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ABSTRACT
In this work we propose a novel method to recognize daily
routines as a probabilistic combination of activity patterns.
The use of topic models enables the automatic discovery of
such patterns in a user’s daily routine. We report experimen-
tal results that show the ability of the approach to model and
recognize daily routines without user annotation.
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INTRODUCTION
Activity recognition has experienced increased attention over
the years due to its importance to context aware comput-
ing in general and to its usefulness for application domains
ranging from medical diagnosis over elderly care to human
behavior modeling. This has resulted in various successful
approaches that are capable to recognize activities such as
walking, biking, sitting, eating or vacuuming. The majority
of research has focused on activities that may be described
and thus recognized by their respective body movements
(such as walking and biking), body posture (such as sitting
and eating), or object use (such as vacuuming). For many
applications, however, the recognition of such simple activ-
ities is not enough. For instance in the case of elderly care
it is interesting to recognize daily routines such as shopping
or hygiene or in the case of office workers it is interesting to
recognize routines such as attending a meeting, having lunch
or commuting. What makes the recognition of such routines
more complex is that they are typically composed of several
activities and that the composition of activities has a large
variability depending on factors such as time, location and
individual.

This work introduces a novel approach to model and recog-
nize daily routines such as commuting or office work from
wearable sensors. For this we propose to leverage the power
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of probabilistic topic models 1) to automatically extract ac-
tivity patterns from sensor data and 2) to enable the recogni-
tion of daily routines as a composition of such activity pat-
terns. This paper shows that the novel approach can be ap-
plied both to annotated activity data as well as to the sensor
data directly in an unsupervised fashion. When applied to
annotated activity data, the automatically extracted activity
pattern often correspond to daily routines. When applied to
sensor data, the activity patterns allow recognition of daily
routines with high accuracy while requiring only minimal
user annotation. Therefore we argue that our approach is
well suited both to minimize the amount of user annotation
and to enable scalability to long-term recordings of activi-
ties.

The main contributions of this paper are threefold. First,
we propose a new method to recognize daily routines as a
probabilistic combination of activity patterns. Second, we
show that the use of probabilistic topic models enables the
automatic discovery of the underlying activity patterns. And
third, the paper reports first experimental results that show
the applicability and the power of the approach to model and
recognize daily routines even without user annotation.

The paper is structured as follows. After discussing related
work, we will motivate our approach and demonstrate its
potential on a set of activity labels covering seven days of
unscripted and real-world activity data. We will see that
on the ideal set of ground truth labels, our method can re-
liably model and identify activity patterns that correspond to
high-level structure in the person’s daily life. Then we de-
scribe the technical details of our approach, and introduce
the dataset that we used for evaluation. After that, we intro-
duce two different methods for extracting activity patterns
from previously unseen sensor data: The first method uses
supervised learning to assign activity labels to the sensor
data. These labels are then used to identify activity pat-
terns in an unsupervised fashion. The second method is
completely unsupervised and uses clustering to generate a
vocabulary of labels, which are then used for pattern extrac-
tion. We conclude with a summary and outlook.

RELATED WORK
In the following we discuss related work in the area of activ-
ity recognition and discovery, with focus on authors aiming
towards high-level and/or longterm activities of daily life.

Clarkson et al [5] present an approach for unsupervised de-
composition of on-body sensor data into events and scenes.



They use data from wearable sensors to discover short events
such as ”passing through a door” or ”walking down an aisle”,
and cluster these into scenes such as ”visiting the supermar-
ket” by using hierarchies of HMMs. Conceptually this ap-
proach is similar to what our method can achieve. A notable
difference is that our method is able to perform well on low-
dimensional, low-resolution data from accelerometers, while
the approach in [5] relies on high-dimensional and densely
sampled audio and video streams. Thus we believe that our
method compares favorably both from a computational and
also from a privacy point of view.

Eagle et al. [6] used coarse-grained location and proximity
information from mobile phones to detect daily and weekly
patterns of location transitions. Their work ultimately fo-
cuses on the group rather than the individual and explores
themes such as social networks and organizational rhythms.

Activity discovery from on-body sensor data is explored in
the work of Minnen et al. [14, 13]. Even though we use a
similar terminology in this work, our actual goals are quite
different from theirs, in that they aim to discover and model
short term motion primitives (e.g. those occurring during
physical exercies), while we are interested in longer term
patterns in the user’s daily routine.

Hamid et al. [7] represent activities as bags of n-grams,
cluster them into classes of activities, and characterize these
classes by frequently occurring sequences. The patterns they
discover on a set of 150 days of a person’s indoor location
traces are coarse and difficult to interpret, though.

In a more office- and desktop-centered setting, Oliver et al.
[16] use a layered HMM representation to infer office ac-
tivities such as giving a presentation, having a conversation
or making a phone call, based on lowlevel information from
audio and visual sensors as well as from the user’s keyboard
and mouse activity. In a similar setting, [9] combine device
usage with calendar data and time of day/ time of week infor-
mation to infer a user’s availabily. Begole et al. [2] analyze
and visualize daily rhythms of office workers by measuring
how active (indicated by computer usage) a person is during
different times of day.

There is significant amount of work involving location sen-
sors that also aims to extract high-level information about a
person’s activities from low-level sensor data. E.g., [12] use
information from GPS sensors to construct models of high-
level activity (such as work, leisure, visit) and to identify
significant places (such as home, work, store, etc.). Simi-
larly, [11] use location sensors to make highlevel predictions
about driving destinations. These works show that location
is a powerful cue to the high-level structure of daily life.
However, location is often not enough to identify daily rou-
tines reliably, as many different activities can be performed
at the same location. E.g. at home, many people are having
dinner and breakfast but also perform work. Similarly, in an
office room one might work, hold meetings and even occa-
sionally have lunch. Therefore, we consider the work of this
paper complementary to these approaches, in that the use of

accelerometers allows detection of more fine-grained activ-
ities and can also account for different activities performed
at the same location. We plan to combine our approach with
location sensing in future work.

