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Abstract. Recently, many approaches have been proposed for visual
object category detection. They vary greatly in terms of how much su-
pervision is needed. High performance object detection methods tend to
be trained in a supervised manner from relatively clean data. In order
to deal with a large number of object classes and large amounts of train-
ing data, there is a clear desire to use as little supervision as possible.
This paper proposes a new approach for unsupervised learning of visual
categories based on a scheme to detect reoccurring structure in sets of
images. The approach finds the locations as well as the scales of such
reoccurring structures in an unsupervised manner. In the experiments
those reoccurring structures correspond to object categories which can
be used to directly learn object category models. Experimental results
show the effectiveness of the new approach and compare the performance
to previous fully-supervised methods.

1 Introduction

Over the years various approaches have been proposed for the recognition of
object categories often based on models learned directly from image data. The
approaches, however, vary greatly in the specific task they address: from simple
present/absent decision [1, 2] over object class detection and localization [3] to
pixel-level segmentation [4]. In this paper we deal with the problem of object
detection and localization. Another difference between the proposed methods is
the amount of supervision used and provided for the training data. The types of
annotation varies from pixel-level segmentations [5], over bounding-box annota-
tions [3] to unsupervised methods [2, 6, 7]. Very recent approaches for learning
multiple categories do not even require the information which category is pre-
sented in which image [8]. While approaches using more supervision tend to
require less training data, there is a clear desire to use less supervision typically
at the price to use more unlabeled training data.

The central problem addressed in this paper is to discover and learn objects
category models as reoccurring patterns of local appearance in sets of training
data. It may seem quite unrealistic to discover object categories in this way.
However, many appearance-based approaches explicitly or implicitly rely on the
fact that both the local appearance as well as its structural layout exhibit re-
occurring patterns that can be learned and modeled (e.g. [2, 4, 9]). A key idea



of our approach is therefore to discover reoccurring patterns in multiple images
without the model of any particular object. Finding the locations and scales of
such reoccurring structures effectively corresponds to unsupervised annotations
of the training data. As we will show, the proposed approach enables effective
object class discovery in unlabeled images. Using those estimated annotations a
model of an object class can be learned.

Learning object models in an unsupervised fashion may be formulated in one
single EM-loop as in e.g. Fergus et al [2]. In that method, appearance and struc-
ture are learned simultaneously making the learning computationally expensive
and thus restricting the complexity of the model. Recently a new approach for
object discovery has been proposed based on a pLSA-model [8]. Since the un-
derlying model is a bag-of-word representation, the object discovery is based on
local appearance alone neglecting structural information. [7] extends the initial
approach to also include some structural information on top of the pLSA model,
but the object discovery is still based on appearance only.

The main contributions of this paper are the following: First, we propose
a novel scheme to discover object category members in images, which is based
on the idea of estimating the locations and scales of reoccurring patterns. The
estimates can be seen as an automatic annotation procedure of the training
data. Second, we experimentally show the applicability of this idea for object
discovery on several object classes. Third, we use the estimated annotations
to learn object class models for object detection and localization. Fourth, we
analyze the performance of such object class models on standard datasets.

The paper is organized as follows: Section 2 describes a method for locating
reoccurring structure for which in Section 3 we present a method to robustly
estimate the intrinsic scale of the associated objects. Section 4 shows how a
model like [4] can be learnt from the estimated annotations. Finally, we show in
Section 5 the usefulness of the obtained information on a image ranking and an
object detection task.

2 Object Discovery

Our new approach to unsupervised object discovery is based on efficiently finding
reoccurring spatial patterns of local appearances in a set of training images. We
use a generic codebook representation which is also the basis of the object scale
estimation procedure as presented in Section 3.

