
computer science

saarland
university

Saarland University
Information Security & Cryptography Group

Prof. Dr. Michael Backes

Android Security Lab WS13/14

Project Proposals

M.Sc. Sven Bugiel

Version 1.0 (October 15, 2014)



Contents

Organizational Matters 3

1 Capability Leakage Detection 5

2 Data Shadowing 7

3 KeyChain Extension and Integration 8

4 Enhanced Installer 9

5 Context-aware Malware and KeyLogger 10

6 Subverting Binder 11

7 Intent Reference Monitor 12

2



Android Security Lab WS13/14 Project Proposals

Organizational Matters

General Topic

In this lab, you will work on selected projects related to contemporary issues of Smartphone Security,
where the focus is on the open-source and popular Android OS.

Teams

Each team consists of 2 students and will work on one project. Register your team before the correspond-
ing deadline via email to the lab supervisor, stating name, student ID and email address of each team
member as well as the preferred project and one to two backup projects.
If you do not have a group, please contact the lab supervisor by email stating your name, student ID,
preferred project and backup projects, so that he can assign you to another group accordingly.

Custom Topics

It is generally possible for you to propose a custom project idea or deviations from the proposed projects.
However, this has to be discussed with and approved by the lab supervisor before the project assignment
deadline!

Android Version

In general, the teams are free to chose the Android version on which they implement their architecture. A
minimum of version 2.2 is recommended to target more common versions1. However, it should be noted
that some projects (like KeyChain Extension and Integration) are only available on Android 4.x which
has extensive hardware requirements in terms of storage, memory and processing power for building!
If you do not have a good workstation or desktop machine at your disposal, please reconsider taking
another project! If an actual root exploit is required (instead of simulating it with the su tool), the team
is advised to use a vulnerable Android 2.x version.

Reporting

Although the work is to a big extent conducted autonomously by the teams, you are advised to keep in
contact with the lab supervisor to ensure your work is on track and satisfies the requirements for a (very)
good grade.
In addition, each team has to submit a final report (approx. 10 pages), that is mandatory for successful
participation. The final report also has to include the source code (or, in case of system modifications,
a patch file) of the team’s solution. The teams should clearly state which authors were responsible for
which part of the work and reports. Language of the report can be either German or English (the choice
does not affect the grade, however, you are encouraged to write in English). The style of the report can
be freely chosen, but should be reasonable w.r.t. margin width, font size, etc. to ensure readability.
The final report should be written for an audience that is familiar with the topic (i.e., no extensive
background sections, but focus on the project related facts). The final report should contain the following
content:

1. a short introduction to the chosen topic which explains the addressed problem/vulnerability, moti-
vation of the work, and proves that you understood the problem set

2. a design section, explaining the architecture/attack and design decisions made w.r.t. the Android
design as well as briefly discussing possible alternative approaches

3. an implementation section briefly describing technical aspects (e.g., in which class which function
was added/modified) in order to realize the design and to ease the code review process

4. a short conclusion summarizing the results, lessons learned, and potential open problems

At the end of the course, a concluding meeting is held, at which each team has to shortly present its
results to the other teams and an audience familiar with Android security research.

1http://developer.android.com/about/dashboards/index.html

– 3 –

http://developer.android.com/about/dashboards/index.html


Android Security Lab WS13/14 Project Proposals

Deadlines

Registration of teams and topics Friday, October 17, 2014

Project assignment Friday, October 17, 2014

Final report and code submission Friday, November 14, 2014

– 4 –



Android Security Lab WS13/14 Project Proposals

Project 1: Capability Leakage Detection

Description

A confused deputy [15, 6, 10, 23] (on Android) is a privileged app that unintentionally performs privileged
actions on behalf of an unprivileged app. For instance, Enck et al. [10] have shown that it was possible on
(an obsolete version of) Android for an unprivileged app to trigger the default Phone app to start a call
on behalf of this app. Felt et al. [23] have reported more confused deputies among the system apps. Fur-
thermore, different frameworks [31, 20, 13, 12] for detection of privacy leaks in Android applications have
been presented, e.g., a privileged application that accesses and locally stores (e.g., in custom, local Con-
tentProviders) security/privacy sensitive information (such as Contacts information) is unintentionally
exposing this information over unprotected interfaces (e.g., querying of the local ContentProviders).