Another approach for activity recognition is based on ob-
ject use, e.g. [18, 17, 15]. These authors instrument ob-
jects in the environment with RFD tags, and use data from a
wearable RFID reader to infer household activities (such as
preparing food, doing laundry, washing dishes, etc.). Some
of these methods based on Dynamic Bayesian Networks are
very flexible in principle, although the use of RFID tags re-
stricts the approaches to closed instrumented environments.

Amft et al. [1] introduce a model to detect composite activi-
ties composed of atomic events from a variety of body-worn
and environmental sensors. In contrast to our work they fo-
cus on relatively short sequences, and the method relies on a
significant amount of supervision.

DAILY ROUTINE MODELING USING TOPIC MODELS
The activities we perform in our daily lives can be segmented
and characterized on different levels of granularity. Which
level to choose depends on the concrete application at hand,
but there is evidence that we humans tend to structure and
name these levels in a hierarchical fashion, and that at the
lower and more fine-grained levels the structure is aligned
with physical properties of the activities, such as motion and
posture [20]. Research in activity recognition exploits this
fact by automatically naming the user’s activity, based on
low-level sensor data such as the acceleration of different
parts of the body.

For many types of activities it is already sufficient to ob-
serve a small window of sensor data – usually in the order
of seconds – in order to classify them with high confidence.
The upper part of Fig. 1 shows a sequence of such activi-
ties as they were performed by a subject over the course of
one day. If we were to further structure the activities the
subject performed on this day, a natural approach would be
to group them into routines such as commuting, office work,
lunch routine or dinner routine. Such routines however can-
not be identified from their local physical structure alone.
What makes their recognition more complex is that they 1)
are composed of variable patterns of multiple activities 2)
range over longer periods of time, and 3) often vary signifi-
cantly between instances. A model for recognizing such rou-
tines should be able to capture such facts as that office work
“mostly consists of sitting”, but “may (or may not) contain
small amounts of using the toilet, or discussions at the white-
board”; or that commuting “mostly consists of driving car,
but usually contains short walking instances as well”.

It turns out that a family of probabilistic models, commonly
referred to as topic models, is excellently suited for this kind
of task. Before giving more details about how to use and
infer topic models we first give an intuitive example what
topic models can achieve when applied to activity data.

The lower part of Fig. 1 illustrates the result of our approach
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Figure 1. Top: Illustration of our approach on ground truth labels of daily activities. Note that the vertical high-level annotations (commuting,
working, etc.) were not given to the algorithm. Lower Left: The matrix shows the contents of four out of ten discovered activity patterns. Lower
Right: Inferred activations of the discovered activity patterns during the course of the day (e.g, the pattern in the third column is active during lunch
time). Note the high correlation between these activations and the user annotated daily routines in the upper part, suggesting that these activations
can be used to model daily routines.

when applied to seven days of ground truth activity labels,
including the sequence shown in the upper part of the fig-
ure. The columns of the matrix on the lower left represent
four out of 10 different activity patterns or topics that were
automatically identified by the method. Intuitively, each ac-
tivity has a probability of occurring in the pattern, indicated
by the color of the matrix cell. E.g., the third pattern (blue) is
most likely to contain the activities walking freely and hav-
ing lunch, and also - but slightly less - likely to contain pick-
ing up cafeteria food, sitting at desk and the unlabeled class.
Similarly, the fourth pattern (red) is likely to contain having
dinner, washing dishes and the unlabeled class.

For each of these activity patterns the method is able to tell
how much each pattern is activated at each point in time.
This is shown in the plot on the lower right, in which we
plotted the activations of each of the 10 topics for the day
shown in the upper part. One can observe that the third
pattern (blue) is most active around lunchtime, and that the
fourth (red) is active around dinner time. What makes this
result remarkable is that no supervision was needed to in-
fer both the activity patterns and their activations over the
course of the day. The topic model essentially discovered
these activity patterns in a entirely unsupervised way. In this
particular case the activations of these activity patterns are

highly correlated with the daily routines of the person.

While in this particular example the activity patterns and the
daily routines have been discovered in an unsupervised way,
they required as input the activity annotations from the user.
While this shows the principle applicability of topic models
to model daily routines, it is clearly desirable to avoid the
time-consuming and error-prone task of manual annotation.
Later in the experimental sections we show that topic mod-
els can be applied to activity recognition results as well as
to sensor data directly. In the latter case no user annotation
is required whatsoever and still the discovered daily routines
have a high correlation with the user-annotated daily rou-
tines.

Topic Models
Topic models stem from the text processing community [8,
4]. They regard a document - e.g. a scientific paper - as
a collection of words, discarding all positional information.
This is called a ”bag-of-words”-representation. As single
words capture a substantial amount of information on their
own, this simplification has shown to produce good results in
applications such as text classification. Assume, for exam-
ple, an author wants to write a UbiComp paper that covers
the three topics “HCI”, “Elderly Care” and “Context-Aware



Computing”. Writing this paper then is essentially picking
N times a topic from his list of chosen topics and then pick-
ing a word appropriate for the topic. Therefore he uses a
probability distribution that tells which words are likely to
be used for which topic. Different topics might share certain
words, which means that both topics assign a high probabil-
ity to them. This process yields a document in the ”bag-of-
words” representation with N words.

