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Supplementary material

1. Content

This document contains the following additional details:

• GAP

– Architecture details for GAP-LowRes,

GAP-HighRes, GAP-DeepLab, GAP-ROI.

– Training details.

– Qualitative results.

• CRF experiments and CRF parameters used.

• More qualitative results of our saliency model.

• Details of G2 guide labeller rules, and more qualitative

examples of G0, G1, and G2 strategies.

• Convnet training details for Seeder, Classifier, and

Segmenter networks.

• Additional qualitative examples like figure 7 in the

main paper.

2. GAP

2.1. Network details

See table 3 for the details of the GAP networks used. For

GAP-ROI, we insert the GAP layer after the final linear layer,

instead of after the penultimate layer as suggested by [5].

We note that the resulting functions are identical: GAP is a

linear sum over the spatial dimensions, and the final layer

performs a linear combination over the channel dimensions,

so they can be swapped without changing the function. Also

in practice, we find that there is only negligible difference in

performance between the variants. We suggest for the future

practitioners using GAP to include the pooling layer after

the final layer at training time, and extract heatmaps from

the final layer at test time.

2.2. Training GAP

All GAP network variants are trained with stochastic gradi-

ent descent (SGD) with minibatch size 15, momentum 0.9,

weight decay 5 × 10−4, and base learning rate 0.001, de-

creased by the factor of 10 at every 2 000 iterations. The

training stops at 8 000 iterations.

2.3. Qualitative examples

See figure 1 for qualitative examples. We observe that

GAP-LowRes, GAP-HighRes, and GAP-ROI show qualitat-

ively similar results, while GAP-DeepLab has significantly

low quality with repeating patterns in the output. The out-

put suggests that the learned filters have repeating patterns

modulo ≈ 12 output pixels, which is the width of the dilated

filters in DeepLab-LargeFOV [1] on conv5 features.

3. CRF

See table 1 for the segmenter performance after apply-

ing different combinations of CRF units, crf-seed,

crf-loss, and crf-postproc. Combination of

crf-loss and crf-postproc on the GAP-HighRes

seed gives 50.4 mIoU, giving 12.9 mIoU boost over the

vanilla seed. However, we do not see such a gain when

either the CRF parameters or the seed type is changed.

When CRF parameters are changed from v1 to v2, both

of which are reasonable choices (see §3.1), we lose 5.2
mIoU. When the seed type is changed from GAP-HighRes

to GAP-ROI, we lose 5.4 mIoU. The 12.9 mIoU boost thus

seems fragile.

Our saliency-based model, on the other hand, gives a

consistent ≥ 4 mIoU gain over the best CRF combination,

regardless of the seed type used, showing superiority over

CRF both in terms of performance and stability. It is pos-

sible to combine crf-loss and saliency, but our prelim-

inary experiments show that it hurts the performance of the

saliency-only case. Thus, crf-loss is excluded from our

final model. See table 2 for all the combinations considered

in our experiments.

3.1. CRF parameters

Throughout the main paper, we use the CRF parameters

from the DeepLab-LargeFOV model [1], unless stated oth-

erwise. The parameters are given by w(1) = 4, θα = 121,

and θβ = 5 for the appearance kernel, and w(2) = 3 and

θγ = 3 for the smoothness kernel, following the nota-

tion of equation 3 in [3]. We always use the Potts model

µ(xi, xj) = 1xi=xj
for compatibility function.

For some experiments, we also use parameters from [2],
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Table 1. Results of the CRF variants on Pascal 2012 validation. v1, v2: CRF parameters from [2] and [1] respectively.

Seed method crf val. set

-seed -loss -postproc mIoU ∆mIoU

GAP-HighRes ✪ ✪ ✪ 37.5 −12.9
✪ Xv1 Xv1 50.4 0

✪ Xv2 Xv2 45.2 −5.2
Saliency: G2 55.2 +4.8

GAP-ROI ✪ ✪ ✪ 37.6 −12.8
✪ Xv1 Xv1 45.0 −5.4

Saliency: G2 54.6 +4.2

Table 2. Extension of table 1 showing all the combinations considered.

Seed method crf val. set

-seed -loss -postproc mIoU ∆mIoU

GAP-HighRes ✪ ✪ ✪ 37.5 −12.9
✪ Xv1 Xv1 50.4 0

✪ Xv1 ✪ 46.4 −4.0
✪ ✪ Xv1 45.5 −4.9
✪ Xv2 Xv2 45.2 −5.2

Xv1 ✪ ✪ 33.0 −17.4
Saliency: G2 55.2 +4.8

GAP-ROI ✪ ✪ ✪ 37.6 −12.8
✪ Xv1 Xv1 45.0 −5.4
✪ Xv2 Xv2 44.2 −6.2

Saliency: G2 54.6 +4.2

which uses w(1) = 10, θα = 80, and θβ = 13 for the ap-

pearance kernel, and w(2) = 3 and θγ = 3 for the smooth-

ness kernel.