Generic Codebook Representation Similar to other approaches for recogni-
tion [1], material classification [10] and detection [4], we use an initial clustering
procedure to obtain a visual codebook. Since we do not want to assume a pri-
ori information on parts or common structure of the object category, we use a
fixed generic codebook produced on unrelated background images. We extract
image patches on the Caltech background images [11] using a scale-invariant
Hessian-Laplace interest point detector [12]. Those image patches are clustered
by k-means using normalized gray-scale correlation as similarity measure. The
result looks as follows:



Scale-Invariant Patterns We define a pattern Ψk,r in image k with reference
point r to be characterized by a set of distributions {p(h|Ψk,r,c)}c. Each of the
p(h|Ψk,r,c) encodes the spatial distribution of the features in image k that match
to a certain codebook c. The coordinates h = (hx, hy) are scale-normalized with
the intrinsic feature scales σ (obtained from the scale-invariant interest point
detector) and computed relative to a reference point r = (rx, ry)

h =

(

x − rx

σ
,

y − ry

σ

)

. (1)

Using this scale-normalized coordinates is beneficial, as the pattern becomes
characteristic for the particular reference point r. This allows to locate reoccur-
ring patterns even though they appear at different global scales.

Method We formulate the unsupervised discovery of reoccurring spatial pat-
terns of local appearances as finding for each image the most likely pattern given
all observed patterns in the training data. Therefore we are interested in finding
the reference point q̂j associated with the most likely pattern in each image j
given all observed patterns Ψ = {Ψk,r}k,r

q̂j = arg max
q

p(Ψj,q|Ψ). (2)

To simplify notation, the reference points q and r are assumed to be quantized.
The likelihood estimate is obtained by marginalizing over the codebook entries
c, scale-normalized coordinates h, reference points r, and images k

p(Ψj,q|Ψ) =
∑

c

∑

h

∑

r

∑

k

p(Ψj,q,c|h)p(h|Ψk,r,c)p(Ψk,r,c).

Using Bayes’ formula we obtain

p(Ψj,q,c|h) =
p(h|Ψj,q,c)p(Ψj,q,c)

p(h)
. (3)

By assuming uniform priors, p(Ψk,r,c) and p(h) can be written as constant 1

Z
.

This assumption is justified, by a uniform partitioning of our data using k-means
clustering. Eq. 3 simplifies to

p(Ψj,q|Ψ) =
1

Z

∑

c

∑

h

∑

r

∑

k

p(h|Ψj,q,c)p(h|Ψk,r,c). (4)

An example of this likelihood estimate on the multi-scale TUD motorbikes [11]
is overlaid on one of the images in Figure 1 as iso-lines. In this image we can
clearly see two maxima which correspond to two motorbikes.

Eq. 4 can be interpreted as collecting evidence for pattern Ψj,q with respect
to all other patterns Ψ by searching for matching feature with appearance c



Fig. 1. (Left) Example of the computed likelihood on the multi-scale TUD mo-
torbikes. (Right) Example result of our procedure for object discovery on car and
cow images including varying position, scale and viewpoint and heterogeneous
background.

and scale-normalized position h. Although this seems computationally infeasible,
we introduce an efficient method to evaluate eq. 4 using scale-invariant feature
hashing - similar to the idea of geometric hashing [13]. The idea is to index
all features of the image database by quantized scale-normalized coordinates h,
and store them in the hashes Hc for each matching codebook cluster c. Features
which are similar in appearance and scale-normalized position h are now stored
in the same hash bin. More importantly, the matches can be used to backproject
the support of all patterns Ψj,q with respect to all patterns. As a result, all
p(Ψj,q|Ψ) given by the complex eq. 4 can be computed by a single loop over the
hash bins of hashes Hc.

Evaluation To test the proposed procedure for object discovery with respect
to robustness against translation, scaling, occlusion, and background clutter we
ran tests on three object categories: motorbikes, cows, and cars. For the cows we
used the training set of the TUD cows [11], as well as the cows from [14]. For the
cars we used the training set of the PASCAL challenge [11]. Examples for the
estimated object centers are shown in Figure 1. Despite the strong variations in
appearance and view-point, the objects were successfully localized. The reference
locations were quantized on a 10 × 10 grid.

To gain more insights, we perform a more detailed quantitative analysis on
the Caltech motorbike training set [11] which consists of 400 images. We compute
the distance between our estimate and the center of the groundtruth bounding
box annotation normalized by the object width. The average distance is 0.10,
which we consider to be very good, as the groundtruth annotations are not
really accurate themselves. Nearly all errors are below a normalized distance of
0.3, which is well below the noise level assumed in the evaluation of the scale
estimation method in Section 3.

