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On communication models when verifying equivalence
properties

Kushal Babel1, Vincent Cheval2, Steve Kremer2

1 IIT Bombay, India
2 LORIA, Inria Nancy & CNRS & Université de Lorraine, France

Abstract. Symbolic models for security protocol verification, following the sem-
inal ideas of Dolev and Yao, come in many flavors, even though they share the
same ideas. A common assumption is that the attacker has complete control over
the network: he can therefore intercept any message. Depending on the precise
model this may be reflected either by the fact that any protocol output is directly
routed to the adversary, or communications may be among any two participants,
including the attacker — the scheduling between which exact parties the com-
munication happens is left to the attacker. These two models may seem equiv-
alent at first glance and, depending on the verification tools, either one or the
other semantics is implemented. We show that, unsurprisingly, they indeed coin-
cide for reachability properties. However, when we consider indistinguishability
properties, we prove that these two semantics are incomparable. We also intro-
duce a new semantics, where internal communications are allowed but messages
are always eavesdropped by the attacker. We show that this new semantics yields
strictly stronger equivalence relations. We also identify two subclasses of proto-
cols for which the three semantics coincide. Finally, we implemented verification
of trace equivalence for each of these semantics in the APTE tool and compare
their performances on several classical examples.

1 Introduction

Automated, symbolic analysis of security protocols, based on the seminal ideas of
Dolev and Yao, comes is many variants. All of these models however share a few fun-
damental ideas:

– messages are represented as abstract terms,
– adversaries are computationally unbounded, but may manipulate messages only

according to pre-defined rules (this is sometimes referred to as the perfect cryptog-
raphy assumption), and

– the adversary completely controls the network.

In this paper we will revisit this last assumption. Looking more precisely at different
models we observe that this assumption may actually slightly differ among the models.
The fact that the adversary controls the network is supposed to represent a worst case
assumption.

In some models this assumption translates to the fact that every protocol output is
sent to the adversary, and every protocol input is provided by the adversary. This is the



case in the original Dolev Yao model and also in the models underlying several tools,
such as AVISPA [6], Scyther [12], Tamarin [19], Millen and Shmatikov’s constraint
solver [16], and the model used in Paulson’s inductive approach [17].

Some other models, such as those based on process algebras, e.g. work based on
CSP [18], the Spi [3] and applied pi calculus [1], but also the strand space model [20],
consider a slightly different communication model: any two agents may communicate.
Scheduling whether communication happens among two honest participants, or a hon-
est participant and the attacker is under the attacker’s control.

When considering reachability properties, these two communication models indeed
coincide: intuitively, any internal communication could go through the adversary who
acts as a relay and increases his knowledge by the transmitted message. However, when
considering indistinguishability properties, typically modelled as process equivalences,
these communication models diverge. Interestingly, when forbidding internal commu-
nication, i.e., forcing all communication to be relayed by the attacker, we may weaken
the attacker’s distinguishing power.

In many recent work privacy properties have been modelled using process equiva-
lences, see for instance [13, 5, 14]. The number of tools able to verify such properties is
also increasing [8, 21, 10, 9]. We have noted that for instance the AKISS tool [9] does
not allow any direct communication on public channels, while the APTE tool [10] al-
lows the user to choose among the two semantics. One motivation for disallowing direct
communication is that it allows for more efficient verification (as less actions need to
be considered and the number of interleavings to be considered is smaller).

Our contributions. We have formalised three semantics in the applied pi calculus which
differ by the way communication is handled:

– the classical semantics (as in the original applied pi calculus) allows both internal
communication among honest participants and communication with the adversary;

– a private semantics allows internal communication only on private channels while
all communication on public channels is routed through the adversary;

– an eavesdropping semantics which allows internal communication, but as a side-
effect adds the transmitted message to the adversary’s knowledge.

For each of the new semantics we define may-testing and observational equiva-
lences. We also define corresponding labelled semantics and trace equivalence and
bisimulation relations (which may serve as proof techniques).

We show that, as expected, the three semantics coincide for reachability proper-
ties. For equivalence properties we show that the classical and private semantics yield
incomparable equivalences, while the eavesdropping semantics yields strictly stronger
equivalence relations than both other semantics. The results are summarized in Figure 7.

An interesting question is whether these semantics coincide for specific subclasses
of processes. We first note that the processes that witness the differences in the seman-
tics do not use replication, private channels, nor terms other than names, and no equa-
tional theory. Moreover, all except one of these examples only use trivial else branches
(of the form else 0); the use of a non-trivial else branch can however be avoided by
allowing a single free symbol.
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However conditions on the channel names may yield such a subclass. We first ob-
serve that the class of simple processes [11], for which already observational, testing,
trace equivalence and labelled bisimulation coincide, do have this property. Simple pro-
cesses may however be too restrictive for modelling some protocols that should guar-
antee anonymity (as no parallel processes may share channel names). We therefore
identify a syntactic class of processes, that we call I/O-unambiguous. For this class we
forbid communication on private channels, communication of channel names and an
output may not be sequentially followed by an input on the same channel directly, or
with only conditionals in between. Note that I/O-unambiguous processes do however
allow outputs and inputs on the same channel in parallel. We show that for this class the
eavesdropping semantics (which is the most strict relation) coincides with the private
one (which is the most efficient for verification).

Finally, we have extended the APTE tool to support verification of trace equivalence
for the three semantics. Verifying existing protocols in the APTE example repository
we verified that the results, fortunately, coincided for each of the semantics. We also
made slight changes to the encodings, renaming some channels, to make them I/O-
unambiguous. Interestingly, using different channels, significantly increased the perfor-
mance of the tool. Finally, we also observed that, as expected, the private semantics
yields more efficient verification. The results of our experiments are summarized in
Figure 8.

Outline. In Section 2 we define the three semantics we consider. In Section 3 we present
our main results on comparing these semantics. We present subclasses for which (some)
semantics coincide in Section 4 and compare the performances when verifying proto-
cols for different semantics using APTE in Section 5, before concluding in Section 6.

2 Model

The applied pi calculus [1] is a variant of the pi calculus that is specialised for modelling
cryptographic protocols. Participants in a protocol are modelled as processes and the
communication between them is modelled by message passing on channels. In this
section, we describe the syntax and semantics of the applied pi calculus as well as the
two new variants that we study in this paper.

2.1 Syntax

We consider an infinite set N of names of base type and an infinite set Ch of names of
channel type. We also consider an infinite set of variables X of base type and channel
type and a signature F consisting of a finite set of function symbols. We rely on a sort
system for terms. In particular, the sort base type differs from the sort channel type.
Moreover, any function symbol can only be applied and returns base type terms. We
define terms as names, variables and function symbols applied to other terms. Given
N ⊆ N , X ⊆ X and F ⊆ F , we denote by T (F,X,N) the sets of terms built from
X and N by applying function symbols from F . We denote fv(t) the sets of variables
occurring in t. We say that t is ground if fv(t) = ∅. We describe the behaviour of
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cryptographic primitives by the means of an equational theory E that is a relation on
terms closed under substitutions of terms for variables and closed under one-to-one
renaming. Given two terms u and v, we write u =E v when u and v are equal modulo
the equational theory.

In the original syntax of the applied pi calculus, there is no distinction between an
output (resp. input) from a protocol participant and from the environment, also called
the attacker. In this paper however, we will make this distinction in order to concisely
present our new variants of the semantics. Therefore, we consider two process tags
ho and at that respectively represent honest and attacker actions. The syntax of plain
processes and extended processes is given in Figure 1.

P,Q := 0 plain processes A,B := P extended processes
P | Q A | B
!P νn.A
νn.P νx.A
if u = v then P else Q {u/x}
inθ(c, x).P ωc

outθ(c, u).P
eav(c, x).P

where u and v are base type terms, n is a name, x is a variable and c is a name or variable of
channel type, θ is a tag, i.e. θ ∈ {ho, at}.

Fig. 1. Syntax of processes

The process outθ(c, u) represents the output by θ of the message u on the channel c.
The process inθ(c, x) represents an input by θ on the channel c. The input message will
instantiate the variable x. The process eav(c, x) models the capability of the attacker to
eavesdrop a communication on channel c. The process !P represents the replication of
the process P , i.e. unbounded number of copies of P . The process P | Q represents
the parallel composition of P and Q. The process νn.P (resp. νx.A) is the restriction
of the name n in P (resp. variable x in A). The process if u = v then P else Q is
the conditional branching under the equality test u = v. The process ωc records that
a private channel c has been opened, i.e., it has been sent on a public or previously
opened channel. Finally, the substitution {u/x} is an active substitution that replaces
the variable x with the term u of base type.

We say that a process P (resp. extended process A) is an honest process (resp.
honest extended process) when all inputs and outputs in P (resp. A) are tagged with ho
and when P (resp. A) does not contain eavesdropping processes and ωc. We say that
a process P (resp. extended process A) is an attacker process (resp. attacker extended
process) when all inputs and outputs in P (resp. A) are tagged with at.

As usual, names and variables have scopes which are delimited by restrictions, in-
puts and eavesdrops. We denote fv(A), bv(A), fn(A), bn(A) the sets of free variables,
bound variables, free names and bound names respectively in A. Moreover, we denote
by oc(A) the sets of terms c of channel type opened in A, i.e. that occurs in a process
ωc. We say that an extended process A is closed when all variables in A are either
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bound or defined by an active substitution in A. We define an evaluation context C[ ]
as an extended process with a hole instead of an extended process. As for processes,
we define an attacker evaluation context as an evaluation context where all outputs and
inputs in the context are tagged with at.

Note that our syntax without the eavesdropping process, opened channels and tags
correspond exactly to the syntax of the original applied pi calculus.

Lastly, we consider the notion of frame that are extended processes built from 0,
parallel composition, name and variable restrictions and active substitution. Given a
frame ϕ, we consider the domain of ϕ, denoted dom(ϕ), as the set of free variables in
ϕ that are defined by an active substitution in ϕ. Given an extended processA, we define
the frame of A, denoted φ(A), as the process A where we replace all plain processes by
0. Finally, we write dom(A) as syntactic sugar for dom(φ(A)).

2.2 Operational semantics

In this section, we define the three semantics that we study in this paper, namely:

– the classical semantics from the applied pi calculus, where internal communication
can occur on both public and private channels;

– the private semantics where internal communication can only occur on private
channels; and

– the eavesdropping semantics where the attacker is able to eavesdrop on a public
channel.

We first define the structural equivalence between extended processes, denoted ≡,
as the smallest equivalence relation on extended processes that is closed under renaming
of names and variables, closed by application of evaluation contexts, that is associative
and commutative w.r.t. |, and such that:

A ≡ A | 0 !P ≡ !P | P νn.0 ≡ 0
νi.νj.A ≡ νj.νi.A νx.{u/x} ≡ 0 {u/x} | A ≡ {u/x} | A{u/x}

A | νi.B ≡ νi.(A | B) when i 6∈ fv(A) ∪ fn(A) ωc ≡ ωc | ωc
{u/x} ≡ {v/x} when u =E v

The three operational semantics of extended processes are defined by the struc-
tural equivalence and by three respective internal reductions, denoted→c,→p and→e.
These three reductions are the smallest relations on extended processes that are closed
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under application of evaluation context, structural equivalence and such that:

if u = v then P else Q
τ−→s P where u =E v and s ∈ {c, p, e} THEN

if u = v then P else Q
τ−→s Q ELSE

where u, v ground, u 6=E v and s ∈ {c, p, e}

outθ(c, u).P | inθ
′
(c, x).Q

τ−→c P | Q{u/x} COMM

νc.(outθ(c, u).P | inθ
′
(c, x).Q | R) τ−→s νc.(P | Q{u/x} | R) C-PRIV

where c 6∈ oc(R) and s ∈ {p, e}
outθ(c, u).P | inθ

′
(c, x).Q

τ−→s P | Q{u/x} C-ENV
at ∈ {θ, θ′}, u is of base type and s ∈ {p, e}

outθ(c, d).P | inθ
′
(c, x).Q

τ−→s P | Q{d/x} | ωd C-OPEN
at ∈ {θ, θ′}, d is of channel type and s ∈ {p, e}

outho(c, u).P | inho(c, x).Q | eav(c, y).R τ−→e P | Q{u/x} | R{u/y} C-EAV
where u is of base type

outho(c, d).P | inho(c, x).Q | eav(c, y).R τ−→e P | Q{d/x} | R{d/y} | ωd C-OEAV
where d is of channel type

We emphasise that the application of the rule is closed under application of arbitrary
evaluation contexts. In particular the context may restrict channels, e.g. the rule C-
OPEN may be used under the context νc. resulting in a private channel c, but with the
attacker input/output being in the scope of this restriction. It follows from the definition
of evaluation contexts that the resulting processes are always well defined. We denote
by ⇒s the reflexive, transitive closure of τ−→s for s ∈ {c, p, e}. We note that the clas-
sical semantics τ−→c is independent of the tags θ, θ′, the eavesdrop actions and the ωc
processes.

Example 1. Consider the process

A = (νd.outθ(c, d).inθ(d, x).P ) | (inθ
′
(c, y).outθ

′
(y, t).Q)

where d is a channel name and t a term of base type. Suppose θ = θ′ = ho then we have
that communication is only possible in the classical semantics (using twice the COMM
rule):

A
τ−→c νd.(in

θ(d, x).P | outθ′(d, t).Q{d/y})
τ−→c νd.(P{t/x} | Q{d/y})

while no transitions are available in the two other semantics. To enable communication
in the eavesdropping semantics we need to explicitly add eavesdrop actions. Applying
the rules C-OEAV and C-EAV we have that

A | eav(c, z1).eav(z1, z2).R
τ−→e νd.(in

θ(d, x).P | outθ′(d, t).Q{d/y}
| eav(d, z2).R{d/z1} | ωd)

τ−→e νd.(P{t/x} | Q{d/y} | R{d/z1}{t/z2} | ωd)
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We note that the first transition adds the information ωd to indicate that d is now avail-
able to the environment.

Finally, if we consider that at ∈ θ, θ′ then internal communication on a public
channel is possible and, using rules C-OPEN and C-ENV we obtain for s ∈ {p, e} that

A
τ−→s νd.(in

θ(d, x).P | outθ′(d, t).Q{d/y} | ωd)
τ−→s νd.(P{t/x} | Q{d/y} | ωd)

2.3 Reachability and behavioural equivalences

We are going to compare the relation between the three semantics for the two general
kind of security properties, namely reachability properties encoding security proper-
ties such as secrecy, authentication, and equivalence properties encoding anonymity,
unlinkability, strong secrecy, receipt freeness, . . . . Intuitively, reachability properties
encode that a process cannot reach some bad state. Equivalences define the fact that no
attacker can distinguish two processes. This was originally defined by the (may)-testing
equivalence [3] in the spi-calculus. An alternate equivalence, which was considered in
the applied pi calculus [1], is observational equivalence.

Reachability properties can simply be encoded by verifying the capability of a pro-
cess to perform an output on a given cannel. We define A ⇓s,θc to hold when A =⇒s

C[outθ(c, t).P ] for some evaluation context C that does not bind c, some term t and
some plain process P , and A ⇓sc to hold when A ⇓s,θc for some θ ∈ {at, ho}. For ex-
ample the secrecy of s in the process νs.A can be encoded by checking whether for all
attacker plain process I , we have that

I | νs.(A | inho(c, x).if x = s then outho(bad, s)) 6⇓s,hobad

where bad 6∈ fn(A).
Authentication properties are generally expressed as correspondence properties be-

tween events annotating processes, see e.g. [7]. A correspondence property between two
events begin and end, denoted begin⇐ end, requires that the event end is preceded by
the event begin on every trace. A possible encoding of this correspondence property
consists in first replacing all instances of the events in A by outputs outho(ev, begin)
and outho(ev, end) where ev 6∈ fn(A) ∪ bn(A). This new process A′ can then be put
in parallel with a cell Cell that reads on the channel ev and stores any new value un-
less the value is end and the current stored value in the cell is not begin. In such a
case, the cell will output on the channel bad. The correspondance property can there-
fore be encoded by checking whether for all attacker plain process I , we have that
I | νev.(A′ | Cell) 6⇓s,hobad .

We say that an attacker evaluation context C[ ] is c-closing for an extended process
A if fv(C[A]) = ∅. For s ∈ {p, e}, we say that C[ ] is s-closing for A if it is c-
closing for A, variables and names are bound only once in C[ ] and for all channels
c ∈ bn(C[ ]) ∩ fn(A), if the scope of c includes then the scope of c also includes ωc.

We next introduce the two main notions of behavioural equivalences: may testing
and observational equivalence.
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Definition 1 ((May-)Testing equivalences ≈c
m, ≈p

m, ≈e
m). Let s ∈ {c, p, e}. Let A

and B two closed honest extended processes such that dom(A) = dom(B). We say
that A ≈sm B if for all attacker evaluation contexts C[ ] s-closing for A and B, for all
channels c, we have that C[A] ⇓sc if and only if C[B] ⇓sc.

Definition 2 (Observational equivalences ≈c
o, ≈p

o, ≈e
o). Let s ∈ {c, p, e}. Let A and

B two closed extended processes such that dom(A) = dom(B). We say that A ≈sm B
if ≈sm is the largest equivalence relation such that:

– A ⇓sc implies B ⇓sc;
– A

τ−→s A
′ implies B ε

=⇒s B
′ and A′ ≈sm B′ for some B′;

– C[A] ≈sm C[B] for all attacker evaluation contexts C[ ] s-closing for A and B.

For each of the semantics we have the usual relation between these two notions:
observational equivalence implies testing equivalence.

Proposition 1. ≈so ( ≈sm for s ∈ {c, e, p}.

Example 2. Consider processes A and B of Figure 2. Process A computes a value
hn(a) to be output on channel c, where hn(a) denotes n applications of h and h0(a) =
a. The value is initially a andAmay choose to either output the current value, or update
the current value by applying the free symbol h. B may choose non-deterministically
to either behave as A or output the fresh name s. (The non-deterministic choice is en-
coded by a communication on the private channel e which may be received by either
the process behaving as A or the process outputting s.)

We have thatA 6≈so B. The two processes can indeed be distinguished by the context

C[ ] =̂ | outat(ca, a) | !(inat(ca, x).outat(ca, h(x))
| inat(ca, y).inat(c, z).if y = z then outat(ct, h(x))

Intuitively, when B outputs s the attacker context C[ ] can iterate the application of h
the same number of times as would have done process A. Comparing the value com-
puted by the adversary (hn(a)) and the honestly computed value (either hn(a) or s) the
adversary distinguishes the two processes by outputting on the test channel ct.