This project deals specifically with detection of such privacy or capability leaks in 3rd party apps. That
means, a privileged app from, e.g., the Google Play market, stores security and privacy sensitive data such
that another 3rd party app can retrieve this information without holding the corresponding permissions
or that the app leaks these information (unintentionally) to data sinks such as the network or the SD
card. For instance, an app with READ_CONTACTS permissions might store the results from its queries
to the ContactsProvider in an unprotected local ContentProvider, on unprotected storage (e.g., SD card
or a private file but with 0777 file permission), or send them to the system log.

Project Goal

Develop a simple analysis tool for APK files, which can determine based on blackbox testing whether a
3rd app leaks its capabilities for a set of selected privileged operations (e.g., access to user’s contacts). In
essence, this tool should be used by a human tester and it should check whether the unprotected interfaces
of privileged apps can be exploited for retrieving sensitive information or if the app leaks sensitive data,
e.g., via the file-system [26] or the log sub-sytem [18, 28].

The approach could be based on an analysis app that tests other installed apps or based on static analysis
of APK files.

Proposed Work Items

• First, potentially vulnerable apps must be identified. One metric to do so, would be to analyse the
Manifest of apps to check for exported Service or ContentProvider interfaces that are not protected
by a (custom) permission, or for permissions that allow access to certain sinks such as the external
storage or log.

• Blackbox testing:

– Blackbox testing relies on accessing the unprotected interfaces and checking whether one can
retrieve sensitive data such as contacts or SMS information.

– Additionally, the log entries on the platform should be investigated for sensitive information,
that the vulnerable app logged [18, 28]

– Moreover, recent incidents further show that apps might store files in the private data directory,
however, with system-wide read/write permission [26]. Thus, the tool should also investigate
the data directory of the app.

– For blackbox testing, a semi-automated2 testing tool is expected, with which a human tester
can check an app for vulnerabilities. When performing blackbox testing at runtime against
other installed apps, this most likely requires that the target apps are used for some time so
that they actually retrieve and store privacy-sensitive data.

– The functionality of the tool should be tested with a synthesized example app, but also other
3rd party apps that can be provided to you by the TA.

2Automating user-input is a hard task and does not have to be solved.

– 5 –



Android Security Lab WS13/14 Project Proposals

• Alternatively to blackbox testing, static analysis could be applied. Different tools, like androguard,
exist to help static analysis.

• Although beneficial, the solution does not have to be fully automated! Rather, the focus of this
work should lie on solving the following challenges:

– Data flow sinks and sources must be identified and a subset of them considered in the imple-
mentation. For instance, sources are calls to security and privacy sensitive APIs like location
manager, contacts provider, telephony manager, etc. Sinks are API calls which store data
from the sources in unprotected locations (e.g., exported content provider not protected by a
permission, storage on disk with insufficient file permissions, or sending the data to the log
subsystem of Android). In particular identifying a sink like an unprotected content provider
requires pre-processing (e.g., analysis of the app’s manifest file) in order to detect vulnerable
interfaces.

– Depending on the identified sources and sinks an exemplary analysis should be performed
for one source-sink pair. The analysis can be performed on 3rd party apps or a synthesized
example app.

– Android apps have several entry points due to the event driven model (e.g., broadcast re-
ceivers, event listeners, user input, etc). Thus, the analysis has to take this into account
when performing data flow analysis. For instance, data flowing from a sensitive source such
as the ContactsProvider via a local ContentProvider to an unprivileged app consists of two
separate data flows that have to be connected during analysis: 1) ContactsProvider −→ Local
ContentProvider; and 2) Local ContentProvider −→ Unprivileged app.

– 6 –



Android Security Lab WS13/14 Project Proposals

Project 2: Data Shadowing

Description

The high popularity of smartphones and the increasing amount of private data stored and processed
on these devices has made them an appealing target of spyware and malware attacks. These privacy
violating attacks range from overprivileged apps [19] to nosy advertisement libraries [14] and also relate
to controversial discussions about the popular WhatsApp [4, 3] Path [2], and Facebook [1] apps, which
have been alleged to clearly overstep the necessary boundaries of their access to user’s private data,
violating the user’s privacy.