3 Object Scale Estimation

From the procedure for object discovery described in the previous section we
obtain localized patterns Ψj,q at reference points q̂j for each image j. However,



since these reoccurring patterns are obtained in a scale-invariant fashion, they
are of unknown scale s. While it is advantageous, that no explicit knowledge
of the object scale is required for discovering reoccurring patterns, tasks like
training an object model for detection need an estimate of the object scale to
learn a model across the training instances.

Method The proposed method matches scale-invariant patterns to collect
evidence for their associated global object scale. Different methods to obtain a
robust estimate are proposed and evaluated. As the absolute, global object scale
only exists with respect to a reference scale, we formulate the scale estimation
problem as finding the pairwise relative scale ρ̂k,l = sk/sl between two discovered
patterns Ψk and Ψl in a pair of images k and l. In analogy to eq. 2 we describe
the problem of finding the most likely relative scale ρ̂k,l with respect to the two
patterns of the image pair as

ρ̂k,l = arg max
ρk,l

p(ρk,l|Ψk, Ψl) (5)

We assume that for matching features the ratio of the intrinsic scale σ of the
matched structures is equal to the ratio of the global scales s between the pat-
terns and their associated objects ρk,l = sk/sl = σk/σl. According to this we
factor eq. 5 and marginalize over the codebook entries c and the scale-normalized
coordinates h

p(ρk,l|Ψk, Ψl) =
∑

σl

p((ρk,lσl)|Ψk)p(σl|Ψl) =
∑

c

∑

h

∑

σl

p((ρk,lσl), h|Ψk,c)p(σl, h|Ψl,c)

As in Section 2 we store all features in the hashes Hc. Our efficient data structure
allows to compute all these likelihoods in one loop over the hash bins.

The estimates from eq. 5 can be interpreted as a fully connected graph, where
the patterns in the images are the nodes and the relative scales of the patterns are
attached to the edges. To make our method robust with respect to outliers, we
compute confidence scores for all estimated relative scales. These are computed
by indentifying image triplets with consistent relative scale estimates: Given
three images Ia, Ib, Ic with their relative scales ρa,b, ρb,c, ρa,c, the confidence for
all three scale estimates is increased if the equation ρa,bρb,c = ρa,c is fulfilled.

In this paper we investigate three different methods to derive a unique scale
estimate for each pattern from the pairwise relative scale information: least
squares, maximum spanning tree, and min-linkage method.

The least squares method is based on a linear system of equations to estimate
the unknown scales without using the computed confidences. Considering two
patterns Ψk, Ψl with the global scale of the patterns sk, sl of the associated object
instances, we compute a least-squares fit for the global scales s from all the
estimated relative scale according to:

sk

sl

= ρk,l =⇒ log sk − log sl = log ρk,l. (6)

This method is comutational expensive, because the number of equations grows
quadratically in the number of images, and its estimes are sensitive to outliers.



The maximum spanning tree method computes a maximum spanning tree on
the graph of confidences. The scale estimates can be directly computed from this
tree by fixing one scale. Although this method has low computational complexity,
the estimates are rather unstable, as shown in Section 3.

As a compromise between efficient computation and robust estimation, we
propose a third method. The min-linkage method considers for every image the
n most confident relative scales to all other images and therefore the number of
equations grows only linearly with the number of images. The estimate of the
scales is still robust due to the least-squares estimation.

The above described methods estimate relative scales, however, for the detec-
tion experiments (Section 5) an absolute scale based on the extent of the object
is required. One possibility is to specify a reference scale for one image. In the
experimental evaluation it turned out that this is not necessary, as the absolute
object radius can be chosen to be twice the mean feature distance to the center
after aligning all objects with the computed relative scale estimates.

