1. Content
This document contains the following additional details:

- GAP
 - Architecture details for GAP-LowRes, GAP-HighRes, GAP-DeepLab, GAP-ROI.
 - Training details.
 - Qualitative results.

- CRF experiments and CRF parameters used.

- More qualitative results of our saliency model.

- Details of G_2 guide labeller rules, and more qualitative examples of G_0, G_1, and G_2 strategies.

- Convnet training details for Seeder, Classifier, and Segmenter networks.

- Additional qualitative examples like figure 7 in the main paper.

2. GAP
2.1. Network details
See table 3 for the details of the GAP networks used. For GAP-ROI, we insert the GAP layer after the final linear layer, instead of after the penultimate layer as suggested by [5]. We note that the resulting functions are identical: GAP is a linear sum over the spatial dimensions, and the final layer performs a linear combination over the channel dimensions, so they can be swapped without changing the function. Also in practice, we find that there is only negligible difference in performance between the variants. We suggest for the future practitioners using GAP to include the pooling layer after the final layer at training time, and extract heatmaps from the final layer at test time.

2.2. Training GAP
All GAP network variants are trained with stochastic gradient descent (SGD) with minibatch size 15, momentum 0.9, weight decay 5×10^{-4}, and base learning rate 0.001, decreased by the factor of 10 at every 2000 iterations. The training stops at 8000 iterations.

2.3. Qualitative examples
See figure 1 for qualitative examples. We observe that GAP-LowRes, GAP-HighRes, and GAP-ROI show qualitatively similar results, while GAP-DeepLab has significantly low quality with repeating patterns in the output. The output suggests that the learned filters have repeating patterns modulo ≈ 12 output pixels, which is the width of the dilated filters in DeepLab-LargeFOV [1] on conv5 features.

3. CRF
See table 1 for the segmenter performance after applying different combinations of CRF units, crf-seed, crf-loss, and crf-postproc. Combination of crf-loss and crf-postproc on the GAP-HighRes seed gives 50.4 mIoU, giving 12.9 mIoU boost over the vanilla seed. However, we do not see such a gain when either the CRF parameters or the seed type is changed. When CRF parameters are changed from v_1 to v_2, both of which are reasonable choices (see §3.1), we lose 5.2 mIoU. When the seed type is changed from GAP-HighRes to GAP-ROI, we lose 5.4 mIoU. The 12.9 mIoU boost thus seems fragile.

Our saliency-based model, on the other hand, gives a consistent ≥ 4 mIoU gain over the best CRF combination, regardless of the seed type used, showing superiority over CRF both in terms of performance and stability. It is possible to combine crf-loss and saliency, but our preliminary experiments show that it hurts the performance of the saliency-only case. Thus, crf-loss is excluded from our final model. See table 2 for all the combinations considered in our experiments.

3.1. CRF parameters
Throughout the main paper, we use the CRF parameters from the DeepLab-LargeFOV model [1], unless stated otherwise. The parameters are given by $w^{(1)} = 4$, $\theta_\alpha = 121$, and $\theta_\beta = 5$ for the appearance kernel, and $w^{(2)} = 3$ and $\theta_\gamma = 3$ for the smoothness kernel, following the notation of equation 3 in [3]. We always use the Potts model $\mu(x_i, x_j) = 1_{x_i = x_j}$ for compatibility function.

For some experiments, we also use parameters from [2].
Table 1. Results of the CRF variants on Pascal 2012 validation. v_1, v_2: CRF parameters from [2] and [1] respectively.

<table>
<thead>
<tr>
<th>Seed method</th>
<th>crf</th>
<th>val. set</th>
<th>mIoU</th>
<th>∆mIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP-HighRes</td>
<td>×</td>
<td>-seed</td>
<td>37.5</td>
<td>-12.9</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>-loss</td>
<td>50.4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>-postproc</td>
<td>45.2</td>
<td>-5.2</td>
</tr>
<tr>
<td>Saliency: G_2</td>
<td>✓</td>
<td>✓</td>
<td>55.2</td>
<td>+4.8</td>
</tr>
</tbody>
</table>

Table 2. Extension of table 1 showing all the combinations considered.

<table>
<thead>
<tr>
<th>Seed method</th>
<th>crf</th>
<th>val. set</th>
<th>mIoU</th>
<th>∆mIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAP-HighRes</td>
<td>×</td>
<td>-seed</td>
<td>37.5</td>
<td>-12.9</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>-loss</td>
<td>50.4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>-postproc</td>
<td>45.2</td>
<td>-5.2</td>
</tr>
<tr>
<td>Saliency: G_2</td>
<td>✓</td>
<td>✓</td>
<td>55.2</td>
<td>+4.8</td>
</tr>
</tbody>
</table>

which uses $w^{(1)} = 10$, $\theta_\alpha = 80$, and $\theta_\beta = 13$ for the appearance kernel, and $w^{(2)} = 3$ and $\theta_\gamma = 3$ for the smoothness kernel.

4. Saliency

See figure 2 for more examples of the MSRA training samples for our weakly supervised saliency model. Samples corresponding to Pascal categories are excluded from the training.

See figure 3 for qualitative examples of our saliency model on the Pascal images. We observe that the saliency model does fail in examples usually when the central salient object is not Pascal category, or when the scene is cluttered.

5. G_2 guide labeller algorithm

We introduce details of the algorithm for G_2 strategy of combining seed and saliency signals (§5.3 of the main paper). As mentioned in the main paper, we follow five simple ideas:

1. We treat seeds as reliable small size point predictors of each object instance.

2. We assume the saliency might trigger on objects that are not part of the classes of interest.

3. If a seed touches a connected component R^f_i, it should take the label of the seed.

4. If two (or more) seeds touch the same foreground component, then we want to propagate all the seed labels inside it.

5. When in doubt, mark as ignore.

The detailed procedure is given as follows.