However, we have that A ≈sm B. Indeed, for any s-closing context D[ ] and all
public channel ch we have thatD[A] ⇓sch if and only ifD[B] ⇓sch. In particular for con-
text C[ ] defined above we have that both C[A] ⇓sch and C[B] ⇓sch for ch ∈ {ca, ct, c}.
Unlike observational equivalence, may testing does not require to “mimick” the other
process stepwise and we cannot force a process into a particular branch.

A =̂ νd.outho(d, a) | !inho(d, x).outho(d, h(x)) | inho(d, y).outho(c, y)
B =̂ νe.outho(e, a) | inho(e, z).A | inho(e, z).νs.outho(c, s)

Fig. 2. Processes A and B such that A ≈sm B, but A 6≈so B and A 6≈st B for s ∈ {c, e, p} .

8



2.4 Labelled semantics

The internal reduction semantics introduced in the previous section requires to rea-
son about arbitrary contexts. Similar to the original applied pi calculus, we extend
the three operational semantics by a labeled operational semantics which allows pro-
cesses to directly interact with the (adversarial) environment: we define the relation
`−→c,

`−→p and `−→e where ` is part of the alphabet A = {τ, out(c, d), eav(c, d), in(c, w),
νk.out(c, k), νk.eav(c, k) | c, d ∈ Ch, k ∈ X ∪ Ch and w is a term of any sort}. The
labeled rules are given in Figure 3.

IN inho(c, y).P
in(c,t)−−−−→s P{t/y}

OUT-CH outho(c, d).P
out(c,d)−−−−−→s P

OPEN-CH
A

out(c,d)−−−−−→s A
′ d 6= c

νd.A
νd.out(c,d)−−−−−−−→s A′

EAV-OCH
A

eav(c,d)−−−−−→e A
′ d 6= c

νd.A
νd.eav(c,d)−−−−−−−→e A′

SCOPE
A

`−→s A
′ u does not occur in `

νu.A
`−→s νu.A′

bn(`) ∩ fn(B) = ∅

PAR
A

`−→s A
′ bv(`) ∩ fv(B) = ∅

A | B `−→s A′ | B

STRUCT
A ≡ B B

`−→s B
′ B′ ≡ A′

A
`−→s A′

EAV-CH outho(c, d).P | inho(c, x).Q eav(c,d)−−−−−→e P | Q{d/x}

EAV-T outho(c, t).P | inho(c, x).Q νy.eav(c,y)−−−−−−−→e P | Q{t/x} | {t/y}

OUT-T outho(c, t).P
νx.out(c,x)−−−−−−−→s P | {t/x}

x 6∈ fv(P ) ∪ fv(t)

where s ∈ {c, p, e}.

Fig. 3. Labeled semantics

Consider our alphabet of actionsA defined above. Given w ∈ A∗, s ∈ {c, p, e} and

an extended process A, we say that A w−→s An when A `1−→s A1
`2−→s A2

`3−→s . . .
`n−→s

An for some extended processes A1, . . . , An and w = `1 · . . . · `n. By convention,
we say that A ε−→s A where ε is the empty word. Given tr ∈ (A \ {τ})∗, we say that
A

tr
=⇒s A

′ when there exists w ∈ A∗ such that tr is the word w where we remove all τ
actions and A w−→s A

′.

Example 3. Coming back to Example 1, we saw thatA τ−→c
τ−→c νd.(P{t/x} | Q{d/y})

and no τ -actions in the other two semantics were available. Instead of explicitly adding
eavesdrop actions, we can apply the rules EAV-OCH and EAV-T and obtain that

A
νd.eav(c,d)−−−−−−−→e in

ho(d, x).P | outho(d, t).Q{d/y})
νz.eav(d,z)−−−−−−−→e P{t/x} | Q{d/y} | {t/z}

9



We can now define both reachability and different equivalence properties in terms of
these labelled semantics and relate them to the internal reduction. To define reachability
properties in the labelled semantics, we define A �sc to hold when A tr

=⇒ A′, tr =
tr1out(c, t)tr2 and tr1 does not bind c for some tr, tr1, tr2 ∈ (A \ {τ})∗, term t and
extended process A′.

The following proposition states that any reachability property modelled in terms of
A ⇓s,θc and universal quantification over processes, can also be expressed using A �sc
without the need to quantify over processes.

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p}, A �sc iff
there exists an attacker plain process Is such that Is | A ⇓s,hoc .

Next, we define equivalence relations using our labelled semantics that may serve as
proof techniques for the may testing relation. First we need to define an indistinguisha-
bility relation on frames, called static equivalence.

Definition 3 (Static equivalence ∼). Two terms u and v are equal in the frame φ,
written (u =E v)φ, if there exists ñ and a substitution σ such that φ ≡ νñ.σ, ñ ∩
(fn(u) ∪ fn(v)) = ∅, and uσ =E vσ.

Two closed frames φ1 and φ2 are statically equivalent, written φ1 ∼ φ2, when:

– dom(φ1) = dom(φ2), and
– for all terms u, v we have that: (u =E v)φ1 if and only if (u =E v)φ2.

Example 4. Consider the equational theory generated by the equation dec(enc(x, y), y) =
x. Then we have that

νk. {enc(a,k)/x1} ∼ νk. {enc(b,k)/x1}
νk. {enc(a,k)/x1

,k /x2
} 6∼ νk. {enc(b,k)/x1

,k /x2
}

νk, a. {enc(a,k)/x1
,k /x2

} ∼ νk, b. {enc(b,k)/x1
,k /x2

}

Intutively, the first equivalence confirms that encryption hides the plaintext when the de-
cryption key is unknown. The second equivalence does not hold as the test (dec(x1, x2)
=E a) holds on the left hand side, but not on the right hand side. Finally, the third
equivalence again holds as two restricted names are indistinguishable.

Now we are ready to define two classical equivalences on processes, based on the
labelled semantics: trace equivalence and labelled bisimulation.

Definition 4 (Trace equivalences ≈c
t , ≈

p
t , ≈e

t). Let s ∈ {c, p, e}. Let A and B be two
closed honest extended processes. We say that A vst B if for all A tr

=⇒s A
′ such that

bn(tr) ∩ fn(B) = ∅, there exists B′ such that B tr
=⇒s B

′ and φ(A′) ∼ φ(B′). We say
that A ≈st B when A vst B and B vst A.

Definition 5 (Labeled bisimulations ≈c
`, ≈

p
` , ≈e

`). Let s ∈ {c, p, e}. Let A and B two
closed honest extended processes such that dom(A) = dom(B). We say that A ≈s` B
if ≈s` is the largest equivalence relation such that:

– φ(A) ∼ φ(B)

10



– A
τ−→s A

′ implies B ε
=⇒s B

′ and A′ ≈s` B′ for some B′,

– A
`−→s A

′ and bn(`) ∩ fn(B) = ∅ implies B `
=⇒s B

′ and A′ ≈s` B′ for some B′.

We again have, as usual that labelled bisimulation implies trace equivalence.

Proposition 3. ≈s` ( ≈st for s ∈ {c, e, p}.

In [1] it is shown that ≈c
o = ≈c

`. We conjecture that for the new semantics p and
e this same equivalence holds as well. Re-showing these results is beyond the scope of
this paper, and we will mainly focus on testing/trace equivalence. As shown in [11], for
the classical semantics trace equivalence implies may testing, while the converse does
not hold in general. The two relations do however coincide on image-finite processes.

Definition 6. Let A be a closed extended process. A is image-finite for the semantics
s ∈ {c, e, p} if for each trace tr the set of equivalence classes {φ(B) | A tr

=⇒s B}/∼ is
finite.

Note that any replication-free process is necessarily image-finite as there are only a
finite number of possible traces for any given sequence of labels tr. The same relations
among trace equivalence and may testing shown for the classical semantics hold also
for the other semantics.

Theorem 1. ≈st ( ≈sm and ≈st = ≈sm on image-finite processes for s ∈ {c, e, p}.

The proof of this result (for the classical semantics) is given in [11] and is easily
adapted to the other semantics. To see that the implication is strict, we continue Ex-
ample 2 on processes A and B defined in Figure 2. We already noted that A ≈sm B,
but will now show that A 6≈st B (for s ∈ {c, e, p}). All possible traces of A are of

the form A
νx.out(c,x)
=======⇒s A

′ where φ(A′) = {hn(a)/x} for n ∈ N. We easily see that
A 6≈stB as for any n we have that {hn(a)/x} 6∼ {s/x}, by testing x = hn(a). On the
other hand, given an image-finite process, we can only have a finite number of different
frames for a given trace, and therefore we can bound the context size that is necessary
for distinguishing the processes.

3 Comparing the different semantics

In this section we state our results on comparing these semantics. We first show that, as
expected, all the semantics coincide for reachability properties.

Theorem 2. For all ground, closed honest extended processesA, for all channels d, we
have that A �p

d iff A �c
d iff A �e

d.

The next result is, in our opinion, more surprising. As the private semantics force
the adversary to observe all information, one might expect that his distinguishing power
increases over the classical one. This intuition is however wrong: the classical and pri-
vate trace equivalences, testing equivalence and labelled bisimulations appear to be
incomparable.

11



A =̂ νs1.νs2.((out
ho(c, s1).in

ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B =̂ νs1.νs2.((out
ho(c, s1).in

ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where
P1(x) =̂ (if x = s1 then outho(d, s2)) | (if x = s2 then outho(e, x))
P2(x) =̂ (if x = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) followed by P1(s2). In the classi-
cal semantics, a trace ofA emitting on e through an internal communication between outho(c, s1)
and inho(c, y) forces B to execute P1(s1) thus preventing it to emit on e.

Fig. 4. Processes A and B such that A ≈p
` B and A 6≈c

m B.

Theorem 3. ≈p
r 6⊆ ≈c

r and ≈c
r 6⊆ ≈p

r for r ∈ {`, t,m}.

Proof. We first show that there exist A and B such that A ≈p
` B, but A 6≈c

m B. Note
that, as≈s` ⊂ ≈st ⊆ ≈sm for s ∈ {c, p} these processes demonstrate both that≈p

` 6⊆ ≈c
`,

≈p
t 6⊆ ≈c

t and ≈p
m 6⊆ ≈c

m.
Consider processes A and B defined in Figure 4. In short, the result follows from

the fact that if A performs an internal communication on channel c followed by an
output on d (from P1), B has no choice other then performing the output on d in P2.
In the private semantics, however, the internal communication will be split in an output
followed by an input: after the output on c, the input inho(c, x).P2(x) following the
output becomes available. More precisely, to see that A ≈p

` B we first observe that if

A
νz.out(c,z)−−−−−−−→p A

′ then B
νz.out(c,z)−−−−−−−→p B

′ and A′ ≡ B′, and vice-versa. If A
in(c,t)−−−−→p

A′ then B
in(c,t)−−−−→p B

′. As t 6∈ {s1, s2} we have that P1(t) ≈p
` 0 ≈

p
` P2(t). Finally, if

t 6= s2 we also have that P1(t) ≈p
` P2(t) as in particular P1(s1) ≈p

` P2(s1). Therefore,

νs1.νs2.(out
ho(c, s1).in

ho(c, x).P1(x))
≈p
`

νs1.νs2.(out
ho(c, s1).in

ho(c, x).P2(x))

which allows us to conclude.
As A and B are image-finite, we have that A ≈c

m B if and only if A ≈c
t B. To see

that A 6≈c
t B we observe that A may perform the following transition sequence, starting

with an internal communication on a public channel:

A
τ−→c νs1.νs2.((in

ho(c, x).P1(x)) | (P2(s1)))
νz.out(d,z)
=======⇒c νs1.νs2.((in

ho(c, x).P1(x)) | {s2/z})
in(c,z)−−−−→c νs1.νs2.(P1(s2) | {s2/z})

In order to mimic the behaviour ofA,B must perform the same sequence of observable
transitions:

B
νz.out(d,z) in(c,z)
===========⇒c νs1.νs2.(P2(s2) | {s2/z})

We conclude as νs1.νs2.(P1(s2) | {s2/z})
νz′.out(e,z′)−−−−−−−−→ νs1.νs2.({s2/z} | {s2/z′}),

but νs1.νs2.(P2(s2) | {s2/z}) 6
νz′.out(e,z′)−−−−−−−−→. This trace inequivalence has also been

shown using APTE.
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A =̂ νs.(inho(c, x).outho(c, s).outho(d, a) | inho(c, y).P (y))

B =̂ νs.(inho(c, x).(outho(c, s).outho(d, a) | inho(c, y).P (y)))

where
P (y) =̂ if y = s then inho(c, z).outho(c, s).outho(d, a) else outho(d, a)

In the private semantics, a trace ofA starting with the execution of inho(c, y) can only be matched
on B by executing inho(c, x). B could then emit on channel c, which is not the case for A,
hence yielding non equivalence. In the classic semantics, an internal communication between
outho(c, s) and inho(c, y) allows to hide the fact that B can emit on c.

Fig. 5. Processes A and B such that A ≈c
` B and A 6≈p

m B.

To show that ≈c
r 6⊆ ≈p

r for r ∈ {`, t,m} we show that there exist processes A
and B such that A ≈c

` B and A 6≈p
m B. As in the first part of the proof, note that, as

≈s` ⊂ ≈st ⊆ ≈sm for s ∈ {c, p} these processes demonstrate that ≈c
` 6⊆ ≈

p
` , ≈c

t 6⊆ ≈
p
t

and ≈c
m 6⊆ ≈p

m.
Consider the processes A and B defined in Figure 5. The proof crucially relies on

the fact that B may perform an internal communication in the classical semantics to
mimic A, which becomes visible in the attacker in the private semantics. To see that
A ≈c

` B we first observe that the only first possible action from A or B is an in-

put. In particular, given a term t, there is a unique B′ such that B
in(c,t)−−−−→ B′ where

B′ = νs.(outho(c, s).outho(d, a) | inho(c, y).P (y)). However, if A
in(c,t)−−−−→ A′ then

either A′ = B′ or A′ = A′′ with A′′ =̂ νs.(inho(c, x).outho(c, s).outho(d, a) | P (t)).
Therefore, to complete the proof, we only need to find B′′ such that B

in(c,t)
====⇒ B′′ and

A′′ ≈c
` B
′′. Such process can be obtain by applying an internal communication on B′,

i.e. B
in(c,t)−−−−→c B

′ τ−→ νs.(outho(d, a) | P (s)). Note that t 6= s since s is bound, mean-
ing that P (t) ≈c

` outho(d, a). Moreover, P (s) ≈c
` inho(c, x).outho(c, s).outho(d, a).

This allows us to conlude that νs.(outho(d, a) | P (s)) ≈c
` A
′′.

Again, as A and B are image-finite may and trace equivalence coincide. To see that
A 6≈p

t B we first observe that A may perform the following transition sequence:

A
in(c,t)−−−−→p A

′′ τ−→p νs.(inho(c, x).outho(c, s).outho(d, a) | outho(d, a))
νz.out(d,z)−−−−−−−→p νs.(inho(c, x).outho(c, s).outho(d, a) | {a/z})

We conclude as B
in(c,t)−−−−→p B

′ but B′ 6 νz.out(d,z)−−−−−−−→p. This trace disequivalence has also
been shown using APTE. ut

One may also note that the counter-example witnessing that equivalences in the
private semantics do not imply equivalences in the classical semantics is minimal: it
does not use function symbols, equational reasoning, private channels, replication nor
else branches. The second part of the proof relies on the use of else branches. We can
however refine this result in the case of labeled bisimulation to processes without else
branches, the counter-example being the same processesA andB described in the proof
but where we replace each outho(d, a) by 0. In the case of trace equivalence, we can also
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produce a counter-example without else branches witnessing that trace equivalences
in the classical semantics do no imply trace equivalences in the private semantics but
provided that we rely on a function symbol h. In the appendix we describe in more
details these processes and give the proofs of them being counter-examples.

Next, we show that the eavesdropping semantics yields strictly stronger bisimula-
tions and trace equivalences: the eavesdropping semantics is actually strictly included
in the intersection of the classic and private semantics.

Theorem 4. ≈e
` ( ≈

p
` ∩ ≈c

`.

Proof (Sketch).

1. We first show that ≈e
` ⊆ ≈

p
` . Suppose A≈e

`B and let R be the relation witnessing
this equivalence. We will show that R is also a labelled bisimulation in the private
semantics. Suppose ARB.

– as A≈e
`B, we have that φ(A) ∼ φ(B).

– if A τ−→p A
′ then, as τ−→p⊂

τ−→e, A
τ−→e A

′. As A≈e
`B there exists B′ such that

B
ε
=⇒e B

′ and A′RB′. As B is a honest process no COMM-EAV transition is
possible, and hence B ε

=⇒p B
′.

– if A `−→p A′ and bn(`) ∩ fn(B) = ∅ then we also have that A `−→e A′

(as `−→p⊂
`−→e and there exists B′ such that B `

=⇒e B′ and A′RB′. As no
COMM-EAV are possible and ` is not of the form eav(c, d) nor νy.eav(c, y)
we have that B `

=⇒p B
′.

2. We next show that A ≈e
` B implies A ≈c

` B for any A,B. We will show that ≈e
` is

also a labelled bisimulation in the classical semantics. The proof relies on similar
arguments as in Item 2 of the proof of Theorem 5 and the facts that

– νñ.(A′ | {t/x}) ≈e
` νñ.(B

′ | {u/x}) implies νñ.A′ ≈e
` νñ.B

′,
– A′ ≈e

` B
′ implies νc.A′ ≈e

` νc.B
′

The first property is needed when an internal communication of a term or public
channel is replaced by an eavesdrop action and an input. The second property han-
dles the case when we replace the internal communication of a private channel by
an application of the EAV-OCH rule and an input.

3. We now show that the implication ≈e
` ( ≈c

` ∩≈c
t is strict, i.e., there exist A and B

such that A ≈c
` B, A ≈p

` B but A 6≈e
t B (which implies A 6≈e

` B).
Consider the processesA andB defined in Figure 6. This example is a variant of the
one given in Figure 4. The difference is the addition of “inho(d, z).if z = s1 then ”
in processes P1(x) and P2(x): this additional check is used to verify whether the
adversary learned s1 or not. The proofs that A ≈c

` B and A ≈p
` B follow the same

lines as in Theorem 3. We just additionally observe that νs1.(inho(d, z).if z =
s1 then outho(d, s2)) ≈s` νs1. (in

ho(d, z).0) for s ∈ {c, p}.
The trace witnessing that A 6≈e

t B (which implies A 6≈e
` B) is again similar to

the one in Theorem 3, but starting with an eavesdrop transition which allows the
attacker to learn s1, which in turn allows him to learn s2 and distinguish P1(s2)
from P2(s2). We have also verified using APTE that A 6≈e

t B which implies A 6≈e
`

B. ut
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A =̂ νs1.νs2.((out
ho(c, s1).in

ho(c, x).P1(x)) | (inho(c, y).P2(y)))

B =̂ νs1.νs2.((out
ho(c, s1).in

ho(c, x).P2(x)) | (inho(c, y).P1(y)))

where
P1(x) =̂ (if x = s1 then inho(d, z).if z = s1 then outho(d, s2)) |

(if x = s2 then outho(e, x))
P2(x) =̂ (if x = s1 then inho(d, z).if z = s1 then outho(d, s2))

To emit on channel e, processes A and B must execute P2(s1) by inputing twice s1 followed
by P1(s2). In the classical semantics, an internal communication on A between outho(c, s1)
and inho(c, y) forces B to execute P1(s1) but hides s1, preventing a second input of s1 by A.
However, in the eavesdropping semantics, the internal communication reveals s1 allowing A to
emit on e but not B.