Project Goal

The goal of this project is to enable data shadowing [17, 32, 7] on Android. Data shadowing means,
that an app receives empty, fake, or filtered data on queries to sensitive APIs. For instance, a query
to the ContactsProvider might return an empty Cursor or calling the LocationManager for the current
location could return a fake location. Thus, data shadowing protects the user’s privacy from nosy apps
or spyware. In comparison to throwing a (security) exception, returning empty/fake/filtered data when
an app should not access certain sensitive data is more “gracefully”, i.e., the chance that the app crashes
unexpectedly is decreased.

Proposed Work Items

• For implementing data shadowing both ContentProviders (e.g., Contacts) and Services (e.g., Lo-
cation) have to be considered. For simplicity, the focus should lie on the system providers and
services, which, in contrast to 3rd party apps, can be modified to achieve data shadowing features.

• The students should consider at least one example each for shadowing a system Service and a system
ContentProvider.

– System Services usually require that the API functions of the service are instrumented to
perform the shadowing (e.g., getLastKnownLocation of the LocationManager).

– System ContentProvider are more flexible: 1) The filtering could be specific and inherent to
the provider (e.g., using SQLViews) or 2) more generic at the interface level (e.g., modifying
the result Cursor; Android 4.x provides corresponding Cursor classes).

– The resolution of the access control should be considered carefully. Returning empty data or
fake data is technically easy, in contrast, providing fine-grained access control might be more
difficult depending on the location of the access control enforcement (inherent vs. at interface)
but allows the user to adjust the access rights of apps according to his needs to share and
protect private data. For example, while returning only fake or no contacts information to a
messenger app like WhatsApp would protect the user’s privacy, it also prevents this app from
functioning correctly. Being able to adjust the data filtering such that this app only receives
names and phone numbers of contacts but no further information would enable the user to
chose the middleground between protecting and sharing his data. For ContentProvider, which
represent structured data in table-format, the access control can be as fine as per-cell or per-
row/per-column. For instance, filtering contacts can be based on the group (i.e., an app can
only access “Friends” but not “Workmates”) or based on the data mimetype (i.e., an app can
retrieve name and phone number of all contacts, but not email, nickname, IM contact, etc.)
or a combination of these two.

• A particular additional challenges is how the policies are managed, i.e., who configures to which
data an app has access and how does he configure it. For instance, the user could configure it via
an extra app or an external party could configure it by deploying policy files.

– 7 –



Android Security Lab WS13/14 Project Proposals

Project 3: KeyChain Extension and Integration

Description

Since Android API level 14 (Android 4.0), Android offers a KeyChain3 service that provides storage of
and access to private keys and their corresponding certificate chains. Thus, the KeyChain implements
a system-wide credential storage to which 3rd party apps can store their credentials and later request
access to keys, usually by means of an alias.

Project Goal

The nature of this project is rather of a functional nature and aims at improving the applicability and
integration of KeyChain into certain services such as SMS or Contacts management. In particular,
KeyChain lacks some of the features that 3rd party apps such as AGP4 provide (e.g., integration with
K9 Mail for encrypted emails), but, on the other hand, has as a system app the potential for tighter
integration into other system services such as the SMS service. This integration and extended functionality
of KeyChain should be explored in this project.

Warning: KeyChain is only available on Android 4.x which has extensive hardware requirements in
terms of storage, memory and processing power for building! If you do not have a good workstation or
desktop machine at your disposal, please reconsider taking another project!

Proposed Work Items

More precisely, the following two ideas should be analyzed and (a subset of them) implemented:

1. Integration into other system services and system apps

• One obvious integration is the system Contacts app and the system ContactsProvider. Similar
to a key ring, Contacts entries could be extended with pointers to the keys that are assigned
to the ID of the corresponding contact. Thus, services which use the Contacts data, e.g., com-
munication services, can request that sent/received data to/from this contact can be explicitly
encrypted.

• This integration could be extended to the SMS/MMS app, which would now offer communi-
cation with encrypted SMS (group SMS do not have to be implemented) with Contacts for
which a key has been assigned.