Evaluation To evaluate the accuracy of our new scale estimation scheme, we
again use the Caltech motorbike database with annotated object centers, which
has a scale variation of 2 octaves. The mean deviation of the estimated scales
from the true scales is roughly 1

9
of an octave for the least-squares and 1

5
for the

min-linkage method (minimum linkage preserves 40 = 10% of the most confident
scales). Additionally, we evaluated the robustness of the system with respect to
Gaussian noise in the center point annotation. Even when the noise is amplified
until the 3σ-radius reaches 2

3
of the object radius - which is twice the noise level

we measured for the center point estimate in Section 2 - the mean deviation
of the estimated scales from the true scale is roughly 1

4
of an octave for least-

squares and minimum linkage. The maximum spanning tree method reaches this
error already at half the noise level. As a conclusion we use the minimum linkage
method in our following experiments, as it shows about the same accuracy as
the full least-squares, but with a much lower computational cost.

4 Model Estimation for Detection

Object Category Detection with ISM The Implicit Shape Model (ISM)
[5] is a versatile framework for scale-invariant detection of object categories,
which has shown good performance on challenging detections tasks [11]. It uses
a flexible non-parametric representation for modeling visual object categories by
spatial feature occurrence distributions with respect to a visual codebook. For
details we refer to [5]. Additionally the method allows for back-projecting the
support of the hypotheses to infer figure-ground segmentation masks and per-
forming an MDL-based reasoning to resolve multiple and ambiguous hypotheses
[4]. However, the generation of an object specific visual codebook and the MDL-
based reasoning step require figure-ground segmentations for the training images
which introduce high annotation effort.

Unsupervised Learning of Models for Detection One of our contribu-
tions is to show that one can achieve high recognition performance by using



the estimated center point (Section 2) and scale (Section 3) instead of manually
produced segmentations. As we do not have a detailed segmentation mask at
our disposal when using those location and scale estimates, we use a simple but
(as will be seen in the experiments) effective approximation. Figure 3 shows our
rough approximation by assuming the segmentation to be a circle specified by
the estimated center point and scale.

To learn the ISM model, we first switch from the generic codebook (Section
2) to an object specifc SIFT representation [15] computed on Hessian-Laplace
interest points [12]. We use the approximated segmentation (circles) to determine
the object features for clustering. Given the approximated segmentation and the
new codebook, we can proceed training the ISM as described in [5]. Despite
the crude approximation of the segmentations with circles, it is possible to infer
segmentations for the hypothesis on test images as shown in Figure 3.

5 Experiments

Whereas the previous sections analyzed the proposed object discovery and object
scale estimation separately, this section shows the applicability to image ranking
and object category detection. While the ranking task also shows the scalability
to large numbers of images, the detection experiments evaluate how the proposed
method generalizes to different categories. In addition we will show that the
approximated segmentation masks from Section 4 are effective and even crucial
to obtain high level detection performance.

Image Ranking In the following, experiments we show that the proposed
method for unsupervised object discovery from Section 2 can be used on its own
for an image ranking task. Using a keyword search for motorbikes we downloaded
5246 images containing a wide range of different motorbike types (e.g. cruiser,
sportbike, touring, scooter, moped, off-road, combination) captured from differ-
ent viewpoints. Naturally quite a number of those images only show close-ups,
parts or even unrelated objects. Our task is to sort these images out. We use
our method for object discovery to rank the images by the likelihood (eq. 4).
Note, that this ranking is obtained in an totally unsupervised and no validation
set as in [7] is needed. Figure 4(left) shows the ROC curves obtained by running
our approach with and without spatial information. If the spatial information of
the features is discarded, our representation reduces to a bag-of-words represen-
tation. The use of spatial information improves the results significantly, which
demonstrates the improvment of our model over purely appearance-based ap-
proaches. Qualitative results for our new approach using appearance and spatial
structure are shown in Figure 2. As scooters were the dominating motorbike
type in the set (1169 of 5246), they also appear first in the ranking.

Visual Category Detection Task In the detection experiments we train a
model according to Section 4 and use it to localize objects in the test images.
Detections are only accepted as correct if the hypothesized bounding box fits the
groundtruth annotation. Multiple detections are counted as false positives. For
better comparability we use the acceptance criterion described in [16]. We want
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Fig. 2. The proposed method for Object Discovery also facilitates ranking of the
images. (left) best ranked images (right) worst ranked images.

to emphasize, that no parameters had to be tuned for the proposed approach for
unsupervised learning. In terms of efficiency, the approach for object discovery
can estimate object locations in 200 images in 11 minutes on a 3Ghz Pentium4,
whereas the object scale estimation takes 6 minutes.