Fig. 6. Processes A and B such that A ≈c
` B, A ≈p

` B but A 6≈e
t B.

Again we note that the implications are strict, even for processes containing only
public channels.

Theorem 5. ≈e
t ( ≈

p
t ∩ ≈c

t .

Proof (Sketch).

1. We first prove that ≈e
t ⊆ ≈

p
t . Suppose that A ≈e

t B. We need to show that for
any A′ such that A tr

=⇒p A
′ there exists B′ such that B tr

=⇒p B
′. It follows from

the definition of the semantics that whenever A tr
=⇒p A

′ then we also have A tr
=⇒e

A′ as `−→p ⊂
`−→e. As A ≈e

t B, we have that there exists B′, such that B tr
=⇒e

B′ and φ(A′) ∼ φ(B′). As tr does not contain labels of the form eav(c, d) nor
νy.eav(c, y) and as no COMM-EAV are possible (A and B are honest processes)
we also have that B tr

=⇒p B
′. Hence A ≈p

t B.
2. We next prove that ≈e

t ⊆ ≈c
t . Similar to Item 1 we suppose that A ≈e

t B and
A

trc==⇒c A
′
c. From the semantics, we obtain that A tre==⇒e A

′
e, where

– φ(A′c) ⊆ φ(A′e), i.e., dom(φ(A′c)) ⊆ dom(φ(A′e)) and the frames coincide on
the common domain.

– tre is constructed from tr by replacing any τ action resulting from the COMM
rule by an application of an eavesdrop rule (EAV-T, EAV-CH, or EAV-OCH).

The proof is done by induction on the length of tr and the proof tree of each tran-
sition. As A ≈e

t B we also have that B tre==⇒e B
′
e and A′e ∼ B′e. We show by

the definition of the semantics that B trc==⇒c B
′
c and φ(B′c) ⊆ φ(B′e) (replacing

each eavesdrop action by an internal communication). Due to the inclusions of the
frames and A′e ∼ B′e we also have that A′c ∼ B′c.

3. To show that the implication ≈e
t ( ≈

p
t ∩ ≈c

t is strict, i.e., there exist processes A
and B such that A ≈c

t B, A ≈p
t B but A 6≈e

t B. The processes defined in Figure 6
witness this fact (cf the discussion of these processes in the proof of Theorem 4).
These trace (in)equivalences have also been verified using APTE.

We note from the processes defined in Figure 6 that the implications are strict even
for processes that do not communicate on private channels, do not use replication, nor
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else branches and terms are simply names (no function symbols nor equational theo-
ries).

Theorem 6. ≈e
m ( ≈p

m ∩ ≈c
m.

Proof (Sketch).

1. We first prove that ≈e
m ⊆ ≈p

m. Suppose that A ≈e
m B. Suppose that A ≈e

m B.
We need to show that for all channel c, for all C[ ] attacker evaluation contexts
p-closing for A and B, C[A] ⇓pc is equivalent to C[B] ⇓pc . It follows from the
definition of the private semantics that any process eav(c, x).P inC[ ] has the same
behaviour as the process 0. Hence, we generate a context C1[ ] by replacing in C[ ]
any instance of eav(c, x).P by 0, and thus obtaining C[A] ⇓pc ⇔ C ′[A] ⇓pc and
C[B] ⇓pc ⇔ C ′[B] ⇓pc . Notice that the definition of semantics gives us→p ⊆ →e.
Hence, C ′[A] ⇓pc implies C ′[A] ⇓ec and C ′[B] ⇓pc implies C ′[B] ⇓ec. Furthermore,
since we built C ′[ ] to not contain any process of the form eav(c, x).P , we deduce
that rules C-EAV and C-OEAV can never be applied in a derivation of C ′[A] or
C ′[B]. It implies that C ′[A] ⇓pc⇔ C ′[A] ⇓ec and C ′[B] ⇓pc⇔ C ′[B] ⇓ec. Thanks to
A ≈e

m B, we know thatC ′[A] ⇓ec ⇔ C ′[B] ⇓ec and so we conclude thatC[A] ⇓pc ⇔
C[B] ⇓pc .

2. We next prove that ≈e
m ⊆ ≈c

m. Similarly to Item 1, we consider a channel c and
an attacker evaluation context C[ ] that is c-closing for A and B. The main diffi-
culty of this proof is to match the application of the rule COMM in the classical
semantics with the rules C-EAV and C-OEAC. However, C[ ] does not necessar-
ily contain eavesdrop process eav(d, x) | ωc. Moreover, as mentioned in Item 1, a
process eav(d, x).P has the same behavior as 0 in the classical semantics but can
have a completely different behaviour in the eavesdropping semantics if P is not
0. Thus, we remove from C[ ] the eavesdrop processes, obtaining C ′[ ]. Then, we
define a new context C ′′[ ] based on C ′[ ] where will add harmless eavesdrop pro-
cess eav(d, y).0. We first add in parallel the processes !eav(a, y) | ωa for all free
channels a in C ′[ ], A and B. Moreover, since private channels can be opened,
we also replace any process νd.P , inat(c, x).P where d, x are of channel type
with νd.(P |!eav(d, y)) and inat(c, x).(P |!eav(x, y)). By induction of the deriva-
tions, we can show that C[A] ⇓cc ⇔ C ′′[A] ⇓ec and C[B] ⇓cc ⇔ C ′′[B] ⇓ec. Since
A ≈e

m B, we deduce that C ′′[A] ⇓ec ⇔ C ′′[B] ⇓ec and so C[A] ⇓cc ⇔ C[B] ⇓cc.
3. To show that the implication ≈e

m ( ≈p
m ∩ ≈c

m is strict, i.e., there exist processes
A and B such that A ≈c

m B, A ≈p
m B but A 6≈e

m B. The processes defined in
Figure 6 witness this fact. They already were witness of the strict inclusion ≈e

t (
≈p
t ∩ ≈c

t (see proof of Theorem 5) and since A and B are image finit, we know
from Theorem 1 that may and trace equivalences between A and B coincide. ut

4 Subclasses of processes for which the semantics coincide

4.1 Simple processes

The class of simple processes was defined in [11]. It was shown that for these processes
observational and may testing equivalences coincide. Intuitively, these processes are
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≈s` ≈so

≈st

≈sm

for all s ∈ {c, p, e}
for image finite processes ≈st = ≈sm
if s = c then ≈s` = ≈so (conjectured for s ∈ {p, e})

≈c
r ≈e

r ≈p
r

for all r ∈ {m, t, `}

Fig. 7. Overview of the results.

composed of parallel basic processes. Each basic process is a sequence of input, test on
the input and output actions. Moreover, importantly, each basic process has a distinct
channel for communication.

Definition 7 (basic process). The setB(c,V) of basic processes built on c ∈ Ch and V ⊆
X (variables of base type) is the least set of processes that contains 0 and such that

– if B1, B2 ∈ B(c,V), M,N ∈ T (F ,N ,V), then
if M = N then B1 else B2 ∈ B(c,V).

– if B ∈ B(c,V), u ∈ T (F ,N ,V), then outho(c, u).B ∈ B(c,V).
– if B ∈ B(c,V ] {x}), x of base type (x /∈ V), then inho(c, x).B ∈ B(c,V).

Definition 8 (simple process). A simple process is obtained by composing and repli-
cating basic processes and frames, hiding some names:

νñ. ( νñ1.(B1 | σ1) | !(νc′1, m̃1.out
ho(p1, c

′
1).B

′
1)

...
...

νñk.(Bk | σk) | !(νc′n, m̃n.out
ho(pn, c

′
n).B

′
n) )

where Bj ∈ B(cj , ∅), B′j ∈ B(c′j , ∅) and cj are channel names that are pairwise
distinct. The names p1, . . . , pn are distinct channel names that do not appear elsewhere
and σ1, . . . , σk are frames without restricted names (i.e. substitutions).

We have that for simple processes, all equivalences and semantics coincide.

Theorem 7. When restricted to simple processes, we have that ≈s1r1 = ≈s2r2 for r1, r2 ∈
{`, o,m, t} and s1, s2 ∈ {c, p, e}.

Proof. The result when s1 = s2 = c was shown in [11]. As for simple processes, all
parallel processes have distinct channels, the internal communication rule may never be
triggered, and therefore it is easy to show that the three semantics coincide.
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4.2 I/O-unambiguous processes

Restricting processes to simple processes is often too restrictive. For instance, when ver-
ifying unlinkability and anonymity properties, two outputs by different parties should
not be distinguishable due to the channel name. We therefore introduce another class
of processes, that we call io-unambiguous for which we also show that the different
semantics (although not the different equivalences) do coincide.

Intuitively, an io-unambiguous process forbids an output and input on the same pub-
lic channel to follow each other directly (or possibly with only conditionals in between).
For instance, we forbid processes of the form outθ(c, t).inθ(c, x).P , outθ(c, t).(inθ(c, x).
P | Q) as well as outθ(c, t).if t1 = t2 then P else inθ(c, x).Q. We however allow
inputs and outputs on the same channel in parallel.

Definition 9. We define an honest extended process A to be I/O-unambiguous when
ioua(A, ) = > where

ioua(0, c) = >
ioua({u/x}, c) = >
ioua(A | B, c) = ioua(A, c) ∧ ioua(B, c)

ioua(!P, c) = ioua(P, c)

ioua(νn.A, c) =

{
⊥ if n ∈ Ch
ioua(A, c) otherwise

ioua(νx.A, c) = ioua(A, c)
ioua(if u = v then P else Q, c) = ioua(P, c) ∧ ioua(Q, c)

ioua(outθ(d, u).P, c) =

{
⊥ if u is of channel type
ioua(P, d) otherwise

ioua(inθ(d, x).P, c) =

{
⊥ if x is of channel type or d = c
ioua(P, ) otherwise

Note that an I/O-unambiguous process does not contain private channels and always
input/output base-type terms. We also note that a simple way to enforce that processes
are I/O-unambiguous is to use disjoint channel names for inputs and outputs (at least in
the same parallel thread).

Theorem 8. When restricted to I/O-unambiguous processes, we have that ≈p
r = ≈e

r

but ≈e
r ( ≈c

r for r ∈ {`, t}.

Proof. From Theorems 4 and 5, we already know that ≈e
r ⊆ ≈p

r and ≈e
r ⊆ ≈c

r. Hence,
we only need to show that ≈p

r ⊆ ≈e
r and ≈p

r ( ≈c
r. The latter is easily shown by

noticing that the processes A and B in Figure 5 are I/O-unambiguous. Thus, we focus
on ≈p

r ⊆ ≈e
r.

We start by proving that for all I/O-unambiguous processes A, for all A tr
=⇒ A′,

we have that A′ is I/O-unambiguous. Note that structural equivalence preserves I/O-
unambiguity, i.e. for all extended processes A,B, for all channel name c, A ≡ B im-
plies ioua(A, c) = ioua(B, c). Hence, we assume w.l.o.g. that a name is bound at most
once and the set of bound and free names are disjoint.
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Second, we will show that for all I/O-unambiguous processesA, for allA
νz.out(c,z).in(c,z)
===========⇒p

A′, we have that
νz.eav(c,z)
=======⇒e A′. To prove this property, denoted P , let us assume

w.l.o.g. that A
νz.out(c,z)−−−−−−−→p A1 →∗p A2

in(c,z)−−−−→p A
′. The transition A

νz.out(c,z)−−−−−−−→p A1

indicates that A ≡ νñ.(outho(c, u).P | Q) and A1 ≡ ñ.(P | Q | {u/z}) for some
P,Q, ñ, c, u. Note that A is I/O-unambiguous, and hence ioua(P, c) = >.

As A is I/O-unambiguous implies that A does not contain private channels, we
have that the rule applied in A1 →∗p A2 is either the rule THEN or ELSE. There-
fore, there exists P ′ and Q′ such that P →∗p P ′, Q →∗p Q′, An ≡ νñ.(P ′ | Q′ |
{u/x}) and ioua(P ′, c) = >. Hence, we deduce that there exists Q1, Q2 such that
Q′ ≡ νm̃.(in.(c, x)Q1 | Q2) and A′ ≡ νñ.νm̃.(P ′ | Q1{u/x} | Q2). We conclude
the proof of this property by noticing that we can first apply on A the reduction rules of
Q→∗p Q′, then apply the rule C-EAV and finally apply the rules of P →∗p P ′.

1. To prove ≈p
t ⊆ ≈e

t , we assume that A,B are two closed honest extended processes

such that A ≈p
t B. For all A tr

=⇒e A
′, it follows from the semantics that A

trp
=⇒p A

′

where trp is obtained by replacing in tr each νz.eav(c, z) by νz.out(c, z).in(c, z).

Since A ≈p
t B, there exists B′ such that B

trp
=⇒p B

′ and φ(A′) ∼ φ(B′). Thanks to
the property P , we conclude that B tr

=⇒e B
′.

2. To prove ≈p
` ⊆ ≈e

`, we assume that A,B are two closed honest extended processes
such that A ≈p

` B and let R be the relation witnessing this equivalence. We will
show thatR is also a labelled bisimulation in the eavesdropping semantics. Suppose
ARB.

– as A ≈p
` B, we have that φ(A) ∼ φ(B).

– if A τ−→e A
′ then, as A is honest, A τ−→p A

′. As A ≈p
` B there exists B′ such

that B ε
=⇒p B

′ and A′RB′. As τ−→p ⊂
τ−→e, B

ε
=⇒e B

′

– if A `−→e A
′ then, as A is I/O-unambiguous, A tr

=⇒e A
′ where tr = νz.out(c, z).

in(c, z) when ` = νz.eav(c, z) else tr = `. As A ≈p
` B, there exists B′

such that B tr
=⇒p B

′ and A′RB′. When tr = `, the definition of the semantics

directly gives us B `
=⇒e B

′. When tr = νz.out(c, z).in(c, z), the property P
gives us B `

=⇒e B
′. ut

5 Different semantics in practice

As we have seen, in general, the three proposed semantics may yield different results. A
conservative approach would consist in verifying always the eavesdropping semantics
which is stronger than the two other ones, as shown before. However, this semantics
seems also to be the least efficient one to verify.

We have implemented the three different semantics in the APTE tool, for processes
with static channels, i.e. inputs and outputs may only have names in the channel po-
sition and not variables. This allowed us to investigate the difference in results and
performance between the semantics.

In our experiments we considered several examples from APTE’s example reposi-
tory:
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– the Private Authentication protocol proposed by Abadi and Fournet [2];
– the passive authentication protocol implemented in the European Passport proto-

col [15, 4];
– the French and UK versions of the Basic Access Protocol (BAC) implemented in

the European passport [15, 5].

For all these examples we found that the results, i.e., whether trace equivalence holds or
not, was unchanged, independent of the semantics. However, as expected, performance
of the private semantics was generally better. The existing protocol encodings gener-
ally used a single public channel. To enforce I/O-unambiguity, we introduced different
channels and, surprisingly, noted that distinct channels significantly enhance the tool’s
performance. (The model using different channels in the case of RFID protocols such
as the electronic passport is certainly questionable.)

The results are summarised in Figure 8. For each protocol we considered the original
encoding, and a slightly changed one which enforces I/O-unambiguity. In the results
column we mark an attack by a cross (×) and a successful verification with a check
mark (X). In case of an attack we generally considered the minimal number of sessions
needed to find the attack. In case of a successful verification we consider more sessions,
which is the reason for the much higher verification times.

Protocol # sessions Property
Time

Result
≈e
t ≈c

t ≈p
t

Private Authentication
1

Anonymity

1s 1s 1s

X
2 53h 53m 20s 47h 46m 40s 46h 56m 40s

I/O unambiguous
1 1s 1s 1s

2 31m 39s 21m 2s 19m 39s

Passive Authentication 2

Anonymity

4s 3s 3s

X
I/O unambiguous

2 4s 4s 3s

3 6h 38m 34s 6h 29m 24s 6h 36m 40s

Passive Authentication 2

Unlinkability

4s 4s 3s

X
I/O unambiguous

2 3s 3s 3s

3 7h 43m 2s 6h 39m 14s 4h 27m 47s

FR BAC protocol 2
Unlinkability

1s 1m 29s 1s
×

I/O unambiguous 2 1s 1s 1s

UK BAC protocol 2
Unlinkability

1h 2m 35s ? 6h 39m 14s
×

I/O unambiguous 2 4s 53s 2s

Fig. 8. Performance comparison of the different semantics.
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6 Conclusion

In this paper we investigated two families of Dolev-Yao models, depending on how the
hypothesis that the attacker controls the network is reflected. While the two seman-
tics coincide for reachability properties, they yield incomparable notions of behavioral
equivalences, which have recently been extensively used to model privacy properties.
The fact that forcing all communication to be routed through the attacker may diminish
his distinguishing power may at first seem counter-intuitive. We also propose a third
semantics, where internal communication among honest participants is permitted but
leaks the message to the attacker. This new communication semantics entails strictly
stronger equivalences than the two classical ones. We also identify two subclasses of
protocols for which (some) semantics coincide. Finally, we implemented the three se-
mantics in the APTE tool. Our experiments showed that the three semantics provide the
same result on the case studies in the APTE example repository. However, the private
semantics is slightly more efficient, as less interleavings have to be considered. Our
results illustrate that behavioral equivalences are much more subtle than reachability
properties and the need to carefully choose the precise attacker model.
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A =̂ νs.(inho(c, x).outho(c, s) | inho(c, y).P (y))

B =̂ νs.(inho(c, x).(outho(c, s) | inho(c, y).P (y)))

where
P (y) =̂ if y = s then inho(c, z).outho(c, s)

Fig. 9. A and B (without else branches) such that A ≈c
` B and A 6≈p

` B

A Refining Theorem 3

We here give a more refined version of Theorem 3. In particular we show that the private
and classical semantics are incomparable for trace equivalence and labelled bisimula-
tion, even when restricted to processes that do not use else branches.