• A point that should be considered (but not necessarily implemented) is how to roll out these
keys. For instance, users could perform a “key signing party” with their smartphones to
exchange keys (e.g., using Bluetooth or NFC) or the keys could be delivered together with the
Contacts data, e.g., from an exchange or LDAP server.

2. Extended functionality

• Currently, KeyChain supports only asymmetric keys. One drawback of asymmetric keys in
the above described scenario could be their size, meaning SMS messages may be unnecessarily
large due to the key size.

• To this end, KeyChain should in a second step be extended beyond its current functionality
by providing (simple) support for some other credential formats such as symmetric keys like
AES keys.

• Topics related to this task, which should be considered but not necessarily implemented, are
the required access control to such “de-/encryption oracle” functions, the role of the user in
this process, and different backends (“providers”) for KeyChain such as SmartCards.

3http://developer.android.com/reference/android/security/KeyChain.html
4http://de.appbrain.com/app/apg/org.thialfihar.android.apg

– 8 –

http://developer.android.com/reference/android/security/KeyChain.html
http://de.appbrain.com/app/apg/org.thialfihar.android.apg


Android Security Lab WS13/14 Project Proposals

Project 4: Enhanced Installer

Description

The package installer of Android is part of its PackageManagerService. By default, all new apps that shall
be installed are handled by this component5, which parses the APK files, inserts relevant information,
e.g., from the Manifest file, into its databases, assigns a (shared) UID, and moves the app’s files into the
corresponding locations on disk. Moreover, before the installation actually starts, the user is prompted
to allow or deny the installation based on his assessment of the requested permissions.

Project Goal

The goal of this project is to extend the installation process with further security-related features. In
particular, the installer should enforce security policies which determine if an app can be installed or not
before the user is prompted. This project targets rather corporate security related issues, i.e., business
smartphones on which the company that issues the phone to its employees is the primary security principal
on the phone and decides on the security policies. Security policies in this project can be based on 1) static
properties of the app (e.g., which permissions the app requests [11], which intent-filters it registers (e.g.,
is it substituting the default Launcher), which developer signature the app has [22], or if it was signed
by the company [7]); 2) dynamic properties of the system (e.g., if AppA is installed, AppB cannot be
installed); 3) additional security mechanisms like a Virusscan.

Proposed Work Items

• In essence, three additional steps should be added to the install process by modifying the Package-
ManagerService at the corresponding locations:

1. Enforcement of policies based on the static properties of the new app (i.e., developer signature,
permissions requested).

2. Enforcement of policies based on the system state, i.e., which applications are already installed.
In particular shared UIDs should be considered, since an app inherits all permissions previously
granted to this shared UID, i.e., granted to all installed apps with this UID!

3. Implementation of a simple virus scanner for native code contained in APKs, which denies
installation if it detects malicious code.

• Consider how the installation policies are managed. For instance, they could be managed through
Android device management API or you could design a custom app/service to securely manage the
install policies.

• Additionally, different alternative approaches should be discussed and their drawbacks and benefits
be evaluated. For instance, security apps such as LookOut do not require modifications to the
operating system, but instead monitor system events for newly installed apps, scan those apps, and
trigger uninstallation if necessary.

5Exceptions exist on rooted phones, where apps can be installed via an adb push command.

– 9 –



Android Security Lab WS13/14 Project Proposals

Project 5: Context-aware Malware and KeyLogger

Description

One design principle of Android OS is that all applications are equal. As such, (most) pre-installed system
applications’ functionality can be substituted by a 3rd party app. For instance, the user can install an
alternative browser, launcher (i.e., the default home screen), or keyboard. When an Activity should be
started for which different applications are registered (e.g., opening a URL or going back to the home
screen), the user is prompted to chose which application should be used to execute this action.

Additionally, smartphone devices are equipped with an increasing number of on-board sensors to which
applications can request access. For instance, GPS to determine the geolocation of the the device or
accelerometer and gyroscope to determine the device’s orientation and rotation. Besides those sensors, a
number of other device states can be retrieved by applications, such as the state of the screen (on/off),
the Wi-Fi network to which the device is connected, discovered/connected Bluetooth devices, etc. In
sum these information allow an application and also malware to operate more intelligently based on the
current device context/state.