Most interestingly for the purpose of this paper, topic models
allow to infer the inherent topics from an appropriate cor-
pus of documents. E.g. when applied to the corpus of all
UbiComp papers one expects that topics such as “HCI”, “El-
derly Care”, and “Context-Aware Computing” (among many
other topics) can be discovered automatically without any
user annotation or intervention. To illustrate how this can
be achieved, we describe the process of writing the docu-
ments in a bit more formal way. As mentioned before, the
author of document d picks a set of topics. Assuming that he
puts different emphasis on the different topics, we model the
mixture of topics as (multinomial) probability distribution
p(z|d) over topics z. Similarly, the importance of each word
for each topic z is also modeled as a (multinomial) probabil-
ity distribution p(w|z) over words w of a vocabulary. Given
these two distributions, we can compute the probability of a
word w occurring in document d:

p(w|d) =
T∑

z=1

p(w|z)p(z|d), (1)

assuming that there are T topics the documents - e.g. all Ubi-
Comp papers - are dealing with. This probability distribution
p(w|d) doesn’t include any notion of topics any more and in
fact can be estimated by simple counting of the words in
each document. Having many documents, we observe a data
matrix of observed p(w|d) as depicted on the left hand side
of the equation in Fig. 2. According to Equation 1 (which is
equivalent to the described process of writing the paper), the
data matrix can be reconstructed by a matrix product of the
word relevances for each topic and a mixture of topics p(z|d)
for each document. Estimating the topic model means doing
the reverse. The data matrix on the left-hand side is decom-
posed into the two matrices on the right-hand side, thereby
recovering the characteristic words for each topic and the
mixture of topics for each document.

(a)
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Figure 1: (a) pLSA graphical model, see text. Nodes inside a given

box (plate notation) indicate that they are replicated the number

of times indicated in the top left corner. Filled circles indicate

observed random variables; unfilled are unobserved. (b) In pLSA

the goal is to find the topic specific word distributions P (w|zk)
and corresponding document specific mixing proportions P (z|dj)
which make up the document specific word distribution P (w|dj).

While we ignore spatial position in our ‘bag of words’

object class models, our models are sufficiently discrimina-

tive to localize objects within each image, providing an ap-

proximate segmentation of each object topic from the others

within an image. Thus, these bag-of-features models are a

step towards top-down segmentation and spatial grouping.

We take this point on segmentation further by develop-

ing a second vocabulary which is sensitive to the spatial

layout of the words. This vocabulary is formed from spa-

tially neighboring word pairs, which we dub doublets. We

demonstrate that doublets provide a cleaner segmentation of

the various objects in each image. This means that both the

object category and image segmentation are determined in

an unsupervised fashion.

Sect. 2 describes the pLSA statistical model; various im-

plementation details are given in Sect. 3. To explain and

compare performance, in Sect. 4 we apply the models to

sets of images for which the ground truth labeling is known.

We also compare performance with a baseline algorithm: a

k-means clustering of word frequency vectors. Results are

presented for object detection and segmentation. We sum-

marize in Sect. 5.

2. The topic discovery model

We will describe the models here using the original terms

‘documents’ and ‘words’ as used in the text literature. Our

visual application of these (as images and visual words) is

then given in the following sections.

Suppose we have N documents containing words from

a vocabulary of size M . The corpus of text documents is

summarized in a M by N co-occurrence table N, where
n(wi, dj) stores the number of occurrences of a word wi

in document dj . This is the bag of words model. In addi-

tion, there is a hidden (latent) topic variable zk associated

with each occurrence of a word wi in a document dj .

pLSA: The joint probability P (wi, dj , zk) is assumed to
have the form of the graphical model shown in figure 1(a).

Marginalizing over topics zk determines the conditional

probability P (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk), (1)

where P (zk|dj) is the probability of topic zk occurring in

document dj ; and P (wi|zk) is the probability of word wi

occurring in a particular topic zk.

The model (1) expresses each document as a convex

combination of K topic vectors. This amounts to a matrix

decomposition as shown in figure 1(b) with the constraint

that both the vectors and mixture coefficients are normal-

ized to make them probability distributions. Essentially,

each document is modelled as a mixture of topics – the his-

togram for a particular document being composed from a

mixture of the histograms corresponding to each topic.

Fitting the model involves determining the topic vectors

which are common to all documents and the mixture coef-

ficients which are specific to each document. The goal is

to determine the model that gives high probability to the

words that appear in the corpus, and a maximum likelihood

estimation of the parameters is obtained by maximizing the

objective function:

L =
M∏
i=1

N∏
j=1

P (wi|dj)n(wi,dj) (2)

where P (wi|dj) is given by (1).
This is equivalent to minimizing the Kullback-Leibler

divergence between the measured empirical distribution

P̃ (w|d) and the fitted model. The model is fitted using
the Expectation Maximization (EM) algorithm as described

in [10].

3. Implementation details

Obtaining visual words: We seek a vocabulary of vi-

sual words which will be insensitive to changes in view-

point and illumination. To achieve this we use vector quan-

tized SIFT descriptors [11] computed on affine covariant

regions [12, 13, 16]. Affine covariance gives tolerance to

viewpoint changes; SIFT descriptors, based on histograms

of local orientation, gives some tolerance to illumination

change. Vector quantizing these descriptors gives tolerance

to morphology within an object category. Others have used

similar descriptors for object classification [5, 15], but in a

supervised setting.