Theorem 9. When restricted to processes without else branches, we have that ≈p
r 6⊆

≈c
r and ≈c

r 6⊆ ≈p
r for r ∈ {`, t}.

Proof. The fact that ≈p
r 6⊆ ≈c

r for r ∈ {`, t} has already been shown in the proof of
Theorem 3 as the processes A,B witnessing the result did not have else branches.

To show that ≈c
` 6⊆ ≈

p
` we show that there exist processes A and B without else

branches such that A ≈c
` B and A 6≈p

` B. Such processes are defined in Figure 9. To
see that A ≈c

` B we first observe that the only first possible action from A or B is

an input. In particular, given a term t, there is a unique B′ such that B
in(c,t)−−−−→ B′

where B′ = νs.(outho(c, s) | inho(c, y).P (y)). On the other hand, if A
in(c,M)−−−−−→ A′

then either A′ = B′ or A′ = A′′ where A′′ =̂ νs.(inho(c, x).outho(c, s) | P (t)).
Therefore, to complete the proof, we only need to find B′′ such that B

in(c,t)
====⇒ B′′

and A′′ ≈c
` B
′′. Such process can be obtain by applying an internal communication on

B′, i.e. B
in(c,t)−−−−→c B

′ τ−→ νs.P (s). Note that t 6= s since s is bound, meaning that
P (t) ≈c

` 0. Moreover, P (s) ≈c
` in

ho(c, x).outho(c, s). This allows us to conclude that
νs.P (s) ≈c

` A
′′.

To see that A 6≈p
` B we first observe that when A

in(c,t)−−−−→p A′′, B can only

mimic A by preforming the transition B
in(c,t)−−−−→ B′. We conclude as B′

νz.out(c,z)−−−−−−−→p

νs.(inho(c, y).P (y) | {s/z}) and A′′ 6 νz.out(c,z)−−−−−−−→p.

We next show that there also exist A1 and A2 such that A1 ≈c
t A2, but A1 6≈p

t A2.
We define such processes in Figure 10. Using the APTE tool we have shown that

indeed A1 ≈c
t A2 and A1 6≈p

t A2. The main argument why the result holds is that P1

is trace included in P2 in the classical semantics (as the output on channel f can be
made silent through an internal communication) while this is not the case in the private
semantics. ut
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Ai =̂ νs1.νs2.( out
ho(c, h(s1)) | outho(c, h(s2)) |

inho(d, x).(if x = h(s1) then Qi | if x = h(s2) then P2)

where Q1=̂P1, Q2=̂P2 and

P1 =̂ outho(e, a)
P2 =̂ outho(f, a).outho(e, a) | inho(f, x)

Fig. 10. A1 and A2 such that A1 ≈c
t A2, but A1 6≈p

t A2.

B Proof of Proposition 2

Definition 10. We say that a plain process P (resp. extended process P ) is name-
cleaned if P is of the form P1 | . . . | Pm and every Pi is not of the form νk.B′ with k a
name or variable of any type.

Lemma 1. Let A be an extended process. There exist a sequence of names and vari-
ables k̃ and a name-cleaned extended process A′ such that A ≡ νk̃.A′.

Proof. Direct from the definition of structural equivalence. ut

Proposition 2. For all closed honest plain processes A, for all s ∈ {c, e, p}, A �sc iff
there exists an attacker plain process Is such that Is | A ⇓s,hoc .

Proof. We will prove that A �sc implies there exists an attacker plain process Is such
that Cs[A] ⇓sc for s ∈ {c, e, p} by constructing Is.

Let us first focus on s = c. Since A �c
c, we know that there exist A′, t and tr ∈

(A \ {τ})∗ such that A tr
=⇒c A

′, c 6∈ bn(tr) and out(c, t) ∈ tr. Note that we can assume
w.l.o.g. that no name in tr is bound twice and bound names in tr are distinct from free
names that occurs in A and tr.

Let {a1, . . . , ak} be all the channel names that occur in tr (bound or free). To each
a1, . . . , ak, we associate a variable of channel type xa1 , . . . , xak . Given a subset S ⊆
{a1, . . . , ak}, we denote by σ(S) the substitution {xa → a | a ∈ S}. We define Ic such
that Ic = Qc(tr, σ(fc(tr))) where Qc(tr, σ) is defined by induction on tr as follows:

– if tr = ε then Qc(tr, σ) = 0;
– if tr = in(a,M).tr′ then Qc(tr, σ) = outat(xaσ,M).Qc(tr

′, σ);
– if tr = out(a, c).tr′ with c of channel-type then

Qc(tr, σ) = inat(xaσ, y).Qc(tr
′, σ)

where y is fresh variable of channel type;
– if tr = νx.out(a, x).tr′ and x is of base type then

Qc(tr, σ) = inat(xaσ, x).Qc(tr
′, σ)

– if tr = νc.out(a, c).tr′ and c is of channel type then

Qc(tr, σ) = inat(xaσ, xc).Qc(tr
′, σ)

24



SinceA tr
=⇒c A

′, there existA0, . . . , An and `1, . . . , `N such thatA′ = AN ,A = A0

and A0
`1−→c A1

`2−→c . . .
`N−−→c AN . We can show by induction that for all n ≤ N , there

exist a plain process Qn and two sequences of names ỹn, r̃n such that:

– IcA→∗c νỹn.νr̃n.(An | Qn)
– r̃n is the sequence of bounded channel names in `1 · · · . . . `n−1
– ỹn ⊆ dom(φ(An))
– trn is the sequence `n · . . . · `N where the τ action are removed
– Qn = Qc(trn, σ(fc(trn)))

To conclude this proof, recall that out(c, t) ∈ tr and c 6∈ bn(tr) so there exists

n ≤ N such that `n = out(c, t) or `n = νt.out(c, t). But since An−1
`n−→c An

and An−1 ≡ νk̃n−1.Bn−1 with Bn−1 being name-cleaned, we deduce that there exist
P,R such that Bn−1 = outho(c, t).P | R and c 6∈ k̃n−1. Therefore, Ic | A →∗c
νỹn−1.νr̃n−1.νk̃n−1.(out

ho(c, t).P | R | Qn−1). Note that ỹn−1 ⊆ dom(φ(Bn−1))
hence c 6∈ ỹn−1. Moreover, we assumed that c 6∈ bn(tr) hence c 6∈ r̃n−1 by definition
of r̃n−1. It allows us to conclude Ic | A ⇓c,hoc .

The proof for the other two semantics is very similar. First, the construction of the
context changes to adapt the changes in the labeled semantics. Second, we prove a
slightly different property on the traces to account the presence of opened channels that
are generated by the rule C-OPEN. The rest stay the same (up to renaming of c into p
and e respectively).

Concerning the semantics private, we define Ip =̂ Ic and we can prove the follow-
ing property: For all n ≤ N , there exist two extended processes Qn, Rn and thwo
sequences of names ỹn, r̃n such that:

– Cp[A]→∗p νỹn.νr̃n.(An | Qn | Rn)
– r̃n is the sequence of bounded channel names in `1 · · · . . . `n−1
– Rn =̂ωc1 | . . . | ωcm for some c1, . . . , cm such that r̃n ⊆ {c1, . . . , cm}
– ỹn ⊆ dom(φ(Bn))
– trn is the sequence `n · . . . · `N where the τ action are removed
– Qn = Qc(trn, σ(fc(trn)))

Notice that the presence of Rn is the only difference between the property in the classi-
cal and private semantics. This is the consequence of the application of the rule C-OPEN
that introduces opened channels ωc1 and that we apply when the trace contains labeled
transitions out(c, d) or νd.out(c, d).

For the eavesdropping semantics, we can prove the same property as for private
semantics (up to renaming of p into e) but we need to modify the context as follows.
We define Ce[ ] such that Ie[ ] =̂Qe(tr, σ) is defined by induction on tr as follows:

– if tr = ε then Qe(tr, σ) = 0;
– if tr = in(a,M).tr′ then Qe(tr, σ) = outat(xaσ,M).Qe(tr

′, σ);
– if tr = out(a, c).tr′ with c of channel-type then

Qe(tr, σ) = inat(xaσ, y).Qe(tr
′, σ)

where y is fresh variable of channel type;
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– if tr = νx.out(a, x).tr′ and x is of base type then

Qe(tr, σ) = inat(xaσ, x).Qe(tr
′, σ)

– if tr = νc.out(a, c).tr′ and c is of channel type then

Qe(tr, σ) = inat(xaσ, xc).Qe(tr
′, σ)

– if tr = eav(a, c).tr′ with c of channel-type then

Qe(tr, σ) = eav(xaσ, y).Qe(tr
′, σ)

where y is fresh variable of channel type;
– if tr = νx.eav(a, x).tr′ and x is of base type then

Qe(tr, σ) = eav(xaσ, x).Qe(tr
′, σ)

– if tr = νc.eav(a, c).tr′ and c is of channel type then

Qe(tr, σ) = eav(xaσ, xc).Qe(tr
′, σ)

Let us now focus on the other implications, that are: if there exists an attacker plain
process Is such that Is | A ⇓s,hoc then A �sc for s ∈ {c, e, p}. By Lemma 1, we can
assume w.l.o.g. that Is = νk̃.D for some name-cleaned plain process D and some
sequence of names and variables of any type k̃. We now prove that for all Is | A→∗s B,
there exist an attacker evaluation context C ′[ ] = νk̃′.(D′ | ) with D′ name-cleaned,
an honest extended processA′ and tr such that C ′[ ] is s-closing forA,B ≡ C ′[A′] and
A

tr
=⇒s A

′. We first focus on s = c. Note that it is not necessary to prove the property
name-cleaned since it is implied by Lemma 1.

We prove this result by induction on the number of reduction rules in Ic | A→∗c B.

Base case: By structural equivalence, there exists k̃′ andD′ such that I | A ≡ νk̃′.(D′ |
A). Moreover, since fv(A) = ∅, k̃′.(D′ | ) is closing for A and so the base case holds.

Inductive step Cc[A] →∗c B′ →c B: By our inductive hypothesis, we know that there
exist C ′[ ] = νk̃′.(D′ | ), and honest extended process A′ and tr such that C ′[ ] is c-
closing for A′, B′ ≡ C ′[A′] and A tr

=⇒c A
′. Note that due to the structural equivalence,

we can assume w.l.o.g. that A′ = νr̃.P where P is name-cleaned. Moreover, since
B′ →c B and B′ ≡ C ′[A′], we deduce that C ′[A′]→c B. Let us do a case analysis on
the rule applied.

Case 1, internal reduction on A′, i.e. there exists A′′ such that A′ τ−→c A
′′ and B ≡

C ′[A′′]. In such a case, we have that C ′[A′] τ−→c C
′[A′′]. Moreover, since A tr

=⇒c A
′

then we directly obtain that A tr
=⇒c A

′′ and so the result holds.

Case 2, internal reduction on C ′, i.e. there exists D′′ such that D′ τ−→c D
′′ and B ≡

νk̃′.(D′′ | A′). By the structural equivalence, we know that there exist k̃′′ and D′′′ such
that D′′ is named-cleaned and νk̃′.(D′′ | A′) ≡ νk̃′′.(D′′′ | A′). Therefore, we can
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define C ′′[ ] = νk̃′′.(D′′′ | ) and obtain that C ′[A′] τ−→c C
′′[A′]. Since A tr

=⇒c A
′, the

result holds.

Case 3, rule COMM between C ′ (input) and A′ (output), i.e. D′ = inat(c, x).D1 | D2,
A′ = νr̃.(outho(c, u).P1 | P2) and B ≡ νk̃′.νr̃.(D1{u/x} | D2 | P1 | P2) (We assume
w.l.o.g. that the names and variables in r̃ are not in D′). Note that in such a case, c 6∈ r̃.
We do a case analysis on u.

– Case 3.a, u ∈ Ch∩ r̃: Let us redenote νr̃ as νr̃′.νu. ThusA′
νu.out(c,u)−−−−−−−→c νr̃

′.(P1 |
P2). Hence, since the names and variables in r̃ are not in D′, we obtain that
B ≡ νk̃′.νu.(D1{u/x} | D2 | νr̃′.(P1 | P2)). Hence, by denoting C ′′[ ] =
νk̃′.νu.(D1{u/x} | D2 | ) and A′′ = νr̃′.(P1 | P2), the result hold.

– Case 3.b, u ∈ Ch but u 6∈ r̃. In such a case, A′
out(c,u)−−−−−→c νr̃.(P1 | P2). Hence,

since the names and variables in r̃ are not inD′, we obtain thatB ≡ νk̃′.(D1{u/x} |
D2 | νr̃.(P1 | P2)). By denoting C ′′[ ] = νk̃′.(D1{u/x} | D2 | ) and A′′ =
νr̃.(P1 | P2), the result holds.

– Case 3.c, u 6∈ Ch: In such a case, A′
νy.out(c,y)−−−−−−−→c νr̃.(P1 | P2 | {u/y}) with

y 6∈ fv(A′) ∪ fv(u). Note we can take y such that y 6∈ fv(C ′[A′]) ∪ bn(C ′[A′]).
Note that B ≡ νk̃′.νr̃.(D1{u/x} | D2 | P1 | P2). By definition of the struc-
tural equivalence and since we took y 6∈ fv(C ′[A′]) ∪ bn(C ′[A′]), we deduce that
B ≡ νk̃′.νy.νr̃.(D1{y/x} | D2 | P1 | P2 | {u/y}). Lastly, since the names
and variables in r̃ are not in D′, we deduce that B ≡ νk̃′.νy.(D1{y/x} | D2 |
νr̃.(P1 | P2 | {u/y})). By denoting C ′′[ ] = νk̃′.νy.(D1{y/x} | D2 | ) and
A′′ = νr̃.(P1 | P2 | {u/y}), the result holds.

Case 4, rule COMM between A′ (input) and C ′ (output), i.e. D′ = outat(c, u).D1 | D2,
A′ = νr̃.(inho(c, x).P1 | P2) and B ≡ νk̃′.νr̃.(D1 | D2 | P1{u/x} | P2) (We assume
w.l.o.g. that the names and variables in r̃ are not in D′). Note that in such a case, c 6∈ r̃.
Moreover, we know that the names and variables in r̃ are not in D′, meaning that the

names and variables in r̃ does not occur in u. Hence, A′
in(c,u)
====⇒c νr̃.(P1{u/x} | P2).

Once again due to the fact the names and variables in r̃ are not in D′, we obtain that
B′′ ≡ νk̃′.(D1 | D2 | νr̃.(P1{u/x} | P2)). By denoting C ′′[ ] = νk̃′.(D1 | D2 | )
and A′′ = νr̃.(P1{u/x} | P2), the result holds.

We have concluded the proof of the property: for all Cc[A] →∗c B, there exist an
evaluation attacker context C ′[ ] = νk̃′.(D′ | ) with D′ name-cleaned, an honest
extended process A′ and tr such that C ′[ ] is c-closing for A′, B ≡ C ′[A′] and A tr

=⇒c

A′. It remains to prove this result for s = e and s = p. Let us focus first on the case
s = p. The proof is in fact similar to the case s = c. Notice that the case of the rule
C-ENV correspond to either Case 2, 3.c or 4 when u is of base type. Hence it remains
the case of the rules C-PRIV and C-OPEN.

Case 5, rule C-OPEN between C ′ (input) and A′ (output), i.e. D′ = inθ(c, x).D1 | D2,
A′ = νr̃.(outho(c, d).P1 | P2) and B ≡ νk̃′.νr̃.(D1{d/x} | D2 | P1 | P2 | ωd). Lets
us do a case analysis on whether (5.a) d ∈ r̃ or (5.b) d 6∈ r̃. Note that Case (5.a) is in fact
almost identical to Case (3.a) and that the result holds with C ′′[ ] = νk̃′.νd.(D1{u/x} |

27



D2 | ωd | ) and A′′ = νr̃′.(P1 | P2) with νr̃ = νr̃′.νd. Furthermore, note that
Case (5.b) is also very similar to Case (3.b) and that the result holds with C ′′[ ] =
νk̃′.(D1{d/x} | D2 | ωd ) and A′′ = νr̃.(P1 | P2). Notice that in both case C ′′[ ] is
indeed p-closing for A′′.

Case 6, rule C-OPEN betweenA′ (input) andC ′ (output), i.e.D′ = outθ(c, d).D1 | D2,
A′ = νr̃.(inho(c, x).P1 | P2) and B ≡ νk̃′.νr̃.(D1 | D2 | P1{d/x} | P2 | ωd). This
case if very similar to Case 4 when u is of channel type and the result holds with
C ′′[ ] = νk̃′.(D1 | D2 | ωd | ) and A′′ = νr̃.(P1{d/x} | P2).

Case 7, rule C-PRIV with a communication on a channel c. Notice that this rule is in
fact partially covered by the beginning of the proof. Indeed, Case 1 and 2 cover the
cases where c is not in k̃′. Therefore, we only need to focus on the case where the
private channel is in k̃′, i.e. νk̃′ = νk̃′′.νc for some k̃′′. We know that C ′[ ] is p-closing
for A′. Hence since c is a channel bound in C ′[ ] whose scope includes , we deduce
that if c ∈ fn(A) then ωc is also in the scope of c. But according to the definition of
the rule, we know that ωc is not in the scope of νc. Moreover, if the output or input is
done by A′ then it would implies that c ∈ fn(A). Thus, this allows us to deduce that
this both output and input are tagged with at, meaning that there exists D′′ such that
νc.(D′ | A′) τ−→p νc.(D

′′ | A′) andB ≡ νk̃′′.νc.(D′′ | A′). In such a case, by denoting
C ′′[ ] = νk̃′′.νc.(D′′ | ) and A′′ = A′, the result directly holds.

We have concluded the proof of the property for s = p hence it remains the case
s = e. Once, again several cases are already covered since `−→p⊂

`−→e. Hence we only
need to focus on the cases of the rules C-EAV and C-OEAV:

Case 8, rule C-EAV, i.e.A′ = νr̃.(outho(c, u).P1 | inho(c, x).P2 | P3),D′′ = eav(c, y).Q1 |
Q2), B ≡ νk̃′.νr̃.(Q1{u/y} | Q2 | P1 | P2{u/x} | P3) and u is of base type (We as-
sume w.l.o.g. that the names and variables in r̃ are not in D′). Note that in such a
case c 6∈ r̃. Moreover, note this is the only possible combinaison of input and output
since C ′ is an attacker evaluation context and A′ is an honest extended process. Let us

consider a variable z such that z 6∈ fv(C ′[A′]) ∪ bn(C ′[A′]). Hence A′
νz.eav(c,z)−−−−−−−→

νr̃.(P1 | P2{u/x} | P3 | {u/z}). But since z 6∈ fv(C ′[A′]) ∪ bn(C ′[A′]), we deduce
that B ≡ νk̃′.νz.νr̃.(Q1{u/y} | Q2 | P1 | P2{u/x} | P3 | {u/z}). Hence, by denoting
C ′′[ ] = νk̃′.νz.(Q1{z/y} | Q2 | ) and A′′ = νr̃.(P1 | P2{u/x} | P3 | {u/z}), the
result holds.