Project Goal

Goal of this project is to implement and evaluate two exemplary attacks in the spirit of ethical hack-
ing. The two selected scenarios for this attack are 1) context-aware malware, which performs malicious
operations only when a certain context is met (e.g., particular app in foreground on screen, connection
to particular network, state of the screen, etc); and 2) a malicious keyboard app which contains keylog-
ging functionality and sends logged input (in particular usernames and passwords) to a remote attacker.
Specifically, the project should consider how easy the user can be victim of such attacks and which
security mechanisms Android provides to counter this class of attacks.

Proposed Work Items

• The basis for the KeyLogger implementations can be the source code of the original keyboard app
available in the Android sources. For the implementation of context-aware malware, the implemen-
tation can be freely chosen.

• Different approaches from research to context-aware malware exist and can be used for inspiration.
For instance, (sp)iPhone [21], PlaceRaider [27], SoundComber [24], Stealthy Video Capturer [29],
or TouchLogger [9]/TapLogger [30].

• Special consideration and discussion should be the deployment and prevention of such attacks.

– 10 –



Android Security Lab WS13/14 Project Proposals

Project 6: Subverting Binder

Description

At the heart of Android’s inter-process communication is Binder IPC. In particular, it is the basis
for communication between application components. For instance, starting an Activity, sending Intent
messages, or calling the application framework API (e.g., reading the device location, contacts, sending
SMS, etc.) is implemented on top of Binder IPC. Thus, in many situations privacy- and security-sensitive
data is sent via Binder IPC packages between application processes. In some situations, even intuitively
intra-app communication (such as switching Activities) involves in fact Binder IPC. Generally, the Binder
IPC communication is not encrypted, thus susceptible to monitoring.

Project Goal

The goal of this project is to subvert the Binder communication of apps. You should use library injection6

of a modified libbinder.so to mount different attacks, such as keylogging or stealing sensitive data like
SMS messages. The modified libbinder.so will act as a man-in-the-middle in the target app’s IPC
and extract privacy- and security-sensitive information from Binder IPC packages and then forward this
information to an attacker app installed on the device.

Proposed Work Items

• Develop a malicious version of libbinder.so. You can test it based on modifying an Android build
or exchanging the libbinder.so on an AOSP debug build.

• Develop an attacker app that will 1) inject the finished library into other apps and 2) receive the
stolen data and present it to the attacker. For simplicity, it is sufficient to just log this information
instead of sending it to a remote server, etc.

• Library injection requires root privileges. For simplicity you can use the su tool to emulate a
successful and persistent root exploit of the device.

6For example https://code.google.com/p/libandroidinjector/

– 11 –

https://code.google.com/p/libandroidinjector/


Android Security Lab WS13/14 Project Proposals

Project 7: Intent Reference Monitor

Description

Intent messages are the most important abstraction of inter-process communication on Android and are
used in a plethora of situations, such as starting Activities, starting Services, or Broadcasting information.
Responsible for the life-cycle management of Intents are the applications. That means, an Intent object
is created and modified within the application process and only handed to the application framework
when the Intent is being sent to another application or system service. As a consequence, system-centric
access control architectures can only enforce policies on Intents when these are being sent. For instance,
type enforcement approaches [25, 8] or more generic access control frameworks [16, 5] have to label (or
classify) every Intent when it is being sent. Moreover, once the Intent object has reached its receiver,
control is lost over how the receiver modifies the Intent or whether it should access all data payload of
the Intent.

Project Goal

Goal of this project is to implement a reference monitoring system service for Intent objects. The
Intent life-cycle management should be centralized into a new system service and applications hold only
references to Intent objects managed by this system service. Thus, sending an Intent is reduced to
forwarding a reference to an Intent object from the sender application to the receiver application(s).

The benefit of this approach is, that the new Intent service acts as a reference monitor that can control
to which Intent or even which attribute of an Intent object every app has access to. Certain attributes
that are important for policy models like type enforcement can be protected from modification by apps
and hence allow for the first time a persistent and secure labeling of Intent objects. Conceptually, this
can be compared to known, established reference monitors like the virtual file system: Intent takes the
role of files, the Intent service takes the role of the virtual file system, and application processes are the
subjects in both cases.

