer.android.com/guide/topics/manifest/permission-element.html
3Check, for instance, https://android.googlesource.com/platform/frameworks/base/+/master/data/etc/

platform.xml for a list of those mappings.

– 3 –

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/manifest/permission-element.html
https://android.googlesource.com/platform/frameworks/base/+/master/data/etc/platform.xml
https://android.googlesource.com/platform/frameworks/base/+/master/data/etc/platform.xml

Android Security Lab WS 2014/15 Lab 2: Android Permission System

1 Accessing the Android API

In this first part of this lab exercise, you will extend App1 with permission to receive notifications about
new SMS messages and to access the location information of the device.

1. First, we will add a Listener to App1, which we register with the system’s LocationManager service
to receive updates on the device’s geolocation. To this end, extend the MainActivity of App1
with the following code:

GPSListner mGPSListener = new GPSListner();

@Override
protected void onResume()
{

super.onResume();

// Get a reference (Proxy) of the LocationManager service
LocationManager lm = (LocationManager) getSystemService(Context.LOCATION_SERVICE);
try {

// Try to register our custom listener with the LocationManager service
// Updates will be delivered as soon as the device moves (i.e., we would kill

the battery of a real device...)
lm.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, mGPSListener);

} catch (SecurityException e) {
Toast.makeText(this, "Security Exception: "+e, Toast.LENGTH_LONG).show();
Log.e("App1.MainActivity", "Security Exception", e);

}
}

@Override
protected void onPause()
{

super.onPause();
// Don't leak the listener
LocationManager lm = (LocationManager) getSystemService(Context.LOCATION_SERVICE);
lm.removeUpdates(mGPSListener);

}

//Our custom listener class. Right now will simply log any received location updates
.

private class GPSListner implements LocationListener {

@Override
public void onLocationChanged(Location location) {

Log.d("App1.GPSListener", "New location: "+location.getLongitude()+":"+location.
getLatitude());

}

@Override
public void onProviderDisabled(String provider) {}

@Override
public void onProviderEnabled(String provider) {}

@Override
public void onStatusChanged(String provider, int status, Bundle extras) {}

}

2. Now try executing App1

– 4 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

Question 1:
What is the result of the execution?

3. Next, we will extend the Manifest of App1 such that the app requests the ACCES_FINE_LOCATION
permission. Either edit the Manifest code as shown in the following code listing or use the ADT’s
GUI as shown in Figure 1.

<manifest ...>
<uses-sdk ... />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<application ...>
...

</application>
</manifest>

Figure 1: Requesting permissions in the app’s Manifest.

4. Now test the code again by executing App1 and then changing the location of the virtual device
using either the Emulator Control (in DDMS) or using the geo command of the emulator (after
connecting to the telnet server):

geo fix <longitude value> <latitude value>

Question 2:
What is the new result of the execution? Can you see the GPSListener log?

5. Next, we will extend the BroadcastReceiver component Receiver.java of App1 to receive noti-
fication of newly received SMS messages.

(a) First add a new IntentFilter for the corresponding receiver to the Manifest, which will
catch all broadcasts with Action string android.provider.Telephony.SMS_RECEIVED

(b) Second, extend the BroadcastReceiver code to properly parse and log the SMS messages. All
messages will be delivered as payload to the broadcast Intents. Use the following code for this
purpose:

@Override
public void onReceive(Context context, Intent intent) {

if(intent.getAction().equals("android.provider.Telephony.SMS_RECEIVED"))
{

// Get the SMS message from the Intent payload ("extras")
Bundle extras = intent.getExtras();
String messages = "";

// If present, reconstruct and log the SMS message. Intent can contain more than
one message!

if (extras != null)
{

// Get received SMS array
Object[] smsExtra = (Object[]) extras.get("pdus");

– 5 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

for (int i = 0; i < smsExtra.length; ++i)
{

SmsMessage sms = SmsMessage.createFromPdu((byte[])smsExtra[i]);

String body = sms.getMessageBody().toString();
String address = sms.getOriginatingAddress();

messages += "SMS from " + address + " :\n";
messages += body + "\n";

}
}
Log.d("App1.Receiver", messages);

} else if (intent.getAction().equals("com.example.intent.action.BROADCAST"))
{

Log.d("App1.Receiver", "Called with Intent "+intent.toString());
} else {

Log.d("App1.Receiver", "Called with unknown Action "+intent.getAction());
}

}

6. Build and run App1 again. Then send a new SMS message to the virtual device and observe the
log for any entry concerning the delivery of the corresponding broadcast message to the Broadcas-
tReceiver of App1.