Case 9, rule C-OEAV, i.e. A′ = νr̃.(outho(c, d).P1 | inho(c, x).P2 | P3), D′′ =
eav(c, y).Q1 | Q2), B ≡ νk̃′.νr̃.(Q1{d/y} | Q2 | P1 | P2{d/x} | P3 | ωd) and d
is of channel type (We assume w.l.o.g. that the names and variables in r̃ are not in D′).
We have to do a case analysis on d:

– Case d ∈ r̃: Let us denote νr̃ = νr̃′.νd. In such a case A′
νd.eav(c,d)−−−−−−−→ νr̃′.(P1 |

P2{u/x} | P3). But we know that the names and variables in r̃ are not in D′ hence
B′′ ≡ νk̃′.νd.(Q1{d/y} | Q2 | νr̃′.(P1 | P2{d/x} | P3)). Therefore, by denoting
C ′′[ ] = νk̃′.νd.(Q1{u/y} | Q2 | ωd | ) and A′′ = νr̃′.(P1 | P2{d/x} | P3), the
result holds.
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– Case d 6∈ r̃: In such a case A′
eav(c,u)−−−−−→ νr̃.(P1 | P2{u/x} | P3) and so the result

holds by denoting C ′′[ ] = νk̃′.(Q1{u/y} | Q2 | ωd | ) and A′′ = νr̃.(P1 |
P2{u/x} | P3).

Note that in both case, C ′′[ ] is indeed e-closing for A′′.

We have proved that for all s ∈ {c, p, e}, for allCs[A]→∗s B, there exist an attacker
evaluation context C ′[ ] = νk̃′.(D′ | ) with D′ name-cleaned, an honest extended
process A′ and tr such that C ′[ ] is s-closing for A′, B ≡ C ′[A′] and A tr

=⇒s A
′. This

property allows us to conclude the main proof. Indeed, consider s ∈ {c, e, p} and Cs[ ]
an attacker evaluation context such that Cs[A] ⇓s,hoc . By definition, we deduce that
Cs[A] →∗s C[outho(c, t).P ] for some evaluation context C that does not bind c, some
t and some plain process P . By our property, we deduce that there exists an attacker
evaluation context C ′[ ] = νk̃′.(D′ | ) with D′ name-cleaned, an honest extended
processA′ and tr such that C[outho(c, t).P ] ≡ C ′[A′] andA tr

=⇒s A
′. More specifically,

since C ′[ ] is an attacker evaluation context, C[outho(c, t).P ] ≡ C ′[A′] and C does not
bind c, we deduce that A′ ≡ νr̃.(outho(c, t′).P ′ | Q′) for some t′, P ′, Q′, r̃ such that

c 6∈ r̃. Therefore, if t′ ∈ Ch but t′ 6∈ r̃ then A′
out(c,t′)−−−−−→s A

′′ for some A′′ meaning

that A
tr.out(c,t′)
======⇒s A

′′; else A′
νz.out(c,z)−−−−−−−→s A

′′ for some A′′ and some z fresh (z being

either a base type variable or a channel), meaning that A
tr.νz.out(c,z)
========⇒s A

′′. In both

cases, we obtain that A tr′
=⇒ A′′, out(c, t) ∈ tr′ and c 6∈ bn(tr′) for some tr′, A′′ and t.

It allows us to conclude that A �sc. ut

C Proof of Theorem 1

We start by restating the a proposition from [11] that was used to prove that trace equiv-
alence implies may equivalence in the classical semantics. In order to prove the propo-
sition for the semantics private and eavesdrop, we will first write exactly the proof of
from [11] for the classical semantics and then highlight what changes are required to
obtain the proofs for the private and eavesdropping semantics.

Proposition 4. Let s ∈ {c, p, e}. Let A and B be two honest closed extended process
with dom(A) = dom(B), and C[ ] = νñ.(D | ) be an attacker evaluation context s-
closing for A. If C[A] →∗s A′′ for some process A′′, then there exist a closed extended
process A′, an attacker evaluation context C ′ = νñ′.(D′ | ) s-closing for A′, and a
trace tr ∈ (A r {τ})∗ such that A′′ ≡ C ′[A′], A tr

=⇒s A
′, and for all closed extended

process B′, we have:

C[ ] is s-closing for B and B tr
=⇒s B

′ and φ(B′) ∼ φ(A′)
implies that

C ′ is s-closing for B′ and C[B]→∗s C ′[B′].

Proof. We first focus on the case s = c. Let A and B be two extended processes with
dom(A) = dom(B) and C[ ] = νñ.(D | ) be an evaluation context c-closing for A.
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Let A′′ be such that C[A] →∗s A′′. We prove the result by induction on the length ` of
the derivation.

Base case ` = 0: In such a case, we have that A′′ ≡ C[A]. Let A′ = A, C ′ = C

and tr = ε, we have that A′′ ≡ C ′[A′], and A tr
=⇒c A

′. Let B′ be a closed extended
process such that B ε

=⇒c B
′ and φ(B′) ∼ φ(A′) for some B′. Clearly, we have that

C[B]→∗c C ′[B′] and C ′[ ] is c-closing for B′ since C ′ = C and B →∗c B′.

Inductive case ` > 0: In such a case, we have that there exists a closed extended pro-
cess A1 such that C[A] →∗c A1 with a derivation whose length is smaller than `, and
A1 →c A

′′. Thus, we can apply our induction hypothesis allowing us to deduce that
there exist an extended process A′1, an evaluation context C ′1[ ] = νñ′1.(D

′
1 | ) c-

closing for A′1, and a trace tr1 ∈ (A r {τ})∗ such that A1 ≡ C ′1[A
′
1], A

tr1=⇒c A
′
1, and

for all closed extended processes B′1, we have that:

C[ ] is c-closing for B and B tr
=⇒s B

′
1 and φ(B′1) ∼ φ(A′1)

implies that
C ′1[ ] is c-closing for B′1 and C[B]→∗s C ′1[B′1].

Since A1 ≡ C ′1[A
′
1] and A1 →c A

′′, we have that C ′1[A
′
1] →c A

′′. (internal reduc-
tion is closed under structural equivalence). W.l.o.g., we can assume that D′1 is name-
cleaned, the bound names and variables in C ′1[A

′
1] are bound once and distinct from the

free names. We do a case analysis on the rule involved in this reduction.

Case 1: internal reduction in A′1, i.e. there exists A′ such that A′1 →c A
′ and A′′ ≡

C ′1[A
′]. In such a case, we have that C ′1[A

′
1]→c C

′
1[A
′]. Let C ′[ ] = C ′1[ ] and tr = tr1.

We have that A′′ ≡ C ′1[A
′] = C ′[A′] and A tr1=⇒c A

′
1 →c A

′, i.e. A tr
=⇒c A

′. Lastly, let
B′ be a closed extended process such that B tr

=⇒c B
′ and φ(B′) ∼ φ(A′). We have that

B
tr1=⇒c B

′ and φ(B′) ∼ φ(A′1) ≡ φ(A′), and thus relying on our induction hypothesis,
we obtain that C ′1[ ] is c-closing for B′ and C[B]→∗c C ′1[B′]. Since C ′1[ ] = C ′[ ], we
conclude.

Case 2.a: rule THEN in D′1, i.e. D′1 = if u = v then P1 else P2 | P3 and A′′ ≡
νñ′1.(P1 | P3 | A′1). In such a case, we have C ′1[A

′
1] →c νñ

′
1.(P1 | P3 | A′1). Let

A′ = A′1, C ′[ ] = νñ′1.(P1 | P3 | ) and tr = tr1. We have that A′′ ≡ C ′[A′]

and A tr
=⇒c A

′. Lastly, let B′ be a closed extended process such that B tr
=⇒c B

′ and
φ(B′) ∼ φ(A′). By renaming, we can assume that the bound names of B′ are distinct
from the free names ofC ′1. Moreover, we know thatC ′1 is c-closing forA′1 meaning that
fv(u, v) ⊆ dom(φ(A′1)). Furthermore, since the free names are distinct from bound
names, we obtain that fn(u, v) ∩ bn(A′1) = ∅. But φ(A′1) = φ(A′) ∼ φ(B′) and
(u =E v)φ(A′) hence we obtain (u =E v)φ(B′) meaning that C ′1[B

′] → νñ′1.(P1 |
P3 | B′) = C ′[B′]. By our inductive hypothesis, we also have that C ′1 is c-closing
for B′ and C[B] →∗c C ′1[B′]. Hence, we conclude that C[B] →∗c C ′[B′] and C ′[ ] is
c-closing for B′.

Case 2.b: rule ELSE in D′1, i.e. D′1 = if u = v then P1 else P2 | P3 and A′′ ≡
νñ′1.(P2 | P3 | A′1). Similar to case 2.a.
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Case 3: rule COMM in D′1, i.e. D′1 = outat(c, u).P1 | inat(c, x).P2 | P3 and A′′ ≡
νñ′1.(P1 | P2{u/x} | P3 | A′1). In such a case, we have C ′1[A

′
1] →c νñ′1.(P1 |

P2{u/x} | P3 | A′1). Let A′ = A′1, C ′[ ] = νñ′1.(P1 | P2{u/x} | P3 | ) and tr = tr1.
We have that A′′ ≡ C ′[A′] and A tr

=⇒c A
′. Lastly, let B′ be a closed extended process

such that B tr
=⇒c B

′ and φ(B′) ∼ φ(A′). Since φ(A′) = φ(A′1) then by our inductive
hypothesis, we obtain C ′1 is c-closing for B′ and C[B] →∗c C ′1[B′]. But C ′1[B

′] →c

νñ′1.(P1 | P2{u/x} | P3 | B′) = C ′[B′] and so the result holds.

Case 4: rule COMM between D′1 (output) and A′1 (input), i.e. D′1 = outat(c,M).P1 |
P2, A′1 = νr̃.(inho(c, x).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1 | P2 | Q1 | Q2) (re-
call that we assume that bound names and variables are distinct from free names
and variables and are only bound once). Note that in such a case, c 6∈ r̃. Hence

A′1
in(c,M)−−−−−→ νr̃.(Q1{M/x} | Q2). Moreover, since r̃ are not in P1, P2, we have

A′′ ≡ νñ′1.(P1 | P2 | νr̃.(Q1{M/x} | Q2)). Let A′ = νr̃.(Q1{M/x} | Q2), C ′[ ] =
νñ′1.(P1 | P2 | ) and tr = tr1.in(c,M). We have that A′′ ≡ C ′[A′] and A tr

=⇒c A
′.

Lastly let B′ be a closed extended process such that B tr
=⇒c B

′ and φ(B′) ∼ φ(A′). We

have that there exists B′1 such that B tr1=⇒c B
′
1

in(c,M)−−−−−→c B
′
2 →∗c B′. By renaming, we

can assume that the bound names ofB′1 are distinct from the names ofC ′1 and are bound
only once. Since φ(B′) ∼ φ(A′), we have also that φ(B′1) ∼ φ(A′1). Thus, we can ap-
ply our induction hypothesis onB′1. This allows us to deduce thatC[B]→∗c C ′1[B′1] and
C ′1 is c-closing for B′1. In order to conclude, it remains to show that C ′1[B

′
1]→c C

′[B′2]
and C ′[ ] is c-closing for B′2 (since C ′[ ] is c-closing for B′2 and B′2 →∗c B′ implies
C ′[B′2]→∗c C ′[B′] and C ′ is c-closing for B′).

We have seen that B′1
in(c,M)−−−−−→ B′. Hence, we know that B′1 = νr̃′.(inho(c, x).Q′1 |

Q′2) for some r̃′, Q′1, Q
′
2 and B′2 ≡ νr̃′.(Q′1{M/x} | Q′2). But since we assumed that

the bound names of B′1 are distinct from the names of C ′1 and are bound only once,
we obtain that C ′1[B

′
1] ≡ νñ′1.νr̃

′.(outat(c,M).P1 | P2 | inho(c, x).Q′1 | Q′2). Hence
C ′1[B

′
1] →c νñ

′
1.νr̃

′.(P1 | P2 | Q′1{M/x} | Q′2) ≡ C ′[νr̃′.(Q′1{M/x} | Q′2)] ≡
C ′[B′2]. Notice that C ′[ ] is c-closing for B′2 since fv(C ′1[B

′
1]) = ∅.

Case 5: rule COMM between C ′1 (input) and A′1 (output), i.e. D′1 = inat(c, x).P1 | P2,
A′1 = νr̃.(outho(c,M).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1{M/x} | P2 | Q1 | Q2)
(recall that we assume that bound names and variables are distinct from free names
and variables and are only bound once). Note that in such a case, c 6∈ r̃. We do a case
analysis on M .

– Case 5.a, M ∈ Ch ∩ r̃: Let us denote νr̃ = νr̃′.νM . Thus A′1
νM.out(c,M)−−−−−−−−→c

νr̃′.(Q1 | Q2). Hence, since the names and variables in r̃ are not in D′1, we obtain
that A′′ ≡ νñ′1.νM.(P1{M/x} | P2 | νr̃′.(Q1 | Q2)). Let A′ = νr̃′.(Q1 |
Q2), C ′[ ] = νñ′1.νM.(P1{M/x} | P2 | ) and tr = tr1.νM.out(c,M). We
have that A′′ ≡ C ′[A′] and A tr

=⇒c A
′. Lastly let B′ be a closed extended process

such that B tr
=⇒c B

′ and φ(B′) ∼ φ(A′). We have that there exists B′1 such that

B
tr1=⇒c B′1

νM.out(c,M)−−−−−−−−→c B′2 →∗c B′. By renaming, we can assume that the
bound names of B′1 are distinct from the names of C ′1 and are bound only once.
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Since φ(B′) ∼ φ(A′), we have also that φ(B′1) ∼ φ(A′1). Thus, we can apply our
induction hypothesis on B′1. This allows us to deduce that C[B] →∗c C ′1[B′1] and
C ′1[ ] is c-closing for B′1. In order to conclude, it remains to show that C ′1[B

′
1] →c

C ′[B′2] (since fv(C ′1[B
′
1]) and since B′2 →∗c B′ implies C ′[B′2]→∗c C ′[B′]).

We have seen that B′1
νM.out(c,M)−−−−−−−−→ B′2. Hence, B′1 = νm̃.νM.(outho(c,M).Q′1 |

Q′2) for some m̃, Q′1, Q
′
2 and B′2 ≡ νm̃.(Q′1 | Q′2). But since we assumed that the

bound names of B′1 are distinct from the names of C ′1 and are bound only once,
we obtain that C ′1[B

′
1] ≡ νñ′1.νm̃.νM.(inat(c, x).P1 | P2 | outho(c,M).Q′1 | Q′2).

Hence C ′1[B
′
1] →c νñ

′
1.νm̃.νM.(P1{M/x} | P2 | Q′1 | Q′2) ≡ C ′[νm̃.(Q′1 |

Q′2)] ≡ C ′[B′2].

– Case 5.b, M ∈ Ch but M 6∈ r̃: Thus A′1
out(c,M)−−−−−−→c νr̃.(Q1 | Q2). Hence, since

the names and variables in r̃ are not in D′1, we obtain that A′′ ≡ νñ′1.(P1{M/x} |
P2 | νr̃.(Q1 | Q2)). Let A′ = νr̃.(Q1 | Q2), C ′[ ] = νñ′1.(P1{M/x} | P2 | )

and tr = tr1.out(c,M). We have that A′′ ≡ C ′[A′] and A tr
=⇒c A

′. Lastly let B′

be a closed extended process such that B tr
=⇒c B

′ and φ(B′) ∼ φ(A′). We have

that there exists B′1 such that B tr1=⇒c B
′
1

out(c,M)−−−−−−→c B
′
2 →∗c B′. By renaming,

we can assume that the bound names of B′1 are distinct from the names of C ′1 and
are bound only once. Since φ(B′) ∼ φ(A′), we have also that φ(B′1) ∼ φ(A′1).
Thus, we can apply our induction hypothesis on B′1. This allows us to deduce that
C[B] →∗c C ′1[B′1] and C ′1[ ] is c-closing for B′1. In order to conclude, it remains
to show that C ′1[B

′
1] →c C

′[B′] (since fv(C ′1[B
′
1]) and since B′2 →∗c B′ implies

C ′[B′2]→∗c C ′[B′]).

We have seen that B′1
out(c,M)−−−−−−→ B′2. Hence, B′1 = νm̃.(outho(c,M).Q′1 | Q′2) for

some m̃,Q′1, Q
′
2 such thatM 6∈ m̃ andB′2 ≡ νm̃.(Q′1 | Q′2). But since we assumed

that the bound names of B′1 are distinct from the names of C ′1 and are bound only
once, we obtain that C ′1[B

′
1] ≡ νñ′1.νm̃.(in

at(c, x).P1 | P2 | outho(c,M).Q′1 |
Q′2). Hence C ′1[B

′
1] →c νñ

′
1.νm̃.(P1{M/x} | P2 | Q′1 | Q′2) ≡ C ′[νm̃.(Q′1 |

Q′2)] ≡ C ′[B′2].