Proposed Work Items

• A new system service for managing (i.e., creating, modifying, etc.) Intent objects should be created.

• A new Manager class (i.e., Proxy) for this service must be created. This manager should support
the same interface as the current Intent.java. Moreover, the manager must manage a reference
(e.g., UUID) to the Intent object it represents.

• Sending of this new kind of Intents requires modification of the ActivityManagerService and
related subsystems like the BroadcastQueue.

• For simplicity, a set of test apps should be created to test this new service.

– Important notice: For simplicity, the new Intent service should only be deployed in parallel
to the existing Intents and no integration into system apps/services is required!

• Particular technical challenges that should be considered are:

– Access to the same Intent object by multiple applications. Since every app holds a reference
to a centrally stored Intent object, multiple apps could hold the same reference (e.g., after
sending the Intent to another app), and hence this access must synchronized. One possible
approach could a copy-on-write scheme, where modifications to an Intent that is shared by
multiple apps must be cause the object to be copied before modification.

– Garbage collection of Intents. When the Intent service manager is cleaned by the garbage
collector, the Intent service must be informed about this event, so that it can delete the Intent
that the manager represented and thus avoid a memory leak. This could be implemented
based on the Java object’s finalization routine (finalize()) of the manager object.7

7For example https://www.science.uva.nl/ict/ossdocs/java/tutorial/java/javaOO/finalize.html

– 12 –

https://www.science.uva.nl/ict/ossdocs/java/tutorial/java/javaOO/finalize.html


Android Security Lab WS13/14 Project Proposals

References

[1] Facebook Caught Reading User SMS Messages? | TalkAndroid.com. http://www.talkandroid.
com/94623-facebook-caught-reading-user-sms-messages/.

[2] Path uploads your entire iPhone address book to its servers. http://mclov.in/2012/02/08/
path-uploads-your-entire-address-book-to-their-servers.html.

[3] WhatsApp storing messages of users up to 30 days | Your Daily Mac. http://www.yourdailymac.
net/2012/02/whatsapp-storing-messages-of-users-up-to-30-days/.

[4] WhatsApp took all my contacts and sent to their servers without asking me - Black-
Berry Forums at CrackBerry.com. http://forums.crackberry.com/blackberry-apps-f35/
whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/.

[5] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky. Android Security Framework: Exten-
sible multi-layered access control on Android. In Proc. 30th Annual Computer Security Applications
Conference (ACSAC’14). ACM, 2014.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on android. In 19th Annual Network & Distributed System Security
Symposium (NDSS’12), 2012.

[7] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and B. Shastry. Practical and lightweight
domain isolation on android. In 1st ACM CCS Workshop on Security and Privacy in Mobile Devices
(SPSM’11). ACM, 2011.

[8] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and fine-grained mandatory access control on
Android for diverse security and privacy policies. In Proc. 22nd USENIX Security Symposium
(SEC’13). USENIX Association, 2013.

[9] L. Cai and H. Chen. Touchlogger: inferring keystrokes on touch screen from smartphone motion. In
6th USENIX conference on Hot topics in security (HotSec’11). USENIX Association, 2011.

[10] W. Enck, M. Ongtang, and P. McDaniel. Mitigating Android software misuse before it happens.
Technical Report NAS-TR-0094-2008, Pennsylvania State University, 2008.

[11] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone application certification. In
CCS’09: Proceedings of the 16th ACM conference on Computer and communications security, 2009.

[12] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: automatically detecting potential
privacy leaks in android applications on a large scale. In 5th international conference on Trust and
Trustworthy Computing (TRUST’12). Springer-Verlag, 2012.

[13] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of capability leaks in stock android
smartphones. In 19th Network and Distributed System Security Symposium (NDSS 2012), 2012.

[14] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis of mobile in-app
advertisements. In 5th ACM conference on Security and Privacy in Wireless and Mobile Networks
(WISEC’12). ACM, 2012.