Question 3:
What log entry can you observe?

7. If you observed a security error message in the log, fix App1 such that it can successfully receive
the SMS message!

– 6 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

2 Defining Custom Permissions

In this second part of the exercise, you will define a new custom permission for App1 to protect its service
interface.

1. First, we define a custom permission with the normal protection level, i.e., any application can
request this permission without any further restrictions and user intervention. Thus, extend the
Manifest of App1 to define a new permission com.example.permission.APP1_SERVICE by
either editing the Manifest manually as in the following listing or by using the ADT GUI as shown
in Figure 2:

<manifest ...>
<uses-sdk ... />

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.RECEIVE_SMS"/>
<permission android:name="com.example.permission.APP1_SERVICE" android:

protectionLevel="normal"/>

<application ...>
...

</application>
</manifest>

Figure 2: Defining a new permission.

2. To protect the service interface of App1 with this new permission, the service’s Manifest entry has
to be extended with an android:permission attribute as follows:

<application ...>

...

<service
android:name="com.example.app1.RemoteService"
android:permission="com.example.permission.APP1_SERVICE" >
<intent-filter>
<action android:name="com.example.app1.IRemoteService" />

</intent-filter>
</service>

</application>

– 7 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

3. To better illustrate the protection levels of custom permissions, we use from now on only signed
applications. To this end, we have to create cryptographic keys used to sign application packages.
Fortunately, ADT provides good tool support in creating and using cryptographic keystores when
exporting your apps as application packages.

4. To export your application as a signed package, right click on your project in ADT and chose the
option as depicted in Figure 3:

Figure 3: Export application as signed package.

5. The wizard requires you to specify a keystore file. First time you export, you probably don’t have a
keystore yet, thus follow the following instructions to create one and directly use it to export your
signed application:

Figure 4: Select your app project, i.e., App1. Figure 5: Unless you already have an existing
keystore, create a new one. This password au-
thenticates access to the keystore as a whole.

Figure 6: Create a new key. The filled fields
in the figure are mandatory. Android requires,
that the key must be valid at least 35 years.

Figure 7: For the next part of this exercise,
it is important that you save the application
package in the Server directory of your home
directory.

– 8 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

6. Next, we install the signed application package. Because Android uses a same-origin policy for
application updates (and re-installation) based on the signature key of apps, you first have to
uninstall the current version of App1, which is signed with a different key. To do so, you have two
options:

(a) Open the Settings app in your AVD, go to Apps, chose App1, and then Uninstall

(b) Close the AVD and start with the Wipe user data option, which removes any user data
including all 3rd party apps (i.e., App1 and App2)

7. When the uninstallation is completed, we use side-loading to install the signed version of App1:

(a) On your PC, open a shell and go to the Server directory in your home folder

(b) Execute the command:

$ python srv.py

This will start a minimalistic webserver, which serves the content of this directory at port 8000
of your localhost.

(c) Go to the Settings app of your AVD, go to Security, and check the option Unknown sources
to allow side-loading

(d) Open the webbrowser on your AVD and go to the URL: http://10.0.2.2:8000/
10.0.2.2 is the IP of your host machine and allows your AVD to communicate with your host.

(e) You should see a website like Figure 8.

(f) Click on the App1.apk link to start the download of the application package.

(g) After the download is complete, open the APK on your AVD to start the installation. You
should see a permission request as in Figure 9.

Figure 8: Web browser showing the content of your Server directory.

8. Extend the Manifest of App2 to request your custom permission com.example.permission.APP1_SERVICE.

9. Export App2 also as a signed package and install it via side-loading (do not forget to uninstall it
first, if you didn’t wipe your user partition). However, follow to the following steps:

(a) First, use a new signing key for App2 which is hence different from the key for App1.

Question 4:
Does App2 successfully bind to App1’s service and call the function? Why/Why not?

(b) Uninstall App2.