– Case 5.c, M 6∈ Ch: Consider y a fresh variable. Thus A′1
νy.out(c,y)−−−−−−−→c νr̃.(Q1 |

Q2 | {M/y}). Hence, since the names and variables in r̃ are not in D′1 and since y
is fresh, we obtain that A′′ ≡ νñ′1.νy.νr̃.(P1{y/x} | P2 | Q1 | Q2 | {M/y}) ≡
νñ′1.νy.(P1{y/x} | P2 | νr̃.(Q1 | Q2 | {M/y})). Let A′ = νr̃.(Q1 | Q2 |
{M/y}), C ′[ ] = νñ′1.νy.(P1{y/x} | P2 | ) and tr = tr1.νy.out(c, y). We have
that A′′ ≡ C ′[A′] and A tr

=⇒c A
′. Lastly let B′ be a closed extended process such

that B tr
=⇒c B

′ and φ(B′) ∼ φ(A′). We have that there exists B′1 such that B tr1=⇒c

B′1
νy.out(c,y)−−−−−−−→c B

′
2 →∗c B′. By renaming, we can assume that the bound names

of B′1 are distinct from the names of C ′1 and are bound only once. Since φ(B′) ∼
φ(A′), we deduce that dom(B′1) = dom(A′1) and φ(B′1) ∼ φ(A′1). Thus, we can
apply our induction hypothesis on B′1. This allows us to deduce that C[B] →∗c
C ′1[B

′
1] and C ′1[ ] is c-closing for B′1. In order to conclude, it remains to show that

C ′1[B
′
1] →c C

′[B′] (since fv(C ′1[B
′
1]) and since B′2 →∗c B′ implies C ′[B′2] →∗c

C ′[B′]).
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We have seen that B′1
νy.out(c,y)−−−−−−−→ B′2. Hence, B′1 = νm̃.(outho(c,N).Q′1 | Q′2)

for some m̃, N 6∈ Ch, Q′1, Q
′
2 and B′2 ≡ νm̃.(Q′1 | Q′2 | {N/y}). But since

we assumed that the bound names of B′1 are distinct from the names of C ′1 and
are bound only once, we obtain that C ′1[B

′
1] ≡ νñ′1.νm̃.(in

at(c, x).P1 | P2 |
outho(c,N).Q′1 | Q′2). Moreover, since y is fresh, we obtain that νñ′1.νy.νm̃.
(inat(c, x).P1 | P2 | outho(c, y).Q′1 | Q′2 | {N/y}). Hence C ′1[B

′
1] →c νñ

′
1.νy.

νm̃.(P1{y/x} | P2 | Q′1 | Q′2 | {N/y}) ≡ C ′[νm̃.(Q′1 | Q′2 | {N/y})] ≡ C ′[B′2].

This conclude the proof of the proposition for s = c. Therefore, it remains to take care
of the cases s = p and s = e. Let us focus first on the case s = p. The proof is in
fact very similar to the classical semantics. Considering that the differences between
the classical semantics and the private semantics are on the internal communication, we
only need the rules that are not already covered in the classical proof. Notice that the
rule C-ENV correspond to either Case 3 or Case 4 when M is of base type or Case 5.c.
Moreover, the rules THEN and ELSE are already covered either Case 1 or 2.a or 2.b.
Hence it remains the case of the rules C-PRIV and C-OPEN.

Case 6, rule C-OPEN between C ′1 (input) and A′1 (output), i.e. D′1 = inθ(c, x).P1 | P2,
A′1 = νr̃.(outho(c, d).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1{d/x} | P2 | Q1 | Q2 | ωd).
Lets us do a case analysis on whether (6.a) d ∈ r̃ or (6.b) d 6∈ r̃. Note that Case
(6.a) is in fact almost identical to Case (5.a) and that the result holds with C ′[ ] =
νñ′1.νd.(P1{d/x} | P2 | ωd | ),A′ = νr̃′.(Q1 | Q2) and tr = tr.νdwith νr̃ = νr̃′.νd.
Furthermore, note that Case (6.b) is also very similar to Case (5.b) and that the result
holds with C ′[ ] = νñ′1.(P1{d/x} | P2 | ωd | ) and A′′ = νr̃.(Q1 | Q2). Notice that
in both cases C ′[ ] is p-closing for A′ and B′ since ωd was added to C ′[ ].

Case 7, rule C-OPEN betweenA′1 (input) andC ′1 (output), i.e.D′1 = outθ(c, d).P1 | P2,
A′1 = νr̃.(inho(c, x).Q1 | Q2) and A′′ ≡ νñ′1.νr̃.(P1 | P2 | Q1{d/x} | Q2 | ωd). This
case if very similar to Case 4 when M is of channel type and the result holds with
C ′[ ] = νñ′1.(P1 | P2 | ωd | ) and A′ = νr̃.(Q1{d/x} | Q2). Notice that in both cases
C ′[ ] is p-closing for A′ and B′ since ωd was added to C ′[ ].

Case 8, rule C-PRIV with a communication on a channel c. Notice that this rule is in
fact partially covered by the beginning of the proof. Indeed, Case 1 and 3 cover the cases
where c is not in ñ′1. Therefore, we only need to focus on the case where the private
channel is in ñ′1, i.e. νñ′1 = νñ′′1 .νc for some ñ′′1 . We know that C ′1[ ] is p-closing for
A′1. Hence since c is a channel bound in C ′1[ ] whose scope includes , we deduce that
if c ∈ fn(A1) then ωc is also in the scope of c. But according to the definition of the
rule, we know that ωc is not in the scope of νc. Moreover, if the output or input is
done by A′1 then it would implies that c ∈ fn(A1). Thus, this allows us to deduce that
this both output and input are tagged with at, meaning that there exists D′′1 such that
νc.(D′1 | A′1)

τ−→p νc.(D
′′
1 | A′1) and A′′ ≡ νñ′′1 .νc.(D

′′
1 | A′1). In such a case, by

denoting C ′[ ] = νñ′′1 .νc.(D
′′
1 | ), A′ = A′1 and tr = tr1, we obtain A′′ ≡ C ′[A′]

and A tr1=⇒p A
′. Lastly let B′ be a closed extended process such that B tr

=⇒p B
′ and

φ(B′) ∼ φ(A′). By our inductive hypothesis, we know that C[B] →∗p C ′1[B
′]. But

C ′1[B
′] = νñ′′1 .νc.(D

′
1 | B′)→p νc.(D

′′
1 | B′) ≡ C ′[B′]. Hence the result holds.
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We have concluded the proof of the property for s = p hence it remains the case
s = e. Once, again several cases are already covered since `−→p⊂

`−→e. Hence we only
need to focus on the cases of the rules C-EAV and C-OEAV:

Case 8, rule C-EAV, i.e. A′1 = νr̃.(outho(c, u).Q1 | inho(c, x).Q2 | Q3), D′1 =
eav(c, y).P1 | P2), A′′ ≡ νñ′1.νr̃.(P1{u/y} | P2 | Q1 | Q2{u/x} | Q3) and u is
of base type (We assume w.l.o.g. that the names and variables in r̃ are not in D′1). Note
that in such a case c 6∈ r̃. Moreover, note this is the only possible combinaison of input
and output since C ′1 is an attacker evaluation context and A′1 is an honest extended pro-

cess. Let us consider a fresh variable z. Hence A′1
νz.eav(c,z)−−−−−−−→ νr̃.(Q1 | Q2{u/x} |

Q3 | {u/z}). But since z is fresh, we deduce that A′′ ≡ νñ′1.νz.νr̃.(P1{u/y} |
P2 | Q1 | Q2{u/x} | Q3 | {u/z}). Let C ′[ ] = νñ′1.νz.(P1{z/y} | P2 | ), A′ =
νr̃.(Q1 | Q2{u/x} | Q3 | {u/z}) and tr = tr1.νz.eav(c, z). We haveA′′ ≡ C ′[A′] and
A

tr
=⇒p A

′. Let B′ be a closed extended process such that B tr
=⇒ B′ and φ(B′) ∼ φ(A′).

We have that there exists B′1 such that B tr1=⇒e B
′
1

νz.eav(c,z)−−−−−−−→e B
′
2 →∗e B′. By renam-

ing, we can assume that the bound names of B′1 are distinct from the names of C ′1 and
are bound only once. Since φ(B′) ∼ φ(A′), we deduce that dom(B′1) = dom(A′1) and
φ(B′1) ∼ φ(A′1). Thus, we can apply our induction hypothesis on B′1. This allows us
to deduce that C[B] →∗e C ′1[B′1] and C ′1[ ] is e-closing for B′1. In order to conclude, it
remains to show that C ′1[B

′
1] →e C

′[B′2] and C ′[ ] is p-closing for B′2 (since C ′[ ] is
e-closing for B′2 and B′2 →∗e B′ implies C ′[B′2] →∗e C ′[B′] and C ′[ ] is p-closing for
B′).

We have seen that B′1
νz.eav(c,z)−−−−−−−→e B′2. Hence, B′1 = νm̃.(outho(c,N).Q′1 |

in.(c, x)Q′2 | Q′3) for some m̃, N is of base type, Q′1, Q
′
2, Q

′
3 and B′2 ≡ νm̃.(Q′1 |

Q′2{N/x} | Q′3 | {N/y}). But since we assumed that the bound names of B′1 are
distinct from the names of C ′1 and are bound only once, we obtain that C ′1[B

′
1] ≡

νñ′1.νm̃.(eav(c, y).P1 | P2 | outho(c,N).Q′1 | in.(c, x)Q′2 | Q′3). Moreover, since z
is fresh, we obtain that νñ′1.νz.νm̃.(eav(c, y).P1 | P2 | outho(c, z).Q′1 | in.(c, x)Q′2 |
Q′3 | {N/z}). Hence C ′1[B

′
1] →e νñ

′
1.νy.νm̃.(P1{z/y} | P2 | Q′1 | Q′2{N/x} | Q′3 |

{N/z}) ≡ C ′[νm̃.(Q′1 | Q′2{N/x} | Q′3 | {N/z})] ≡ C ′[B′2]. Note that since the rule
is focused on base type terms, we directly have that C ′[ ] is e-closing for B′2.

Case 9, rule C-OEAV, i.e. A′1 = νr̃.(outho(c, d).Q1 | inho(c, x).Q2 | Q3), D′1 =
eav(c, y).P1 | P2), A′′ ≡ νñ′1.νr̃.(P1{d/y} | P2 | Q1 | Q2{d/x} | Q3 | ωd) and d
is of channel type (We assume w.l.o.g. that the names and variables in r̃ are not in D′).
We have to do a case analysis on d:

– Case d ∈ r̃: Let us denote νr̃ = νr̃′.νd. In such a case A′1
νd.eav(c,d)−−−−−−−→ νr̃′.(Q1 |

Q2{d/x} | Q3). But we know that the names and variables in r̃ are not in D′1
hence A′′ ≡ νñ′1.νd.(P1{d/y} | P2 | ωd | νr̃′.(Q1 | Q2{d/x} | Q3)). Let
C ′[ ] = νk̃′.νd.(Q1{d/y} | Q2 | ωd | ), A′ = νr̃′.(Q1 | Q2{d/x} | Q3) and
tr = tr1.νd.eav(c, d). We have A′′ ≡ C ′[A′] and A tr

=⇒e A
′. Let B′ be a closed

extended process such thatB tr
=⇒e B

′ and φ(B′) ∼ φ(A′). We have that there exists

B′1 such thatB tr1=⇒e B
′
1

νd.eav(c,d)−−−−−−−→e B
′
2 →∗e B′. By renaming, we can assume that

the bound names of B′1 are distinct from the names of C ′1 and are bound only once.
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Since φ(B′) ∼ φ(A′), we deduce that dom(B′1) = dom(A′1) and φ(B′1) ∼ φ(A′1).
Thus, we can apply our induction hypothesis on B′1. This allows us to deduce that
C[B]→∗e C ′1[B′1] and C ′1[ ] is e-closing for B′1. In order to conclude, it remains to
show that C ′1[B

′
1]→e C

′[B′2] and C ′[ ] is e-closing for B′2 (since C ′[ ] is e-closing
for B′2 and B′2 →∗e B′ implies C ′[B′2]→∗e C ′[B′] and C ′[ ] is e-closing for B′).

We have seen that B′1
νd.eav(c,d)−−−−−−−→e B

′
2. Hence, B′1 = νm̃.νd.(outho(c, d).Q′1 |

in.(c, x)Q′2 | Q′3) for some m̃, Q′1, Q
′
2, Q

′
3 and B′2 ≡ νm̃.(Q′1 | Q′2{d/x} | Q′3).

But since we assumed that the bound names ofB′1 are distinct from the names ofC ′1
and are bound only once, we obtain that C ′1[B

′
1] ≡ νñ′1.νm̃.νd.(eav(c, y).P1 | P2 |

outho(c, d).Q′1 | in.(c, x)Q′2 | Q′3). Hence C ′1[B
′
1] →e νñ

′
1.νm̃.νd.(P1{d/y} |

P2 | Q′1 | Q′2{d/x} | Q′3 | ωd) ≡ C ′[νm̃.(Q′1 | Q′2{d/x} | Q′3)] ≡ C ′[B′2]. Note
that d is possible a new free channel of B′2. However, since we have ωd in C ′, we
ensure that C ′ is e-closing for B′2

– Case d 6∈ r̃: In such a case A′1
eav(c,d)−−−−−→ νr̃.(Q1 | Q2{d/x} | Q3). But we know

that the names and variables in r̃ are not in D′1 hence A′′ ≡ νñ′1.(P1{d/y} | P2 |
ωd | νr̃.(Q1 | Q2{d/x} | Q3)). Let C ′[ ] = νk̃′.(Q1{d/y} | Q2 | ωd | ),
A′ = νr̃.(Q1 | Q2{d/x} | Q3) and tr = tr1.eav(c, d). We have A′′ ≡ C ′[A′] and
A

tr
=⇒e A

′. Let B′ be a closed extended process such that B tr
=⇒e B

′ and φ(B′) ∼
φ(A′). We have that there exists B′1 such that B tr1=⇒e B

′
1

eav(c,d)−−−−−→e B
′
2 →∗e B′.

By renaming, we can assume that the bound names of B′1 are distinct from the
names of C ′1 and are bound only once. Since φ(B′) ∼ φ(A′), we deduce that
dom(B′1) = dom(A′1) and φ(B′1) ∼ φ(A′1). Thus, we can apply our induction
hypothesis on B′1. This allows us to deduce that C[B] →∗e C ′1[B

′
1] and C ′1[ ] is

e-closing for B′1. In order to conclude, it remains to show that C ′1[B
′
1] →e C

′[B′2]
and C ′[ ] is e-closing forB′2 (since C ′[ ] is e-closing forB′2 andB′2 →∗e B′ implies
C ′[B′2]→∗e C ′[B′] and C ′[ ] is e-closing for B′).

We have seen thatB′1
eav(c,d)−−−−−→e B

′
2. Hence,B′1 = νm̃.(outho(c, d).Q′1 | in.(c, x)Q′2 |

Q′3) with d 6∈ m̃ for some m̃,Q′1, Q
′
2, Q

′
3 andB′2 ≡ νm̃.(Q′1 | Q′2{d/x} | Q′3). But

since we assumed that the bound names of B′1 are distinct from the names of C ′1
and are bound only once, we obtain that C ′1[B

′
1] ≡ νñ′1.νm̃.(eav(c, y).P1 | P2 |

outho(c, d).Q′1 | in.(c, x)Q′2 | Q′3). Hence C ′1[B
′
1] →e νñ

′
1.νm̃.(P1{d/y} | P2 |

Q′1 | Q′2{d/x} | Q′3 | ωd) ≡ C ′[νm̃.(Q′1 | Q′2{d/x} | Q′3)] ≡ C ′[B′2]. Note that
d is possible a new free channel of B′2 and b could be bound in ñ′1. However, since
we have ωd in C ′, we ensure that C ′ is e-closing for B′2. ut

Lemma 2. Let A and B be two closed extended processes such that A ≈st B. Let u be
a name that occurs in fn(A) ∪ fn(B) and not in bn(A) ∪ bn(B), and u′ be a fresh
name. For all s ∈ {c, p, e}, we have A{u′

/u} ≈st B{u
′
/u}.

Proof. By induction on the derivation. ut

The previous lemma indicates that the trace equivalence are preserved by replace-
ment of free names.

As for the previous proposition, the proof of Theorem 1 is taken from [11] for the
classical semantics and we adapt it for the private and eavesdropping semantics.
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Theorem 1. ≈st ( ≈sm and ≈st = ≈sm on image-finite processes for s ∈ {c, e, p}.

Proof. We first prove that for all s ∈ {c, p, e}, ≈st ⊆ ≈sm. Since we already proved in
the body of the paper that there exists two closed honest extended processes such that
A ≈sm B but A ≈st B, we would thus obtain that ≈st ( ≈sm.

Let A,B be two closed extended processes such that A ≈st B. Let C[ ] be an
evaluation context s-closing for A and B, and c be a channel name. We assume w.l.o.g.
that C[ ] = νñ.(D1 | νm̃.( | D2)) for some extended processes D,D′ and for some
sequences of names and variables ñ, and m̃. We assume w.l.o.g. that m̃ ∩ (bn(A) ∪
bv(A)) = ∅ and m̃ ∩ (bn(B) ∪ bv(B)) = ∅.

Let A2 = A{m̃′
/m̃} and B2 = B{m̃′

/m̃} where m̃′ is a sequence of fresh names
and variables. Thanks to Lemma 2, we have thatA2 ≈st B2. Hence, by structural equiv-
alence, there exists C2[ ] = νk̃.(D | ) such that C[A] ≡ C2[A2] and C[B] ≡ C2[B2].

Assume now that C[A] ⇓sc. This means that there exist a evaluation context C1 that
does not bind c, a term M , and a plain process P , θ ∈ {at, ho} such that C[A] ≡
C2[A2]→∗s C1[out

θ(c,M).P ]. Applying Proposition 4 on A2, B2 and C2[ ], we know
that there exist a closed extended process A′2, an evaluation context C ′2[ ] = νr̃.(E |
) s-closing for A′2 and tr ∈ (A r {τ})∗ such that C1[out

θ(c,M).P ] ≡ C2[A
′
2],

and A2
tr
=⇒s A

′
2, and for all closed extended process B′2 such that B2

tr
=⇒s B

′
2 and

φ(B′2) ∼ φ(A′2), we have that C2[B2] →∗s C ′2[B′2]. Moreover, we assume w.l.o.g. that
bn(()tr) ∩ fn(()B2) = ∅.

Since C ′2 = νr̃.(E| ), we can deduce from C1[out
θ(c,M).P ] ≡ C ′2[A

′
2] that the

output outθ(c,M) comes from the process E when θ = at or from A′2 when θ = ho.
We distinguish these two cases:

– Case θ = at: Since, we have that A2 ≈st B2, we know that that there exists B′2
such that B2

tr
=⇒s B

′
2 and φ(A′2) ∼ φ(B′2). Therefore, we have that C2[B2] →∗s

C ′2[B
′
2] ≡ νr̃.(E | B′2). But by hypothesis, we know that the output outθ(c,M)

comes from E and c 6∈ r̃. Hence we have that C2[B2] ⇓sc, and since C[B] ≡
C2[B2], we conclude that C[B] ⇓sc.

– Case θ = ho: Thus, we have that A′2 ≡ νṽ.(outθ(c,M).P | A3) with c 6∈ ṽ, r̃.