Two types of affine covariant regions are computed for

each image. The first is constructed by elliptical shape

adaptation about an interest point. The method is described
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Figure 2. Intuition of topic model decomposition. By introducing an
unobserved, latent topic variable z, the observed data matrix of p(w|d)
is decomposed into a topic-word matrix of p(w|z) and a document-
topic matrix of p(z|d)

The described formulation addresses precisely the task we

formulated earlier. The data matrix p(w|d) corresponds to
the activity data depicted in the upper half of Fig. 1 and
the decomposition illustrated in Fig. 2 corresponds to the
activity patterns p(w|z) and activations of activity patterns
p(z|d) in the lower half. Therefore we propose to discover
activity patterns as topic-word distribution and daily routines
by topic activation.

In the following experiments we use a particular instantia-
tion of these kind of models - called Latent Dirichlet Alloca-
tion (LDA) [4], that extends the described pLSA model to a
Bayesian approach by placing a dirichlet prior p(θd|α) with
parameter α on the document-topic distributions p(z|θd).
Fitting the model is equivalent to finding parameters α for
the dirichlet distribution and parameters β for the topic-word
distributions p(w|z, β) that maximize the likelihood L of the
data for documents d = 1, . . . ,M :

L(α, β) =
M∏

d=1

∫
p(θd|α)


Nd∏
n=1

T∑
z=1

p(wd
n|z, β)p(z|θd)︸ ︷︷ ︸

marginalize over z

 dθd

︸ ︷︷ ︸
marginalize over topic activations θd

,

where T is the number of topics and each document d con-
sists of the words wd

n with n = 1, . . . , Nd. For a more de-
tailed description of the learning process the reader is re-
ferred to the original paper by Blei et al. [4]. We also use
their implementation, available at [3].

DATASET
To show the effectiveness of the approach, we recorded the
daily life of one person over a period of sixteen days. The
subject was provided with two wearable sensors, one of which
he placed in his right hip pocket, the other on the dominant
(right) wrist. The recordings were started in the morning
shortly after getting up, and usually ended in the late evening
before going to bed. This enabled us to record continu-
ous, non-scripted activities in a natural environment. Due to
memory constraints of the sensor platform, the memory had
to be emptied after about 4 hrs of recording. A recording of
one day typically consists of three such parts, i.e. roughly
12 hrs of data with two gaps in between. In total, our dataset
consists of 164 hrs of recordings. Of these, we had to discard
28 hrs due to failures in the sensor hardware.

Sensor Hardware
Fig. 3(a) shows the Porcupine sensor platform [19] which
we used to record our set of activities. Besides a 3D ac-
celerometer (ADXL330) and a PIC microcontroller which
we used for preprocessing of features, it includes a realtime
clock, nine binary tilt switches, a temperature sensor and two
light sensors. Data can be stored on 512 kb of flash storage
and transferred via a USB connector. In addition, the device
features three buttons and three LEDs which can be freely
programmed, e.g. for annotation or status display. The plat-
form is small and light enough to be comfortably worn on a
wristband (Fig. 3(b)) or slit into the subject’s pocket.



(a) (b)

Figure 3. The wearable sensor platform used for recording activities.

Features
The sensors deliver data at a rate of roughly 100Hz. Due to
the memory constraints we subsampled the data by calculat-
ing mean and variance over a sliding window of 0.4 seconds
(i.e. @ 2.5Hz), and store them along with a timestamp from
the realtime clock. This allows to store about four hours of
sensor data on the onboard memory of the sensor.

Annotation
To analyze the effectiveness of our approach, we aimed for
two different levels of annotations. First, we asked the user
to annotate daily routines such as commuting or working.
And second, we also aimed to obtain detailed annotations of
the individual activities – at least for part of the data. In total
we annotated seven days (84 hrs) in detail, which we used for
our experiments. In the experiments reported below we will
analyze the recognition of daily routines both with and with-
out these detailed annotations of individual activities. This
allows us to show that the approach is not only applicable in
supervised settings but also in entirely unsupervised settings.

Finding a good balance between detailed and complete an-
notations and minimal user disruption is a common prob-
lem of studies in activity recognition, especially for long-
term studies outside a laboratory. We used a combination
of several online and offline annotation methods so that the
user had some freedom to choose a method that suited him
depending on the situation. Online annotation takes place
while the activities are being recorded. We employed three
different methods of online annotation, namely experience
sampling, a time diary and camera snapshots. During expe-
rience sampling, the subject was notified in periodic inter-
vals by an application running on his mobile phone, which
presented a set of questions about his current activities. The
time diary is a handwritten log in which the subject entered
the names, start- and ending times of activities. As a third
method, the subject took occasional snapshots with the built-
in camera of the mobile phone.

It turned out that for our setting the time diary was the most
useful online annotation method, providing detailed infor-
mation while being far less disrupting than expected. One
likely reason for this is that the subject was often working
near or at a laptop, which he could use to quickly log ac-
tivities. Our experience sampling application, while rela-
tively fast and easy to use, tended to miss short events, pose
redundant queries and was less precise than the time diary
in determining start and ending times of activities. For of-
fline annotation, we visualized the sensor data and aligned it

with the annotations from the experience sampling applica-
tion and the time diary, as well as with the photographs taken
by the subject, and had the subject fill in remaining gaps, re-
fine start- and ending times of activities, and also identify
and annotate daily routines.

Recorded Activities
Our subject annotated a total of 75 distinct activities and
daily routines. For our evaluation, we filtered out activi-
ties that occurred only once or for very short durations, and
merged similar ones into single classes. Within the individ-
ual activities and within the daily routines there is no overlap
between annotations, and for both sets we introduced an ad-
ditional unlabeled class, so that in the end each feature is
assigned to one activity and one daily routine.