– 9 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

Figure 9: Permission request by App1 during installation.

(c) Now change the protection level of com.example.permission.APP1_SERVICE to signa-
ture, sign App1 with your first key, and re-install both App1 and App2 in this order (no
uninstall is needed, because the same key is used).

Question 5:
Does App2 successfully bind to App1’s service and call the function? Why/Why not?
During the installation of App2, can you observe in the log a warning of the Package-
Manager regarding App2’s permissions? Did you see any warning on the UI during the
installation of App2?

(d) Finally, uninstall App2, re-export it signed with the same key as App1, install it, and verify
that it can successfully bind to App1’s service.

– 10 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

3 Shared UIDs and Permission Inheritance

Android allows developers to use shared UIDs. That means, that two or more applications will be
assigned the same UID in the system and thus share the same sandbox, including permissions. However,
for security reasons, two apps can only share a UID if they are signed with the same key, i.e., are from
the same origin (developer).

1. Add to the manifests of both App1 and App2 an android:sharedUserId attribute4 for the
shared UID com.example.uid.smartseclab.

2. In the onResume() functions of both apps, log their UIDs (android.os.Process.myUID())
using Log.d.

3. Export both apps signed with the same key.

4. First install App1.

5. Next install App2 and note the requested permissions during the installation.

Question 6:
Which permissions does App2 request and why? If you would install first App2 and then App1,
what would change in this scenario?

4http://developer.android.com/guide/topics/manifest/manifest-element.html

– 11 –

http://developer.android.com/guide/topics/manifest/manifest-element.html

Android Security Lab WS 2014/15 Lab 2: Android Permission System

4 Protected Broadcasts (Optional/Homework)

Because broadcast Intents are often used to notify apps about important system events or to carry
privacy/security sensitive information to apps (e.g., newly received SMS), it is important to ensure that
such broadcasts 1) are only delivered to sufficiently privileged receivers and 2) can only be send by the
correct, trusted apps.

Protected by Sender

To ensure that broadcasts are only delivered to privileged receivers, the sender can define a permission that
a receiving application must hold in order to get the broadcast.5 For instance, the SMS received broadcast
from earlier required the receiver to hold the permission android:name="android.permission.RECEIVE_SMS.

1. Extend App2 to send the broadcast with action string com.example.action.BROADCAST and
requires the receiver to hold a new custom permission com.example.permission.APP2_BROADCAST.

2. Extend App1 to receive this broadcast.

3. Test this scenario for normal and signature protection level as well as different combinations of
signing keys for App1 and App2.

Protected by Receiver

To ensure that a receiver receives broadcast Intents only from a trusted and sufficiently privileged sender
app, Android allows developers to protect their receivers with permissions.6 That means, that a sender
of a broadcast must hold this permission in order to successfully send the Intent to this receiver. Note,
however, that this enforcement is per receiver, i.e., receivers which do not require any permission from
the sender would still receive the broadcast!

4. To test this mechanism, extend App1 or App2 to send a broadcast for a newly received SMS
message, i.e., spoofing SMS messages:

sendBroadcast(new Intent("android.provider.Telephony.SMS_RECEIVED"));

Question 7:
What is the warning message in the system log and which permission is required to send broadcast
Intents with this action string in order to spoof SMS messages?
Can you find the manifest declaring this receiver component in the Android source code?

5. Extend App1’s receiver such that sending the broadcast with action string com.example.action.BROADCAST
to App1’s receiver requires the sender to hold the custom permission com.example.permission.APP1_SERVICE
(for simplicity). Again, verify this scenario for normal and signature protection level as well as dif-
ferent combinations of signing keys for App1 and App2, in particular in conjunction with protection
level for the second custom permission com.example.permission.APP2_BROADCAST.

Question 8:
Which combination of protection levels do you have to chose for your custom permissions, such
that only apps of same origin can be the sender of the broadcasts received by App1 and only
apps explicitly allowed by the end-user can receive the broadcast? How would you implement
this?