[15] N. Hardy. The confused deputy: (or why capabilities might have been invented). SIGOPS Oper.
Syst. Rev., 22(4):36–38, Oct. 1988.

[16] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi. Asm: A programmable interface for extending
android security. In Proc. 23rd USENIX Security Symposium (SEC’14), Mar. 2014.

[17] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from imperious applications. In 18th ACM conference on
Computer and communications security (CCS’11). ACM, 2011.

[18] A. Lineberry, D. L. Richardson, and T. Wyatt. These aren’t the permissions you’re looking
for. BlackHat USA 2010. http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.
pdf, 2010.

– 13 –

http://www.talkandroid.com/94623-facebook-caught-reading-user-sms-messages/
http://www.talkandroid.com/94623-facebook-caught-reading-user-sms-messages/
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://www.yourdailymac.net/2012/02/whatsapp-storing-messages-of-users-up-to-30-days/
http://www.yourdailymac.net/2012/02/whatsapp-storing-messages-of-users-up-to-30-days/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.pdf
http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.pdf


Android Security Lab WS13/14 Project Proposals

[19] Lookout Mobile Security. Security alert: Geinimi, sophisticated new Android Trojan found in wild.
http://blog.mylookout.com/2010/12/geinimi_trojan/, 2010.

[20] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically vetting android apps for component
hijacking vulnerabilities. In ACM conference on Computer and communications security (CCS ’12).
ACM, 2012.

[21] P. Marquardt, A. Verma, H. Carter, and P. Traynor. (sp)iphone: Decoding vibrations from nearby
keyboards using mobile phone accelerometers. In 18th ACM Conference on Computer and Commu-
nications Security (CCS ’11). ACM, 2011.

[22] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich application-centric
security in Android. In 25th Annual Computer Security Applications Conference (ACSAC’09), 2009.

[23] A. Porter Felt, H. Wang, A. Moshchuk, S. Hanna, and E. Chin. Permission re-delegation: Attacks
and defenses. In 20th USENIX Security Symposium, 2011.

[24] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In NDSS’11: Proceedings of the 18th Annual
Network and Distributed System Security Symposium, 2011.

[25] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing Flexible MAC to Android.
In Proc. 20th Annual Network & Distributed System Security Symposium (NDSS’13). The Internet
Society, 2013.

[26] C. Smith. Privacy flaw in skype android app exposed. http://www.t3.com/news/
privacy-flaw-in-skype-android-app-exposed/.

[27] R. Templeman, Z. Rahman, D. Crandall, and A. Kapadia. Placeraider: Virtual theft in physi-
cal spaces with smartphones. In 20th Annual Network & Distributed System Security Symposium
(NDSS’13). Internet Society, 2013.

[28] C. von Eitzen. Cyanogenmod logged lockscreen swipe gestures. http://www.h-online.com/open/
news/item/CyanogenMod-logged-lockscreen-swipe-gestures-1734701.html, 2012.

[29] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng. Stealthy video capturer: A new video-based
spyware in 3g smartphones. In 2nd ACM Conference on Wireless Network Security (WiSec ’09).
ACM, 2009.

[30] Z. Xu, K. Bai, and S. Zhu. Taplogger: inferring user inputs on smartphone touchscreens using
on-board motion sensors. In Fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks (WISEC’12). ACM, 2012.

[31] W. Zhou, X. Zhang, and X. Jiang. Detecting passive content leaks and pollution in android appli-
cations. In 20th Annual Network & Distributed System Security Symposium (NDSS’13), 2013.

[32] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming information-stealing smartphone applications
(on android). In 4th international conference on Trust and trustworthy computing (TRUST’11).
Springer-Verlag, 2011.

– 14 –

http://blog.mylookout.com/2010/12/geinimi_trojan/
http://www.t3.com/news/privacy-flaw-in-skype-android-app-exposed/
http://www.t3.com/news/privacy-flaw-in-skype-android-app-exposed/
http://www.h-online.com/open/news/item/CyanogenMod-logged-lockscreen-swipe-gestures-1734701.html
http://www.h-online.com/open/news/item/CyanogenMod-logged-lockscreen-swipe-gestures-1734701.html