The activity set consists of the following 34 activities, along
with the unlabeled class (duration in minutes shown in brack-
ets): sitting / desk activities (3016.9), lying while reading
/ using computer (196.6), having dinner (125.3), walking
freely (123.6), driving car (120.3), having lunch (75.2), dis-
cussing at whiteboard (62.6), attending a presentation (48.8),
driving bike (46.2), watching a movie (42.5), standing / talk-
ing on phone (24.8), walking while carrying something (22.8),
walking (22.8), picking up cafeteria food (22.6), sitting /
having a coffee (21.8), queuing in line (19.8), personal hy-
giene (17.2), using the toilet (16.7), fanning barbecue (15.2),
washing dishes (12.8), kneeling / doing sth. else (11.6), sit-
ting / talking on phone (8.7), kneeling / making fire for bar-
becue (8.2), setting the table (8.0), standing / having a coffee
(6.7), preparing food (4.6), having breakfast (4.6), brushing
teeth (4.3), standing / using the toilet (3.0), standing / talk-
ing (2.8), washing hands (2.1), making coffee (1.8), running
(1.0), and wiping the whiteboard (0.8)

Four daily routines (plus the unlabeled class) have been an-
notated that span longer periods of time, typically dozens of
minutes to several hours, and which are composed of several
distinct activities. The first routine is commuting (289 min),
which includes leaving the house and driving to work either
by car or by bike, until arriving at the office, and vice versa
in the evening. The longest routine is office work (2814.7
min), which mainly comprises desk activities, with occa-
sional interruptions, e.g. when fetching a coffee, visiting
an office mate, going to the toilet, attending a meeting, etc.
At noon the subject usually went to a nearby cafeteria to
have lunch, followed by a stop at a neighboring coffee place.
This episode, which usually lasted about an hour per day, is
labeled as lunch routine (391.3 min). The last routine is din-
ner activities (217.5 min), which mostly includes setting the
table, having dinner and washing the dishes. As all of the
recorded days are weekdays, these four daily routines cover
a large percentage of the data, leaving out only some parts in
the mornings and evenings.

DISCOVERY OF DAILY ROUTINES BASED ON ACTIVITY
RECOGNITION
As discussed earlier, the proposed approach using topic mod-
els can be used to model daily routines based on wearable
sensors. While the previous section has relied on user gen-



erated annotations to discover activity patterns, this section
uses supervised activity learning to generate and recognize a
vocabulary of activities. Based on the recognized activities
topic models are then used to first learn and discover activity
pattern which are then in turn used to describe and recognize
daily routines. Therefore we first describe how we train a
supervised classifier on labeled data, and then use the labels
obtained from the classifier as vocabulary for topic estima-
tion. The next section will then describe how the vocabulary
can be obtained in an unsupervised way thereby making the
approach scalable to large amounts of training data.

Activity Recognition
We evaluated several combinations of features and classifiers
on our set of activities. From the acceleration signal we com-
puted several features, including mean, variance, and a num-
ber of frequency features, over sliding windows between 0.4
and 4 seconds. As additional feature we used the time of
day provided by the realtime clock of the sensor. As clas-
sifiers we evaluated SVMs, HMMs and Naive Bayes. They
are standard representatives of discriminative and generative
classifiers and have been successfully used before for similar
tasks (e.g. [16, 10]). Our results are all cross-validated in a
leave-one-day-out fashion.

We first compared the three classifiers and different features
on a subset of the data spanning two days. It turned out
that due to the size of the dataset, SVM and HMM train-
ing and classification took significantly longer than Naive
Bayes. Due to its time efficiency and since the overall recog-
nition accuracy of Naive Bayes was only marginally lower,
we settled for this approach, using as features mean and vari-
ance of the 3D-acceleration signal from wrist and pocket
motion, plus the time-of-day information from the realtime
clock (adding up to a 13-dimensional feature vector). The
use of frequency features did not improve the results in our
setting, which may be due to the relatively coarse resolution
(2.5Hz) of the data.

Overall we achieved an accuracy of 72.7% on the activity
dataset. The individual results vary considerably, owing to
the diversity of the collected activities. The best five results
were obtained for sitting/ desk activities (precision 89.5%/
recall 95.4%), walking freely (96.2/ 84.2), standing/ talk-
ing on phone (82.8/ 96.4), driving bike (96.7/ 77.1), hav-
ing lunch (76.5/ 97.5) and personal hygiene (89.0/ 66.2). A
number of activities only occurred on one day, so that the
classifiers had no chance of classifying them correctly in our
leave-one-day-out crossvalidation protocol. Among these
were kneeling, running, standing while having a coffee, wip-
ing the whiteboard, and attending a presentation. Most of
the activities with low recognition scores were either very
short (e.g. washing hands (precision 3.7%/ recall 3.4%)),
so that only little training data was available, or they were
confused with other, similar activities (eg. sitting/ having a
coffee (22.4/ 35.6) was often confused with desk activities),

The time-of-day feature enables the classifier to separate ac-
tivities which share a common motion signature but are per-
formed at different parts of the day – the main improvement

in recognition could be observed for the two activities hav-
ing lunch and having dinner, for which confusion was vir-
tually eliminated and precision/recall scores improved from
16.8%/ 20.5% to 38.9%/ 47.9% (having dinner) and from
62%/ 19% to 97.5%/ 76.5% (having lunch). As we used
unimodal gaussians to model the Naive Bayes likelihoods,
the time-of-day feature did not worsen the results for activi-
ties which occur at irregular times during the day – if enough
data for such activities exists, then the larger variance usu-
ally flattens the likelihood function to a point at which it has
little influence on the final posterior. Problems with the time-
of-day feature may arise for activities which are not time-
dependent but occur only few times in the training data.

Topic Estimation based on Activity Recognition
As a result of our supervised training procedure, we obtain
for each data sample a posterior probability for each activ-
ity, along with a discrete label that corresponds to the activ-
ity with the highest posterior. Our next goal is to discover
daily routines from this stream of low-level data, using the
framework provided by Latent Dirichlet Allocation.