Unsupervised Learning for Detection. Figure 4(middle) shows results on the
multi-scale TUD motorbike test set [11], which includes significant scale varia-
tions, partial occlusions and multiple instances per image. The models are trained
on the Caltech motorbikes [11]. The best results published on this data-set are
80% EER using accurate pixel-level segmentation and ISM (supervised training
with MDL) and 81% adding an additional SVM-stage (supervised training with
MDL+SVM) [16]. Quite importantly, the performance of the proposed unsu-
pervised object discovery method (specific SIFT codebook with MDL - 150) is
very similar to the supervised training of ISM. The EER of 81% can be further
increased to 84% by using 400 instead of 150 training images (again in an unsu-
pervised fashion) and which is the best performance presented so far on the test
set. Compared to the SVM approach [16] the precision is slightly worse, but the
achievable recall is higher. So adding an SVM classifier in a similar fashion has
the potential to further increase the overall performance. Overall the results are
highly encouraging as they indicate that high annotation effort can be replaced
by using a larger amount of training data.

Evaluation of the Approximated Segmentation Masks. Figure 3 shows a test
image with the estimated segmentation masks and the final detections. While
the mask is far from being perfect, the computed support of the hypotheses is
approximately correct. Figure 4(middle) shows how the performance increases
significantly when this approximation is used to perform the MDL-based hypoth-
esis verification. The results support our claim, that the estimated segmentation
masks are accurate enough and facilitate the training of a model that gives com-
petitive performance. The figure also shows the importance of switching to an
object class specific SIFT codebook (Section 4).

Generalization to other Categories. To investigate how this approach generalizes
to other categories and compare our method to previous work, we conduct ex-
periments on cows, faces, and cars. The results are reported in Figure 4(right).
The training sets TUD cows and Caltech faces [11] are selected, as they include
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Fig. 3. (a) training image (b) estimated approximation of object segmentation
(c) test image (d)+(e) inferred segmentation for hypothesis (f) final detections

a significant amount of variation of the object position in the training data to
underline the performance of the proposed method for object discovery. For the
cows we use the same test setting as in the supervised approach of [16]. Our unsu-
pervised approach achieves an equal error rate performance of 79.9% whereas the
supervised reference achieved 93.2% [16]. As the background is for some training
images the same, we learnt it as reoccurring structure. As it is part of the model,
we get some strong hypotheses on these background structures which also occur
in the test set and that are responsible for the decrease in performance. On the
UIUC car and caltech face database we compare to the unsupervised method
of Fergus [2] On the cars we get an equal error rate performance of 89.5% in
comparison to 88.5% in [2] using the same evaluation criterion. We achieve this
performance training on only 50 car images and their mirrored versions from the
TUD car database [11]. The best performance on this dataset is reported by the
supervised method in [4] achieving 97% equal error rate performance. In [17] a
detection performance for the model of [2] of 78% equal error rate is presented
on the caltech face database. Our approach achieves a significant improvement
by an equal error rate performance of 81.1%.

6 Conclusion

We have proposed an efficient and flexible framework for discovering visual ob-
ject categories in an unsupervised manner which makes use of appearance and
spatial structure at the same time. The approach is based on two new compo-
nents for object discovery and object scale estimation, that extract information
about reoccurring spatial patterns of local appearance. The experimental results
show that our system facilitates unsupervised training of an model for object
class detection that has equal or even better performance than previous unsu-
pervised approaches. In addition, the method was used to rank images without
any supervision or validation. Results are presented on a large image database
of over 5000 images including a significant amount of noise. Finally, we obtained
comparable results w.r.t. a stronly supervised state-of-the-art detection system
on a challenging multi-scale test set. We showed that we can compensate for the
decrease in performance by adding more training examples, which results in the
best performance shown so far on this test set.

Acknowledgments: This work has been funded, in part, by the EU project
CoSy (IST-2002-004250).



Fig. 4. (left) ROC-curve of ranking task (middle) performance comparison to
supervised baseline (right) generalization to other categories and data sets
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