Thus, we have that A′2
νz.out(c,z)−−−−−−−→s νṽ.(P | A3 | {M/z}) where z is fresh (if M is

a term of channel type, the transition is different but the proof can be done in a sim-
ilar way.) Let A′′ = νṽ.(P | A3 | {M/z}) and tr′ = tr · νz.out(c, z), we have that

A2
tr′
=⇒s A

′′. Since we have that A2 ≈st B2, we have that there exists B′2 such that

B2
tr′
=⇒s B

′
2 and φ(A′′) ∼ φ(B′2). Since internal reduction rules do not modify the

frame (modulo structural equivalence), we can deduce w.l.o.g. that there exists B′

such that B2
tr
=⇒s B

′ νz.out(c,z)−−−−−−−→s B
′
2. Therefore, we have that there exists a term

N , an evaluation context C3 and a process Q such that B′ ≡ C3[out
ho(c,N).Q]

and c is not bind by C3. Furthermore, we have that φ(A′2) ∼ φ(B′) which means
that C2[B2] →∗s C ′2[B′], and thus C2[B2] →∗s C ′2[C3[out

ho(c,N).Q]]. Hence, we
have that C2[B2] ⇓sc, and since C[B] ≡ C2[B2], we conclude that C[B] ⇓sc. ut

This conclude the proof of ≈st ⊆ ≈sm. It remains to prove that on imagine-finite
processes, ≈st = ≈sm for all s ∈ {c, e, p}. We first focus on s = c.
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Assume that A 6≈c
t B. We assume w.l.o.g. that A 6vst B. In such a case, there

exists a witness for the non equivalence. This means that there exists A′, tr such that
bn(()tr) ∩ fn(()B) = ∅, and for all B′, B tr

=⇒c B
′ implies φ(A′) 6∼ φ(B′). Moreover,

we assume that no name in tr is bound twice (i.e. νa. can not occur twice in tr) and
bound names in tr are distinct from free names that occur in A, B, and tr.

We build an evaluation context Cc[ ] according to the trace tr and also the tests that
witness the fact that static equivalence does not hold. Let Str = {φ(B′) | B

tr
=⇒c B

′}.
SinceB is image-finite, we know that Str/ ∼ is finite. Let {φ1, . . . , φm} = S/ ∼. Note
that m can be equal to 0 if there is no B′ such that B tr

=⇒c B
′.

We know that {1, . . . ,m} = T+ ] T− with:

– for each i ∈ T+, there exist two terms Mi and Ni such that fv(Mi) ∪ fv(Ni) ⊆
dom(φ(A′)), (Mi =E Ni)φ(A

′), and (Mi 6=E Ni)φi; and
– for each i ∈ T−, there exist two terms Mi and Ni such that fv(Mi) ∪ fv(Ni) ⊆
dom(φ(A′)), (Mi 6=E Ni)φ(A

′), and (Mi =E Ni)φi.

Let bad be a fresh channel name that does not occur inA andB. LetP1, . . . , Pm, Pm+1

be the plain processes defined as follows:

– Pm+1 =̂ outat(bad,bad).0
– for 1 ≤ i ≤ m, we define Pi as follows:

Pi =̂ if Mi = Ni then Pi+1 else 0 when i ∈ T+

Pi =̂ if Mi = Ni then 0 else Pi+1 when i ∈ T−

Let {a1, . . . , ak} be channel names that occur free in A, B, and tr. Let X 0
ch =

{xa1 , . . . , xak} be a set of variables of channel type, and σ = {xa1 7→ a1, . . . , xak 7→
ak}. Moreover, for all channel names {d1, . . . , dm} that are bound in tr, we also asso-
ciate fresh variables xd1 , . . . , xdm .

We define Cc[ ] such that Cc[ ] = νz̃.(Qc(tr,X 0
ch) | ) where z̃ = dom(φ(A)) and

Qc(tr,Xch) is defined by recurrence on tr as follows:

– if tr = ε then Qc(tr,Xch) = P1;
– if tr = in(a,M).tr′ then Qc(tr,Xch) = outat(xaσ,M).Qc(tr

′,Xch);
– if tr = νz.out(a, z).tr′ and z is of base type then Qc(tr,Xch) = inat(xaσ, x).
Qc(tr

′,Xch)
– it tr = out(a, c).tr′ then Qc(tr,Xch) = inat(xaσ, y).if y = xcσ then Qc(tr

′,Xch)
else 0 where y is fresh variable of channel type; and

– if tr = νc.out(a, c) and c is of channel type then Qc(tr,Xch) = inat(xaσ, xc).if
xc ∈ Xchσ then 0 else Qc(tr

′,X ′ch) where X ′ch = Xch ] {xc}.

We use the conditional if u ∈ {u1, . . . , uk} then 0 else P as a shortcut for

if u = u1 then 0 else (if u = u2 then 0 else (. . . (if u = uk then 0 else P ) . . .)).

We can see that Cc[A] ⇓cbad since A tr
=⇒ A′ and φ(A′) satisfies by definition all

the tests that are tested in P1, . . . , Pm. However, by construction of Cc[ ], we have that
Cc[B] 6⇓cbad.
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This conclude the proof for the case s = c. The proof for s = p and e are very
similar. We only need to slightly modify the context Cc[ ]. In fact since the possible
labels in the private semantics are the same as in the original semantics, we haveCp[ ] =
Cc[ ]. However, for the eavesdropping semantics, we define Ce[ ] such that Ce[ ] =
νz̃.(Qe(tr,X 0

ch) | ) where z̃ = dom(φ(A)) and Qe(tr,Xch) is defined by recurrence
on tr as follows:

– if tr = ε then Qe(tr,Xch) = P1;
– if tr = in(a,M).tr′ then Qe(tr,Xch) = outat(xaσ,M).Qe(tr

′,Xch);
– if tr = νz.out(a, z).tr′ and z is of base type then Qe(tr,Xch) = inat(xaσ, z).
Qe(tr

′,Xch)
– it tr = out(a, c).tr′ then Qe(tr,Xch) = inat(xaσ, y).if y = xcσ then Qe(tr

′,Xch)
else 0 where y is fresh variable of channel type; and

– if tr = νc.out(a, c) and c is of channel type then Qe(tr,Xch) = inat(xaσ, xc).if
xc ∈ Xchσ then 0 else Qe(tr

′,X ′ch) where X ′ch = Xch ] {xc}.
– if tr = eav(a, c).tr′ with c of channel-type then Qe(tr,Xch) = eav(xaσ, y).if
y = xcσ then Qe(tr

′,Xch) else 0 where y is fresh variable of channel type;
– if tr = νz.eav(a, z).tr′ and z is of base type then Qe(tr,Xch) = eav(xaσ, z).
Qe(tr

′,Xch)
– if tr = νc.eav(a, c).tr′ and c is of channel type then Qe(tr,Xch) = eav(xaσ, xc).
if xc ∈ Xchσ then 0 else Qe(tr

′,X ′ch) where X ′ch = Xch ] {xc}.
ut

D Proof of Theorem 6

In this section, we want to prove that≈e
m ( ≈p

m∩≈c
m. In order to show that≈e

m ( ≈c
m,

we need to build a transformation of context that would allows us to go from the classic
semantics to eavesdropping semantics, and vice versa.

Notice that in the definition of structural equivalence !A |!A is not equivalence to
!A even though they have the same behavior. In fact, for reachability, may equivalence,
trace equivalence, observational equivalence and labeled bissimilar, using the structural
equivalence coincides with using the struutural equivalence augmented with the equal-
ity !A |!A ≡!A. As such in this section, we will consider the structural equivalence
augmented with the equality !A |!A ≡!A.

Definition 11. Let P be an extended attacker process. We define P inductively as fol-
lows:

– 0 when P = 0
– P1 | P2 when P = P1 | P2

– P when P = {u/x}
– ωc when P = ωc
– νn.(P ′ |!eav(n, y) |!eav(n, z)) when P = νn.P ′, n is of channel type and y, z are

variables of base and channel type respectively.
– νk.P ′ when P = νn.P ′, n is of base type
– if u = v then P1 else P2 when P = if u = v then P1 else P2
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– eav(c, x).P ′ when P = eav(c, x).P ′

– outat(c, u).P ′ when P = outat(c, u).P
– inat(c, x).P ′ when P = inat(c, x).P ′ and x is of base type
– inat(c, x).(P ′ |!eav(x, y) |!eav(x, z)) when P = inat(c, x).P ′,y, z are variables of

base and channel type respectively.

Let Tch be the terms of channel type, i.e. names and variables of channel type. Let
C[ ] = νñ.(D | ) be an attacker evaluation context and S a set of channel names. We
define CS [ ] as follows:

νñ.(D | |
∏

a∈ñ∩Tch

!eav(a, y) |!eav(a, z) | ωa) |
∏
a∈S

!eav(a, y) |!eav(a, z) | ωa

where y and z are variables of base and channel type respectively.

In order to facilitate the readability of the proof, for a set S of names and variables, we
will denote P(S) =

∏
a∈S∩Tch !eav(a, y) |!eav(a, z) and Po(S) =

∏
a∈S∩Tch !eav(a, y) |

!eav(a, z) | ωa. Moreover, we will consider that P(S) | P(S) ≡ P(S).
Hence, CS [ ] can now be written as νñ.(D | | Po(ñ)) | Po(S).
Note that from the definition, we have that for allA closed honest extended process,

if C[ ] = νñ.(D | ) is c-closing for A then CS [ ] is e-closing for A for all S.

Lemma 3. Let A be an extended process and νñ a sequence of names and variables.
We have νñ.A ≡ νñ.(A | P(ñ).

Proof. Direct from the definition. ut

Lemma 4. Let A be an closed honest extended process. Let C[ ] = νñ.(νm̃.D | )
be an attacker evaluation context c-closing for A such that D is named-cleaned and
eavesdrop-free. Let S be a set set of channel names such that fc(C[A]) ⊆ S.

1. For all C[A] →c A0, there exist A′ closed honest extended process, C ′[ ] =
νñ′.(νm̃′.D′ | ) an attacker evaluation context c-closing for A′ such that D′

is name-cleaned and eavesdrop-free, C ′[A′] ≡ A0 and CS [A]→e C ′S [A
′]

2. For all CS [A] →e A0, there exist A′ closed honest extended process, C ′[ ] =
νñ′.(νm̃′.D′ | ) an attacker evaluation context c-closing for A′ such that D′ is
name-cleaned and eavesdrop-free, C ′S [A′] ≡ A0 and C[A]→c C

′[A′]

Proof. We first start by proving the first property. Notice that by structural equivalence,
we can always assume that the bound names and variables in C[A] are only bound once
and are distinct from the free names in S. Indeed, for all C ′′[ ], A′′, if C[A] ≡ C ′′[A′′]
only by renaming of bound names and variables then we obtain thatCS [A] ≡ C ′′S [A′′].

We do a case analysis on the internal rule applied.

Case 1.a, rule THEN onD, i.e.D = if u = v thenD1 elseD2 | D3 andA0 ≡ νñ.(D2 |
D3 | A): In such a case we have D →e D1 | D3 and so νm̃.(D | P(m̃))→e νm̃.(D1 |
D3 | P(m̃)). By Lemma 3, we obtain that νm̃.D → νm̃.(D1 | D3). Let us denote
C ′[ ] = νñ.(νm̃.(D1 | D3) | ) and A′ = A. Since C ′S [ ] = νñ.(νm̃.(D1 | D3) | |
Po(ñ)) | Po(S), we obtain that A0 ≡ C ′[A′] and CS [A]→e C ′S [A

′].
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Case 1.b, rule ELSE on D: Similar to Case 1.a.

Case 2.a, rule THEN on A, i.e. A ≡ νr̃.(if u = v then P1 else P2 | P3) and A0 ≡
C[νr̃.(P1 | P3)]: In such a case, let us denote C ′[ ] = C[ ] and A′ = νr̃.(P1 | P3).
Therefore, C ′[A′] = C[A′] ≡ A0. Note that A →e A

′. Hence C[A] →e C[A
′] and

CS [A]→e CS [A
′]. Thus the result holds.

Case 2.b, rule ELSE on A: Similar to Case 2.a.

Case 3, rule COMM on A, i.e. A ≡ νr̃.(outho(c, u).P1 | inho(c, x).P2 | P3) and A0 ≡
C[νr̃.(P1 | P2{u/x} | P3)]: Note that even though A →c νr̃.(P1 | P2{u/x} | P3),
we don’t necessarily have that A →e νr̃.(P1 | P2{u/x} | P3). We have to do a case
analysis on u and c:

– Case 3.a, c ∈ r̃: In such a case, we know fromA being an honest processes that c 6∈
oc(P3). Thus we can apply rule C-PRIV to obtain that A →e νr̃.(P1 | P2{u/x} |
P3). Hence, by denotingC ′[ ] = C[ ] andA′ = νr̃.(P1 | P2{u/x} | P3), we obtain
that C ′[A′] = C[A′] ≡ A0, A →e A

′ and so C[A] →e C[A
′] and CS [A] →e

CS [A
′]. Therefore, the result holds.

– Case 3.b, c 6∈ r̃ and u of base type: In such a case, outho(c, u).P1 | inho(c, x).P2 |
P3 | eav(c, y) →e P1 | P2{u/x} | P3 by the rule C-EAV. Let us denote A′ =
νr̃.(P1 | P2{u/x} | P3). Since c 6∈ r̃, we obtain that A | eav(c, y) →e A

′ and so
A |!eav(c, y) →e A

′ |!eav(c, y). By noticing that c is either in ñ or in fc(C[A])
and so in S, the structural equivalence gives us that CS [A] →e CS [A

′]. Hence the
result holds with C ′[ ] = C[ ].

– Case 3.c, c 6∈ r̃ and u of channel type: This case is very similar to Case 3.b. Indeed,
outho(c, u).P1 | inho(c, x).P2 | P3 | eav(c, z) →e P1 | P2{u/x} | P3 | ωc by the
rule C-OEAV. Let us denote A′ = νr̃.(P1 | P2{u/x} | P3). Since c 6∈ r̃, we obtain
that A | eav(c, z)→e A

′ | ωc and so A |!eav(c, z) | ωc→e A
′ |!eav(c, z) | ωc. By

noticing that c is either in ñ or in fc(C[A]) and so in S, the structural equivalence
gives us that CS [A]→e CS [A

′]. Hence the result holds with C ′[ ] = C[ ].

Case 4, rule COMM on D, i.e. D = outat(c, u).D1 | inat(c, x).D2 | D3 and A0 ≡
νñ.(νm̃.(D1 | D2{u/x} | D3) | A): Let us do a case analysis on u:

– Case 4.a, u is of base type: In such a case, we have outat(c, u).D1 | inat(c, x).D2 |
D3 →e D1 | D2{u/x} | D3 by the rule C-ENV. Hence, νm̃.(outat(c, u).D1 |
inat(c, x).D2 | D3 | P(m̃)) →e νm̃.(D1 | D2{u/x} | D3 | P(m̃)). Let us denote
D′ = (D1 | D2{u/x} | D3). By Lemma 3, we obtain that νm̃.D →e νm̃.D′.
Hence, we deduce that νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e νñ.(νm̃.D′ | A |
Po(ñ)) | Po(S). Let us denote C ′[ ] = νñ.(νm̃.D′ | ) and A′ = A. We have
A0 ≡ C ′[A′] and CS [A]→e C ′S [A

′]. Hence the result holds.
– Case 4.b, u is of channel type and u 6∈ m̃∪ñ: In such a case, u ∈ fv(C[A]) ⊆ S and

we have outat(c, u).D1 | inat(c, x).(D2 | P(x)) | D3 →e D1 | D2{u/x} | D3 |
P(u) | ωu by the rule C-OPEN. Since u 6∈ m̃, we obtain that νm̃.(outat(c, u).D1 |
inat(c, x).(D2 | P(x)) | D3 | P(m̃)) →e νm̃.(D1 | D2{u/x} | D3 | P(m̃)) |
Po(u). Let us denote D′ = (D1 | D2{u/x} | D3). By Lemma 3, we obtain
that νm̃.D →e νm̃.D′ | Po(u). Moreover, since u 6∈ ñ then νñ.(νm̃.D | A |
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Po(ñ)) →e ñ.(νm̃.D′ | A | Po(ñ)) | Po(u). Lastly, since u ∈ S and Po(u) |
Po(u) ≡ Po(u), we obtain that νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e ñ.(νm̃.D′ |
A | Po(ñ)) | Po(S). Therefore, the result holds with A′ = A and C ′[ ] =
νñ.(νm̃.D′ | ).

– Case 4.c, u is of channel type and u ∈ ñ: This case is similar to Case 4.b. Since
u 6∈ m̃, we can apply the same reasoning and obtain νm̃.D →e νm̃.D′ | Po(u)
where D′ = (D1 | D2{u/x} | D3). Since u ∈ ñ and Po(u) | Po(u) ≡ Po(u), we
deduce that νñ.(νm̃.D | A | Po(ñ)) →e νñ.(νm̃.D′ | A | Po(ñ)). Therefore, we
obtain that νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e νñ.(νm̃.D′ | A | Po(ñ)) | Po(S)
and so the result holds with A′ = A and C ′[ ] = νñ.(νm̃.D′ | ).

– Case 4.d, u is of channel type and u ∈ m̃: First of all, note that since u ∈ m̃,
νm̃.D ≡ νu.νm̃′.D for some m̃′ such that u 6∈ m̃′. Note that since u is bound, u 6∈
fv(A) ∪ fn(A). Hence, by applying the same reasoning as in Case 4.b, we obtain
that νm̃′.D →e νm̃′.D′ | Po(u) where D′ = (D1 | D2{u/x} | D3). Since P(u) |
Po(u) ≡ P(u) | ωu | P(u) ≡ Po(u), we deduce that νu.(νm̃′.D | P(u)) →e

νu.(νm̃′.D′ | Po(u)). First, notice that νu.(νm̃′.D | P(u)) = νu.νm̃′.D = νm̃.D
by Lemma 3. Second, since u does not appear in A, we deduce that νñ.(νm̃.D |
A | Po(ñ)) →e νñ.(νu.(νm̃′.D′ | Po(u)) | A | Po(ñ) ≡ νñ.νu.(νm̃′.D′ | A |
Po(ñ ∪ {u})). Hence, if we denote ñ′ = νñ.νũ then νñ.(νm̃.D | A | Po(ñ)) →e

νñ′.(νm̃′.D′ | A | Po(ñ′)). Therefore, by denoting C ′[ ] = νñ′.(νm̃′.D′ |) and
A′ = A, we deduce CS [A]→e C ′S [A

′]. Thus the result holds.