The main choices one has to make when applying LDA to
activity data are the nature and size of the vocabulary, the
size of the documents and the number of topics. A simple
yet effective way to create documents for the topic models
from a stream of activity labels is to use a sliding window
of length D over the labels and construct for each window a
histogram of label occurrences. In this way each document
represents a mixture of activities over a window of time. We
found that the outcome of the topic estimation process can be
made more robust to noise and misclassifications of the un-
derlying classifier by generating the vocabulary not from the
hard assignments of the classifier, but from the soft assign-
ments given by the posterior probabilities for each activity.
We achieve this by summing up the posterior probabilities
for each activity over the size of one document window, and
then generating labels for each activity in proportion to the
sum of all posteriors.

Qualitative Results
Figures 4(b) and 4(a) (bottom) show the result of LDA esti-
mation and inference when generating documents over win-
dows of 30 minutes, shifted by 2.5 min at a time. In this ex-
ample we chose T = 10 topics and set the dirichlet prior α to
0.01. The topics in Fig. 4(b) were estimated from six days
of data. For each topic z we list all activity labels w with
p(w|z) ≥ 0.01. Fig. 4(a) (bottom) shows the activations of
those topics on the day that was left out during training. In
each time step we plot the topic activations that correspond
to the document covering the preceding 30 minutes.

The first important observation which can be made from the
results shown in Fig. 4 is that there are topics that clearly
correlate with the daily routines of the subject’s day. This
can be seen by comparing the topic activations to the daily
routines annotated by the subject (Fig. 4(a)). To see how
well the estimated topic activations correspond to the mix-
ture of ground truth labels in the respective time window, we
also collected the ground truth labels in sliding windows the



same size as the documents, i.e. we assigned to each time
step the percentage that an activity was ’active’ during the
last 30 min.

Topics 1 and 2 are both active during office work so that
their joint or individual activation is a good indication of of-
fice work. In the afternoon topic 6 is activated strongly for
a certain period of time, corresponding - on that particular
day - to a presentation of a colleague. Topic 6 is a good
example of a newly ’discovered’ routine – it does not ap-
pear in the annotations of the user’s daily routines, yet it
represents a valid activity pattern that can be modeled and
identified. The lunch routine is represented by two topics,
namely 3 and 4. As the typical lunch routine is composed
of a visit to the cafeteria and the visit of a cafe, topics 3 and
4 have captured the differences in these two “phases” of the
lunch routine. Again the activation of either of these top-
ics allows the recognition of the lunch routine. The dinner
routine is correlated with the activation of topic 7. The re-
maining daily routine, commuting, is not directly correlated
with a single topic but rather with a combination of topics.
Both in the evening and in the morning the co-activation of
various topics including topics 5, 6 and 3 allow to identify
this routine.

Let’s now turn to the contents of the topics, i.e. the learned
activity labels that have a high probability of being part of a
particular topic. As can be seen from Fig. 4(b), the content
often represents a meaningful set of activity labels. E.g.,
the prominent words in topic 3 are having lunch, walking,
picking up cafeteria food and queuing in line. Topic 5 is a
mixture of driving car, walking, and desk activities and is
activated during the commuting routine of the subject. Top-
ics 1 and 2 represent desk activities and are active during
the office work part of the subject’s day. Topic 7 contains
having dinner and washing dishes, as well as desk activities
and driving car, which all correspond to evening and dinner
activities of the subject.

Since the accuracy of the underlying classifier that generates
the vocabulary is not perfect, there are errors due to misclas-
sifications, some of which are reflected in the contents of
topics. E.g., the classifiers for the activities using the toilet
and standing / using the toilet fire relatively often, but only
with precision of 18% and 7%, respectively. Partly due to a
small amount of training data, they are often confused with
similar activities such as desk activitites and standing at the
whiteboard. As a consequence, in the example shown in Fig.
4, their labels are weighted too strong in topics 4 and 6. A
more powerful activity recognition algorithm would help to
alleviate such problems even though it is expected that sig-
nificant ambiguities between activities remain. An important
and relevant property of topic models is that they are robust
to these types of ambiguities.

Evaluation Method
While the plots of the topic activations suggest that the topics
are indeed able to discover and model activity patterns and
therefore high-level structure in the subject’s daily activities,
it is not obvious how to quantify the results. We propose two

different measures for evaluating the quality of the topic de-
compositions: correlation and recognition performance. For
both measures we use as ground truth the daily routine anno-
tations by the subject. First it should be noted, though, that
both methods are not optimal, since LDA is an inherently
unsupervised method which is able to discover meaningful
structure a user was previously unaware of. Such ability can-
not be quantified when evaluating against a predetermined
ground truth.

For the correlation measure, we first perform LDA estima-
tion on six of the seven recorded days. We then assign to
each activity the topic to which the correlation to the ground
truth annotation is highest. Next we perform LDA inference
on the seventh day and note for each activity the correla-
tion with its assigned topic. We repeat this in a leave-one-
day-out fashion and report the average results for each daily
routine. In order to compute recognition performance, we
use the topic activation vectors as features for a supervised
learning task. More specifically, we first perform LDA es-
timation and inference on six of the seven days, and then
train a nearest neighbor classifier using the obtained topic
activation vectors and the daily routine ground truth. We
then perform LDA inference on the seventh day and classify
each of the resulting activation vectors using nearest neigh-
bor. The results we report are again cross-validated over the
seven days of data.