We compute the set of connected components of the saliency foreground mask with area $\geq 1\%$ of the image size, $\{R^f_i\}_i$, and similarly for the set of connected components of the seeds, $\{R^s_i\}_i$. For each R^f_i, we assign a ground truth label on it depending on how many foreground seed categories it intersects with:

- 0 category: R^f_i is then either a false positive from the saliency (e.g. salient object that is not part of the classes of interest), or a false negative from the seeds. We don’t commit to any of those cases by marking with “ignore” label.
• 1 category: \(R_i^{fg}\) is delineating the full extent of the instance for the seed. Put the class label from the seed.

• \(\geq 2\) categories: \(R_i^{fg}\) is a combination of instances from multiple classes. Use dense CRF inference inside \(R_i^{fg}\), with unaries set by the seed(s), to assign precise pixel-wise labels in \(R_i^{fg}\).

After assigning pixel-wise labels on each \(R_i^{fg}\), we perform the following operations regarding the seed connected components \(R_j^s\):

• When a seed \(R_j^s\) intersects with some \(R_i^{fg}\), but is not strictly covered by \(R_i^{fg}\), we put “ignore” labels on the seed region bleeding out of \(R_i^{fg}\), assuming that the saliency mask provides a better delineation of the object.

• If a seed \(R_j^s\) touches two or more foreground regions, it will propagate its label to all of them.

• Whenever there is an isolated seed \(R_j^s\) not intersecting with any \(R_i^{fg}\), we treat it as a reliable foreground prediction missed by saliency, and include it in the final guide labelling.

See figure 4 for the qualitative examples of guide labelling strategies, \(G_0\), \(G_1\), and \(G_2\). Note that \(G_2\) produces much more precise labelling with the access to rich localisation information from the seeds. We will publish the code.

6. Convnet training details

Saliency. The network is DeepLab-v2 ResNet, and follows the training procedure for DeepLab-v2 ResNet in [1].

Segmenter. The network is DeepLab-v1, and is trained with stochastic gradient descent (SGD) with minibatch size 15, momentum 0.9, weight decay \(5 \times 10^{-4}\), and base learning rate 0.001, decreased by the factor of 10 at every 2000 iterations. The training stops at 8 000 iterations.

Classifiers. All classifiers discussed in this paper are VGG-16 trained with stochastic gradient descent (SGD) with minibatch size 40, momentum 0.9, weight decay \(5 \times 10^{-4}\), and base learning rate 0.001, decreased by the factor of 10 at every 5 000 iterations. The training stops at 30 000 iterations.

7. Qualitative examples

See figure 5 and 6 for more qualitative examples of the seeds, saliency, \(G_2\) guide labeller output, and Guided Segmentation trained results on the training set. Seeds have high precision and low recall. The saliency foreground mask gives pixel-wise class-agnostic object extent information. \(G_2\) guide labeller combines both sources to generate an accurate class-wise guide labelling. The generated guide labelling can still be noisy especially if the saliency quality is low. However, the segmenter convnet averages out the noisy supervision to produce more precise predictions. CRF post-processing further refines the predictions.

References

Table 3. Detailed architecture of the GAP networks. Triplets denote (channel, height, width) for input and output; for layers, triplets denote (output channel dim, kernel height, kernel width). \(st = \text{stride and } \text{dil} = \text{width of dilated convolution}, \) with default values 1 for both, unless otherwise stated.
Figure 1. Qualitative examples of GAP output for GAP-LowRes, GAP-HighRes, GAP-DeepLab, and GAP-ROI. Note that all of them, except for GAP-DeepLab, are qualitatively similar. For GAP-DeepLab, we observe repeating patterns of certain stride. Examples are chosen at random.
Figure 2. Extension of figure 6 in the main paper. Examples of saliency results on its training data. We use MSRA box annotations to train a weakly supervised saliency model. Note that the MSRA subset employed is not biased towards the Pascal categories. Examples are chosen at random.
Figure 3. Extension of figure 4 in the main paper. Example of saliency results on Pascal images. We note that the saliency often fails when the central, salient objects are non-Pascal or when the scene is cluttered. Examples are chosen at random.
Figure 4. Extension of figure 5 in the main paper. Example results for three different guide labelling strategies, G_0, G_1, and G_2. The image, its image labels, seeds, and saliency map are their input. White labels indicate “ignore” regions. Note that G_0 and G_1 give qualitatively similar results, while G_2 produces much more precise labelling by exploiting rich localisation information from the seeds. Examples are chosen at random.
Figure 5. Extension of figure 7 in the main paper. Qualitative examples of the different stages of the Guided Segmentation system on the training images. White labels are “ignore” regions. Seeds have high precision and low recall; combined with saliency foreground mask using \(G_2\) guide labeller, object extents are recovered. The generated guide labelling can still be noisy; however, the segmenter convnet can average out the noise to produce more precise predictions. CRF post-processing further refines the predictions.
Figure 6. Extension of figure 7 in the main paper. More qualitative examples of the different stages of the Guided Segmentation system on the training images. White labels are “ignore” regions. Seeds have high precision and low recall; combined with saliency foreground mask using G_2 guide labeller, object extents are recovered. The generated guide labelling can still be noisy; however, the segmenter convnet can average out the noise to produce more precise predictions. CRF post-processing further refines the predictions.