Case 5, rule COMM between A (input) and D (output), i.e. D = outat(c, u).D1 | D2,
A ≡ νr̃.(inho(c, x).P1 | P2) and A0 ≡ νñ.νm̃.νr̃.(D1 | D2 | P1{u/x} | P2): Note
that c 6∈ m̃ ∪ r̃. Let us do a case analysis on u:

– Case 5.a, u is of base type: In such a case, let us split r̃ and m̃ in r̃b.r̃c and m̃b.m̃c

respectively, such that r̃c and m̃c are of channel type, and r̃b and m̃b are of base
type. Since u is of base type, we deduce that A0 ≡ νñ.νm̃b.νr̃b.(νm̃c.(D1 | D2) |
νr̃c.(P1{u/x} | P2)). Note that outat(c, u).D1 | D2 | inho(c, x).P1 | P2 →e

D1 | D2 | P1{u/x} | P2 by the rule C-ENV. Hence outat(c, u).D1 | D2 |
inho(c, x).P1 | P2 | P(m̃) →e D1 | D2 | P1{u/x} | P2 | P(m̃). Therefore,
νm̃.νr̃.(outat(c, u).D1 | D2 | inho(c, x).P1 | P2 | P(m̃)) →e νm̃.νr̃.(D1 | D2 |
P1{u/x} | P2 | P(m̃)). But νm̃.νr̃.(outat(c, u).D1 | D2 | inho(c, x).P1 | P2 |
P(m̃)) ≡ νm̃.D | A thanks to Lemma 3 and since we assume that bound names
and variables are bound once and distinct from free names and variables. Moreover,
νm̃.νr̃.(D1 | D2 | P1{u/x} | P2 | P(m̃)) ≡ νm̃b.νr̃b.(νm̃c.(D1 | D2 | P(m̃c)) |
νr̃c.(P1{u/x} | P2)). Therefore, let us denote ñ′ = ñ.m̃b.r̃b, D′ = D1 | D2 and
A′ = νr̃c.(P1{u/x} | P2). Notice that m̃b and r̃b being of base type implies that
Po(ñ) = Po(ñ′). Hence νñ.(νm̃.D | A | Po(ñ)) | Po(S) →e νñ

′.(νm̃c.D′ | A′ |
Po(ñ′)) | Po(S). Hence, the result holds with C ′[ ] = νñ′.(νm̃c.D

′ | ).
– Case 5.b, u is of channel type and u 6∈ m̃ ∪ ñ: Notice that in such a case A0 ≡
νñ.(νm̃.(D1 | D2) | νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar
reasoning as in Case 4.b and the result will hold with C ′[ ] = νñ.(νm̃.D′ | ),
D′ = D1 | D2 and A′ = νr̃.(P1{u/x} | P2).
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– Case 5.c, u is of channel type and u ∈ ñ: Notice that in such a case A0 ≡
νñ.(νm̃.(D1 | D2) | νr̃.(P1{u/x} | P2)). The rest of the proof follows a simi-
lar reasoning as in Case 4.c and the result will hold with C ′[ ] = νñ.(νm̃.D′ | ),
D′ = D1 | D2 and A′ = νr̃.(P1{u/x} | P2).

– Case 5.d, u is of channel type and u ∈ m̃: Note that since u ∈ m̃, νm̃.D ≡
νu.νm̃′.D for some m̃′ such that u 6∈ m̃′. Hence, A0 ≡ νñ.νu.(νm̃′.(D1 | D2) |
νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case 4.d
and the result will hold with C ′[ ] = νñ′.(νm̃′.D′ | ), D′ = D1 | D2, ñ′ = ñ.u
and A′ = νr̃.(P1{u/x} | P2).

Case 6, rule COMM between A (output) and D (input), i.e. D = inat(c, x).D1 | D2,
A ≡ νr̃.(outho(c, u).P1 | P2) and A0 ≡ νñ.νm̃.νr̃.(D1{u/x} | D2 | P1 | P2): Note
that c 6∈ m̃ ∪ r̃. Let us do a case analysis on u:

– Case 6.a, u is of base type: In such a case, let us split r̃ and m̃ in r̃b.r̃c and m̃b.m̃c

respectively, such that r̃c and m̃c are of channel type, and r̃b and m̃b are of base
type. The rest of the proof follows a similar reasoning as in Case 5.a and the result
holds with C ′[ ] = νñ′.(νm̃c.D

′ | ), ñ′ = ñ.m̃b.r̃b, D′ = D1{u/x} | D2 and
A′ = νr̃c.(P1 | P2).

– Case 6.b, u is of channel type and u 6∈ m̃ ∪ ñ: Notice that in such a case A0 ≡
νñ.(νm̃.(D1{u/x} | D2) | νr̃.(P1 | P2)). The rest of the proof follows a similar
reasoning as in Case 4.b and the result will hold with C ′[ ] = νñ.(νm̃.D′ | ),
D′ = D1{u/x} | D2 and A′ = νr̃.(P1 | P2).

– Case 6.c, u is of channel type and u ∈ ñ: Notice that in such a case A0 ≡
νñ.(νm̃.(D1 | D2) | νr̃.(P1{u/x} | P2)). The rest of the proof follows a simi-
lar reasoning as in Case 4.c and the result will hold with C ′[ ] = νñ.(νm̃.D′ | ),
D′ = D1{u/x} | D2 and A′ = νr̃.(P1 | P2).

– Case 6.d, u is of channel type and u ∈ m̃: Note that since u ∈ m̃, νm̃.D ≡
νu.νm̃′.D for some m̃′ such that u 6∈ m̃′. Hence, A0 ≡ νñ.νu.(νm̃′.(D1 | D2) |
νr̃.(P1{u/x} | P2)). The rest of the proof follows a similar reasoning as in Case
4.d and the result will hold with C ′[ ] = νñ′.(νm̃′.D′ | ), D′ = D1{u/x} | D2,
ñ′ = ñ.u and A′ = νr̃.(P1 | P2).

This conclude the proof of the first property. The second property is in fact easy
to prove: All rules in the eavesdropping semantics other than THEN and ELSE will be
mapped by the rule COMM in the classical semantics. One can notice that since we know
that A and C do not contain eavesdrop processes and since the transformation from A
to A and C[ ] to CS [ ] only adds processes of the form eav(c, y).0, the communication
rules all becomes instances of the rule COMM. For instance, an application of rule C-
EAV would result into the following

outho(c, u).P | inho(c, x).Q | eav(c, y).0 τ−→e P | Q{u/x}

which is typically the rule COMM when we remove the transformation and so the pro-
cess eav(c, y).0. Lastly, since any instance of ωd has no impact on the classical seman-
tics, every rules thus corresponds to the rule COMM once the transformation removed.

ut
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Corollary 1. Let A be an closed honest extended process. Let C[ ] = νñ.(νm̃.D | )
be an attacker evaluation context c-closing for A such that D is named-cleaned and
eavesdrop-free. Let S be a set set of channel names such that fc(C[A]) ⊆ S. For all
channel c, C[A] ⇓cc iff CS [A] ⇓ec.

Theorem 6. ≈e
m ( ≈p

m ∩ ≈c
m.

Proof. Consider two closed honest extended process A and B. We assume A ≈e
m B.

We first show that A ≈c
m B.

Let C[ ] be an attacker evaluation context c-closing for A and B. Notice that in
the classical semantics, a process eav(c, x).P as the same behaviour as the process 0.
Hence, there exists C1[ ] an attacker evaluation context eavesdrop-free and c-closing
for A and B such that for all c, C[A] ⇓cc⇔ C1[A] ⇓cc and C[B] ⇓cc⇔ C1[B] ⇓cc
(1). Moreover, relying on the structural equivalence, we deduce that there exists C2 =
νñ.(νm̃.D | νr̃.( | E)) attacker evaluation context eavesdrop-free and c-closing for
A and B such that D is named-cleaned, C1[A] ≡ C2[A] and C1[B] ≡ C2[B]. Lastly,
by renaming r̃ through the structural equivalence, we deduce that there exist A′, B′

two closed honest extended process and C3[ ] = νñ′.(νm̃′.(D′ | )) attacker evalua-
tion context eavesdrop-free and c-closing for A and B such that D is named-cleaned,
C2[A] ≡ C3[A′] and C2[B] ≡ C3[B′]. Therefore, we have C1[A] ≡ C3[A′] and
C1[B] ≡ C3[B′]. Lastly, let us denote S = fc(C3[A′]) ∪ fc(C3[B′]), relying on
Lemma 3 and Definition 11, one can note that there exists C4 attacker evaluation con-
text e-closing for A and B such that C3

S [A
′] ≡ C4[A] and C3

S [B
′] ≡ C4[B].

We can conclude the proof as follows: Let S = fc(C[A]) ∪ fc(C[B]). For all
channel c,

C[A] ⇓cc
iff C1[A] ⇓cc by (1)
iff C3[A′] ⇓cc since C1[A] ≡ C3[A′]

iff C3
S [A

′] ⇓ec by Corollary 1
iff C4[A] ⇓ec since C3

S [A
′] ≡ C4[A]

iff C4[B] ⇓ec since A ≈e
m B

iff C3
S [B

′] ⇓ec since C3
S [B

′] ≡ C4[B]
iff C3[B′] ⇓cc by Corollary 1
iff C1[B] ⇓cc since C1[B] ≡ C3[B′]
iff C[B] ⇓cc by (1)

Let us now prove that A ≈p
m B. Let C[ ] be an attacker evaluation context p-

closing for A and B. As for the classical semantics, notice that in the private semantics,
a process eav(c, x).P as the same behaviour as the process 0. Hence, there exists C1[ ]
an attacker evaluation context eavesdrop-free and p-closing for A and B such that for
all c, C[A] ⇓pc⇔ C1[A] ⇓pc and C[B] ⇓pc⇔ C1[B] ⇓pc . Moreover, notice that →p ⊆
→e. Hence, for all c, C1[A] ⇓pc implies C1[A] ⇓ec and C1[B] ⇓pc implies C1[B] ⇓ec.
Furthermore, since C1[ ] is eavesdrop-free and A,B are both honest, we deduce that
rules C-EAV and C-OEAV can never be applied in a derivation of C1[A] or C1[B].
Hence, we obtain that for all c, C1[A] ⇓pc⇔ C1[A] ⇓ec and C1[B] ⇓pc⇔ C1[B] ⇓ec.
Lastly,A ≈e

m B implies that for all channel c, C1[A] ⇓ec⇔ C1[B] ⇓ec. We can conclude
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the proof by combining all these statements as follows: for all channel c,

C[A] ⇓pc ⇔ C1[A] ⇓pc ⇔ C1[A] ⇓ec ⇔ C1[B] ⇓ec ⇔ C1[B] ⇓pc ⇔ C[B] ⇓pc

We have concluded the proof of ≈e
m ⊆ ≈p

m ∩ ≈c
m. Therefore, it remains to show

that this inclusion is not strict. In Figure 6, we have provided two processes A and B
such that A ≈c

` B, A ≈p
` B but A 6≈e

t B. Notice that these processes do not contain
replication and so are imagine-finite. Thus, by Theorem 1, A 6≈e

t B implies A 6≈e
m B.

Moreover, by Proposition 3, A ≈c
` B and A ≈p

` B implies A ≈c
t B, A ≈p

t B. Once
again by Theorem 1, we deduce that A ≈c

m B, A ≈p
m B. Hence, we conclude that

≈e
m ( ≈p

m ∩ ≈c
m. ut

E Proof of Theorem 8

Theorem 8. When restricted to I/O-unambiguous processes, we have that ≈p
r = ≈e

r

but ≈e
r ( ≈c

r for r ∈ {`, t}.

Proof. From Theorems 4, 6 and 5, we already know that ≈e
r ⊆ ≈p

r ∩ ≈e
r for r ∈

{lbl,m, t}. Hence, for r ∈ {lbl,m, t}, we only need to prove that ≈p
r ⊆ ≈e

r and ≈e
r ⊆

≈c
r to obtain the result.

Proof of ≈p
t ⊆ ≈e

t: Let A and B to honest I/O-unambiguous processes such that A ≈p
t

B. Let A tr
=⇒e A′. By definition, we know that there exist `1, . . . , `n and extended

processes A0, . . . , An such that:

– tr is `1 . . . `n where the τ are removed
– A0 = A, An = A′

– A0
`1−→e A1

`2−→e . . .
`n−→e An.

Note that since A is honest, the rules C-ENV, C-OPEN, C-EAV, C-OEAV are never
applied in the derivation. The idea is to
≈s1r = ≈s2r for r ∈ {`, o,m, t} and s1, s2 ∈ {c, p, e}
We first focus on the proof of ≈s1r = ≈s2r for r ∈ {`, o,m, t} and s1, s2 ∈ {c, p, e}

F Proof of Theorem 2

Theorem 2. For all ground, closed honest extended processesA, for all channels d, we
have that A �p

d iff A �c
d iff A �e

d.

Proof. We will prove that the following three implications: (1) A �c
d ⇒ A �p

d, (2)
A �p

d ⇒ A �e
d and (3) A �e

d ⇒ A �c
d.

Given a trace tr, let us denote S(tr) = {c | tr1out(c, t)tr2 = tr and tr1 does not
bind c}.

Implication 1,A �c
d ⇒ A �p

d: SinceA is honest, the only rules that differs are the rules
COMM and C-PRIV. Furthermore, since A is honest we also know that c 6∈ oc(A).
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We show that for all A tr
=⇒c A

′, there exist νñ.A′′ ≡ A′, tr′ and a frame φ such that

S(tr) ⊆ S(tr′) and A tr′
=⇒p νñ.(A

′′ | φ) such that . We prove this result by induction on

the length of the derivation A `1...`m−−−−→c A
′ with tr being `1 . . . `m without the τ actions.

Base case m = 0: Hence tr = ε and so the result directly holds with φ = 0.
Inductive step m > 0: In such a case, by our inductive hypothesis, there exists νr̃.B ≡
Am−1 and a frame φ such that S(tr) ⊆ S(tr′) and A tr′

=⇒p νr̃.(B | φ). W.l.o.g. we can
assume that bound names and variables in r̃.(B | φ) are bound once and distinct from
free names and variables. We can also assume that B is name-cleaned. We do a case
analysis on the rule applied in Am−1

`m−−→ Am.

– Case 1, any rule but the rule COMM: In such a case, by definition of the semantics,
the result directly holds

– Case 2, rule COMM: In such a case, B = inho(c, x).P1 | outho(c, u).P2 | P3 and
Am = νr̃.(P1{u/x} | P2 | P3). We do a case analysis on c and u:
• c ∈ r̃: then since c 6∈ oc(A) (Am−1 is honest) and by applying rule C-PRIV we

obtain that r̃.(B | φ) ε
=⇒p r̃.(P1{u/x} | P2 | P3 | φ). Hence the result holds.

• c 6∈ r̃ and u is of base type: By applying OUT-T followed by IN, we obtain

that νr̃.(B | φ) νz.out(c,z).in(c,z)−−−−−−−−−−−−→p νr̃.(P1{u/x} | P2 | P3 | φ | {u/z}) with z
fresh. Hence the result holds.
• c 6∈ r̃ and u is of channel type: By applying OUT-CH followed by IN, we obtain

that νr̃.(B | φ) out(c,u).in(c,u)
==========⇒p νr̃.(P1{u/x} | P2 | P3 | φ | {u/x}). Hence

the result holds.

We conclude by noticing that if A �c
d then there exist Ac, trc such that A trc=⇒c Ac

and d ∈ S(trc). Thus by our property, we obtain that there exist Ap, trp such that

A
trp
=⇒p Ap and S(trc) ⊆ S(trp) and so d ∈ S(trp) which implies A �p

d.

Implication 2, A �p
d ⇒ A �e

d: As A �p
d, there exists tr, A′ such that A tr

=⇒p A
′ and

d ∈ S(tr). Since `−→p ⊂
`−→e, A

tr
=⇒e A

′ and so A �e
d.

Implication 3, A �e
d ⇒ A �c

d: Since A is honest, the only rules that differ are the rules
COMM, C-PRIV, EAV-OCH, EAV-CH, EAV-T.

We show that for all A tr
=⇒e A

′, there exist tr′ such that A tr′
=⇒c A

′ and S(tr) ⊆
S(tr′). We prove this result by induction on the length of the derivation A `1...`m−−−−→c A

′

with tr being `1 . . . `m without the τ actions.

Base case m = 0: Hence tr = ε and so the result directly holds with tr′ = ε.
Inductive step m > 0: In such a case, by our inductive hypothesis, there exists tr′′ such

that A tr′′
=⇒e Am−1. W.l.o.g. we can assume that bound names and variables in Am−1

are bound once and distinct from free names and variables. Moreover we can assume
that Am−1 = νñ.B with B name-cleaned. We do a case analysis on the rule applied in
Am−1

`m−−→ Am.
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– Case 1, rule C-PRIV: In such a case, B = outho(c, u).P | inho(c, x).Q | R, c ∈ ñ
and Am ≡ νñ.(P | Q{u/x} | R). Notice that B τ−→c νñ.(P | Q{u/x} | R) by rule
COMM hence the result holds with tr′ = tr′′.

– Case 2, rule EAV-OCH: In such a case, B = outho(c, u).P | inho(c, x).Q | R,
` = νu.eav(c, u), u is of channel type, u ∈ ñ and Am ≡ νñ′.(P | Q{u/x} | R)
with ñ = ñ′.u. By applying rule OPEN-CH followed by rule IN, we obtain that

Am−1
νu.out(c,u).in(c,u)
============⇒c Am. Hence the result holds with tr′ = tr′′.νu.out(c, u).in(c, u).

– Case 3, rule EAV-CH: In such a case, B = outho(c, u).P | inho(c, x).Q | R,
` = eav(c, u), u is of channel type, u 6∈ ñ and Am ≡ νñ.(P | Q{u/x} | R). By

applying rule OUT-CH followed by rule IN, we obtain that Am−1
out(c,u).in(c,u)
==========⇒c

Am. Hence the result holds with tr′ = tr′′.out(c, u).in(c, u).
– Case 4, rule EAV-T: In such a case, B = outho(c, u).P | inho(c, x).Q | R, ` =
νz.eav(c, z), u is of base type and Am ≡ νñ.(P | Q{u/x} | R | {u/z}). By

applying rule OUT-T followed by rule IN, we obtain that Am−1
νz.out(c,z).in(c,z)
===========⇒c

Am. Hence the result holds with tr′ = tr′′.νz.out(c, z).in(c, z).
– Case 5, any other rule : In such a case, by definition of the semantics, the result

directly holds.

We conclude by noticing that if A �e
d then there exist A′, tre such that A tre=⇒e A

′

and d ∈ S(tre). Thus by our property, we obtain that there exist trc such that A trc=⇒c A
′

and S(tre) ⊆ S(trc) and so d ∈ S(trc) which implies A �c
d. ut
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