Baseline Results
In order to obtain a baseline for the recognition of routines,
we built a supervised classifier using HMMs based on the
same features that we use for the LDA-approach, i.e. ac-
celeration features from wrist and pocket sensor, plus time-
of-day. We used left-right models and varied the number
of states Q, the number of gaussians per state M , as well
as the length of the observation sequence O. The cross-
validated results for the best parameter-combination that we
found (Q = 5, M = 2, O = 30min, shifted by 5min) are
shown in Fig. 5. The lunch and office work routines can be
predicted with high precision and recall. Lunch is a short,
yet very regular routine, usually taking place between noon
and 1pm. Office work covers a large part of the day and
consists to a large part of sitting activities. In contrast, din-
ner and commuting are relatively short routines that occur
at relatively irregular times of day, which makes recognition
more challenging. This is reflected in the lower recall values.
In the remainder of the paper we will use these results as a
baseline for the recognition of routines using topic models.

Routine Precision Recall
Dinner 88.6 27.3

Commuting 72.6 31.5
Lunch 84.4 80.7

Office Work 89.2 91.1
Mean 83.7 57.7

Figure 5. Baseline recognition results, using HMMs based on accelera-
tion and time-of-day features.

Quantitative Results
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sitting / desk activities (1.0)

sitting / desk activities (0.99)

having lunch (0.5), walking freely (0.26), picking up cafeteria food (0.06), queuing in line (0.06), unlabeled (0.04), walking & carrying sth (0.02), brushing teeth (0.02)

standing / using toilet (0.69), walking freely (0.18), queuing in line (0.06), walking (0.02), desk activities (0.02)

driving car (0.33), walking & carrying sth. (0.21), sitting / desk activities (0.2), walking (0.14), unlabeled (0.08)

using the toilet (0.69), walking freely (0.17), discussing at whiteboard (0.06), sitting / desk activities (0.03), brushing teeth (0.02)

having dinner (0.77), desk activities (0.1), washing dishes (0.08), unlabeled (0.04)

lying / using computer (1.0)

unlabeled (0.87), driving bike (0.04), washing dishes (0.02), stand/ use toilet (0.02), washing hands (0.02), standing / using the phone (0.02)

watching a movie (1.0)

1
2
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6
7
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(b)

Figure 4. (a) Ground truth and topic activations for one day, based on a vocabulary of learned activity labels. (b) Contents of the ten estimated topics.
The numbers in brackets indicate p(w|z), i.e. the probability of the activity label w given the current topic z (labels w with p(w|z) < 0.02 are not
shown). The distributions were estimated from six days of data. (a) shows the inferred topic activations for the day that was left out during training.

Fig. 6 shows the correlation and recognition results for the
best combination of parameters when we used learned activ-
ity labels as vocabulary. In this case we used T = 10 top-
ics, a document length of 30 min, and soft assignments from
class posteriors to generate the words for each document.
Office work is best correlated and recognized, followed by
lunch, commuting and dinner. Comparing to our baseline
results (Fig. 5), we can see that the recognition of routines
has improved. The values for precision and recall increase
throughout, with the exception of precision for dinner rou-
tine. Overall, the results indicate that the estimated topics
relate to high-level structure in the subject’s daily routine.

Influence of Parameters
For the daily routines in our data set, correlation with top-
ics dropped noticeably when choosing document windows
smaller than 30min. In general our results indicate that choos-
ing document lengths on the order of the average lengths of
the routines seems a good strategy. We also found that using
more topics may lead to better recognition results when us-
ing topics activation vectors as features, but makes (visual)
discovery of unknown routines more difficult, as the topic
activation plots get more noisy.

UNSUPERVISED LEARNING OF DAILY ROUTINES
In the previous section we showed how topics can be used as
a means of inferring high-level structure from a vocabulary
of labels representing relatively short-term activities. These
labels were learned in a supervised fashion from a stream of
sensor data. An advantage of this approach is that the esti-
mated topics carry an inherent meaning, which is expressed

       Routine  Correlation Precision Recall
Dinner 0.7 75.5 40.2

Commuting 0.6 85.5 51.8
Lunch 0.8 87.0 83.3

Office Work 0.8 96.4 93.7
Mean 0.7 86.1 67.2

Figure 6. Correlation and recognition results when using topics esti-
mated from learned activity labels.

by the distribution of labels within each topic. A substan-
tial disadvantage, though, is the amount of annotation effort
associated with the supervised learning part. In this section
we describe how the vocabulary for the topic estimation can
be constructed in an unsupervised fashion and we will show
that surprisingly good results can be obtained without any
need of tedious and detailed activity annotation.

Clustering of Activity Data
To generate discrete labels from continuous sensor data in an
unsupervised fashion we simply use data clustering. This al-
lows to assign to each sample the index of the closest cluster
centroid. While this is essentially the basis of our approach,
we again found that using soft instead of hard assignments
did improve our results. In order to create a vocabulary of
size N , we first cluster our feature vectors using K-means
clustering with K = N . For each feature i we store the dis-
tances d1..N to the centroids of each cluster. We then convert
these distances to weights ω1..N with



ωi =
e−

di
σ∑

j=1..N e−
dj
σ

(2)

Thus smaller distances imply higher weights, and the weights
for one feature sum up to one. The parameter σ controls how
fast the weights decline for more distant clusters. Empiri-
cally we found that setting σ to the standard deviation of all
distances worked well. We next use the weights to construct
documents of size D in the same fashion as for the super-
vised case described in the previous section. More specif-
ically, for each cluster i we sum up the weights ωi over a
feature window of length D, and then generate mi labels for
this cluster by multiplying the sum of its weights by the doc-
ument length D and rounding to the next integer. Since the
weights for each feature are a partition of 1, the document
will contain at most

∑
mi = D labels.