5http://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.
content.Intent,java.lang.String)

6http://developer.android.com/guide/topics/manifest/receiver-element.html

– 12 –

http://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent, java.lang.String)
http://developer.android.com/reference/android/content/Context.html#sendBroadcast(android.content.Intent, java.lang.String)

Android Security Lab WS 2014/15 Lab 2: Android Permission System

5 Using Binder and PackageManager for fine-grained access con-
trol (Optional/Homework)

While permission attributes set in application manifests can protect entire component interfaces (e.g.,
calling any function of a service component requires the caller to hold the permission), this access
control is sometimes to coarse-grained. For instance, the LocationManager service you used in the
first part of this exercise actually requires the caller to hold either the ACCESS_FINE_LOCATION or
ACCESS_COARSE_LOCATION permission depending on whether the GPS or the network is used for
determining the location.

To implement such a more fine-grained access control, developers can use the information provided by
the Binder IPC mechanism in conjunction with the PackageManager service.

5.1 Extending App1’s service component

We will instrument App1’s service component with an access control specifically for the getPID function.

1. First, remove the permission attribute from the service component in App1’s manifest. Thus, all
application are able to bind to this component and call getPID.

2. Next, we extend getPID such that it only returns the PID when

(a) the caller package name equals to com.example.app2

(b) the version of the caller package is at least 2

3. The following code snippet presents an implementation of this access control. Code comments
explain the functionality in more technical detail. Note that if you would extend the interface
of the service (e.g., adding a second function getGID()). you would have to instrument the
implementation of each new function separately with access control!

@Override
public int getPID() throws RemoteException {

Log.d("App1.Service", "From: "+Binder.getCallingUid());

// Get the UID of the calling process
int callerUID = Binder.getCallingUid();
// Get reference to the PackageManager service
PackageManager pm = getPackageManager();
// Get all package names installed under this UID
String[] packageNamesForUid = pm.getPackagesForUid(callerUID);

for(String name : packageNamesForUid)
{

Log.d("App1.Service", "Checking caller package "+name);
// We require that there must only one application installed under this UID and

its package name equals com.example.app2. Otherwise return SecurityException
to the caller.

if(!name.equals("com.example.app2"))
{
throw new SecurityException("Only package com.example.app2 is allowed to

access this function!");
}

// Retrieve more detailed information about the caller package from the
PackageManager service

PackageInfo pi;
try {
pi = pm.getPackageInfo(name, 0);

} catch (NameNotFoundException e) {
Log.e("App1.Service", "Error retrieving package info", e);

– 13 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

throw new RemoteException("Error retrieving package info for "+name);
}

// Ensure that the version code of the caller is sufficient
if(pi.versionCode < 2)
{
throw new SecurityException("Caller version to low. Required is at least

version 2!");
}

}

// At this point we know that the caller must com.example.app2 with at least
version code 2

// We use android.os.Process
return Process.myPid();

}

Question 9:
The code snippet presented above does actually not ensure that getPID of com.example.app1 is
called by the correct/trusted com.example.app2 that the developer of App1 had in mind. Can
you explain why? Can you implement a better approach using more/different package information?

5.2 Extending App1’s BroadcastReceiver component

Next, we examine whether the same mechanism as shown in Section 5.1 can be used in App1’s Broad-
castReceiver in order to check whether App1 can trust received broadcast messages.

1. Extend App1’s Receiver.java such that it checks that

(a) Intents with action string android.provide.telephony.SMS_RECEIVED are always send
from the com.android.mms application

(b) Intents with action string com.example.intent.action.BROADCAST are always send
from the com.example.app2 application

Question 10:
What is the result of these new checks? Can you explain this result by analyzing the Android source
code7, in particular

• the Binder user-space tools in

– frameworks/base/core/java/android/os/Binder.java

– frameworks/base/core/jni/android_util_Binder.cpp

– frameworks/native/libs/binder/IPCThreadState.java

• and Android’s message dispatching between application threads in

– frameworks/base/core/java/android/os/Handler.java

– frameworks/base/core/java/android/os/Looper.java

– frameworks/base/core/java/android/app/ActivityThread.java

– 14 –

Android Security Lab WS 2014/15 Lab 2: Android Permission System

A Code for minimalistic Python webserver

import SimpleHTTPServer
import SocketServer

PORT = 8000

Handler = SimpleHTTPServer.SimpleHTTPRequestHandler

httpd = SocketServer.TCPServer(("", PORT), Handler)

print "serving at port", PORT
httpd.serve_forever()

– 15 –