Results
Fig. 7 shows an example of the result of LDA inference
using a vocabulary of 10 cluster labels, together with the
daily routine ground truth for this day. The documents were
created from sliding windows of 30 min, shifted by 2.5 min
at a time. LDA estimation was performed on six of the seven
days, and inference on the remaining day. Again one can
observe that the topic activations reflect the annotated daily
routine structure of the subject’s day, even though this time
no annotations (neither for activities nor for daily routines)
were given at all. Furthermore, there are individual topics
whose activation is strongly correlated with the lunch, office
work and commuting routines.

Fig. 8 shows correlation and recognition scores for the best
combination of parameters when using a vocabulary of clus-
ter labels for topic estimation. In this case we used T = 10
topics, a document length of 30 min, and N = 60 clus-
ters. Note that low correlation does not necessarily imply
bad recognition performance, as can be seen for the com-
muting activity. This is because we compute correlation be-
tween individual topics and daily routines, while recognition
uses the activations of all topics at each time step. Thus if a
daily routine can be characterized by a mixture of topics in-
stead of a single topic, recognition scores may be high even
though the best correlation of an individual topic is low.

Comparing the results to the supervised method described in
the last section (Fig. 6), one can observe that the mean corre-
lation and precision are lower in the unsupervised case, with
about 10% less overall precision and a drop of 0.1 in corre-
lation score. However, overall recall declines only slightly,
and the individual recognition scores for office work and
commuting remain high. One likely reason for the drop in
precision for the lunch and dinner routines is that they share
many activities and are therefore not separated well by the
clustering. As a consequence, recognition of lunch drops
below our baseline results. However, compared to the base-
line, recall for dinner and commuting, as well as precision
for commuting are higher, indicating that the approach can
compensate for the irregular occurrences of these routines.

Finally, keep in mind that these results are based on prede-
fined ground truth, and thus do not capture the ability of the
method to discover previously unknown structure in the data.

       Routine  Correlation Precision Recall
Dinner 0.6 56.9 40.2

Commuting 0.5 83.5 71.1
Lunch 0.8 73.8 70.2

Office Work 0.6 93.4 81.8
Mean 0.6 76.9 65.8

Figure 8. Correlation and recognition results when using topics esti-
mated from k-means cluster labels.

Discussion
In this section we used clustering as an unsupervised method
to generate a vocabulary of discrete labels from a stream of
continuous activity data. We used this vocabulary as basis
for topic estimation and observed that the estimated topics
correlate with daily routine structure in the subject’s activ-
ities. The main advantage of this approach is that it does
not require any labeled training data and yet is able to dis-
cover structures that are of relevance to the subject. As the
approach is entirely data-driven, we don’t rely on any noisy
classifier output, and hence there are no ’wrong’ words that
the topic model has to deal with, as we observed in the super-
vised case. On the other hand, the contents of the topics, i.e.
the distribution over cluster labels, carries no direct meaning
for an observer. Such meaning can be established, however,
via the additional step of comparing the topic activations to
the actual structure of the subject’s day, and then identifying
topics that correspond to possible daily routines.

CONCLUSION AND OUTLOOK
In this paper we have introduced a novel approach for mod-
eling and discovering daily routines from on-body sensor
data. Inspired by machine learning methods from the text
processing community, we convert a stream of sensor data
into a series of documents consisting of sets of discrete ac-
tivity labels. These sets are then mined for common topics,
i.e. activity patterns, using Latent Dirichlet Allocation. In
an evaluation using seven days of real-world activity data,
we showed that the discovered activity patterns correspond
to high-level behavior of the user and are highly correlated
with daily routines such as commuting, office work or din-
ner routine. The patterns can be based on a learned vocab-
ulary of meaningful activity labels (such as walking, using
the phone, discussing at whiteboard, etc.), in which case the
discovered patterns are immediately human-readable in that
they represent sets of such labels. Learning of labels requires
a supervised component, which can be avoided by applying
our method directly to unlabeled sensor data using cluster-
ing. In this case, the method is fully unsupervised, yet still
allows to visualize high-level structure of the data, as well as
to identify activity transitions, novelties and anomalies.

Thus, we think that both the (partly) supervised and the un-
supervised approach have advantages and limitations, which
should be considered in the light of specific application sce-
narios. Moreover, the approaches need not necessarily ex-
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Figure 7. Top: Daily routine ground truth for one day. Bottom: Inferred topic activations, based on a vocabulary of ten cluster labels. Ten topics
were estimated from six days of data, and the plot shows the activation of these topics on the day that was left out during training.

clude each other. E.g., the unsupervised approach can help to
detect anomalies, but not necessarily tell what exactly hap-
pened (e.g. getting up at night to go to the toilet, vs. get-
ting up to sleepwalk). This could be addressed by the use of
semi-supervision, e.g. by presenting the user with a visual-
ization of topic activations such as in Fig. 7, and asking him
to label the discovered topics. We intend to address these
and other limitations of the unsupervised approach, such as
the occasional modeling of noise present in the data, in fu-
ture work. Other possible extensions would be to use the
vector of pattern activations as a high-level feature for more
sophisticated classifiers, or to incorporate additional features
such as location information.

In conclusion, we believe that our approach is highly appeal-
ing for the field of activity recognition, and that so far we
have only exploited some of its potential. E.g., as can be seen
from the topic activation plots, the probabilistic nature of the
approach allows for handling of concurrent and overlapping
activities (expressed as co-activation of patterns), and also
transitions between activities (e.g. the user is about to go to
lunch). We consider these properties, together with the abil-
ity to decompose routines into their low-level constituents,
as a crucial advantage over traditional unsupervised tech-
niques such as clustering.
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