4. Saliency

See figure 2 for more examples of the MSRA train-

ing samples for our weakly supervised saliency model.

Samples corresponding to Pascal categories are excluded

from the training.

See figure 3 for qualitative examples of our saliency

model on the Pascal images. We observe that the saliency

model does fail in examples usually when the central salient

object is not Pascal category, or when the scene is cluttered.

5. G2 guide labeller algorithm

We introduce details of the algorithm for G2 strategy of

combining seed and saliency signals (§5.3 of the main pa-

per). As mentioned in the main paper, we follow five simple

ideas:

1. We treat seeds as reliable small size point predictors of

each object instance.

2. We assume the saliency might trigger on objects that

are not part of the classes of interest.

3. If a seed touches a connected component R
fg
i ,it should

take the label of the seed.

4. If two (or more) seeds touch the same foreground com-

ponent, then we want to propagate all the seed labels

inside it.

5. When in doubt, mark as ignore.

The detailed procedure is given as follows.

We compute the set of connected components of the sa-

liency foreground mask with area ≥ 1% of the image size,

{Rfg
i }i, and similarly for the set of connected components

of the seeds, {Rs
j}j . For each R

fg
i , we assign a ground

truth label on it depending on how many foreground seed

categories it intersects with:

• 0 category: R
fg
i is then either a false positive from

the saliency (e.g. salient object that is not part of the

classes of interest), or a false negative from the seeds.

We don’t commit to any of those cases by marking

with “ignore” label.



• 1 category: R
fg
i is delineating the full extent of the

instance for the seed. Put the class label from the seed.

• ≥ 2 categories: R
fg
i is a combination of instances

from multiple classes. Use dense CRF inference inside

R
fg
i , with unaries set by the seed(s), to assign precise

pixel-wise labels in R
fg
i .

After assigning pixel-wise labels on each R
fg
i , we perform

the following operations regarding the seed connected com-

ponents Rs
j :

• When a seed Rs
j intersects with some R

fg
i , but is not

strictly covered by R
fg
i , we put “ignore” labels on the

seed region bleeding out of R
fg
i , assuming that the sa-

liency mask provides a better delineation of the object.

• If a seed Rs
j touches two or more foreground regions,

it will propagate its label to all of them.

• Whenever there is an isolated seed Rs
j not intersecting

with any R
fg
i , we treat it as a reliable foreground pre-

diction missed by saliency, and include it in the final

guide labelling.

See figure 4 for the qualitative examples of guide labelling

strategies, G0, G1, and G2. Note that G2 produces much

more precise labelling with the access to rich localisation

information from the seeds. We will publish the code.

6. Convnet training details

Saliency. The network is DeepLab-v2 ResNet, and fol-

lows the training procedure for DeepLab-v2 ResNet in [1].

Segmenter. The network is DeepLab-v1, and is trained

with stochastic gradient descent (SGD) with minibatch size

15, momentum 0.9, weight decay 5× 10−4, and base learn-

ing rate 0.001, decreased by the factor of 10 at every 2 000
iterations. The training stops at 8 000 iterations.

Classifiers. All classifiers discussed in the paper are VGG-

16 trained with stochastic gradient descent (SGD) with min-

ibatch size 40, momentum 0.9, weight decay 5× 10−4, and

base learning rate 0.001, decreased by the factor of 10 at

every 5 000 iterations. The training stops at 30 000 itera-

tions.

7. Qualitative examples

See figure 5 and 6 for more qualitative examples of the

seeds, saliency, G2 guide labeller output, and Guided Seg-

mentation trained results on the training set. Seeds have

high precision and low recall. The saliency foreground

mask gives pixel-wise class-agnostic object extent inform-

ation. G2 guide labeller combines both sources to generate

an accurate class-wise guide labelling. The generated guide

labelling can still be noisy especially if the saliency qual-

ity is low. However, the segmenter convnet averages out

the noisy supervision to produce more precise predictions.

CRF post-processing further refines the predictions.
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Layers VGG-16 GAP-LowRes GAP-HighRes GAP-ROI GAP-DeepLab

[4] [5] [2] [1]

input (C, H, W) (3, 224, 224) (3, 321, 321) (3, 321, 321) (3, 321, 321) (3, 321, 321)
2× conv1 (64, 3, 3) Same as Same as Same as Same as

pad = 1 VGG-16 VGG-16 VGG-16 VGG-16

pool1 (-, 2, 2) Same as Same as Same as (-, 3, 3)
pad = 0 VGG-16 VGG-16 VGG-16 st = 2, pad = 1

2× conv2 (128, 3, 3) Same as Same as Same as Same as

pad = 1 VGG-16 VGG-16 VGG-16 VGG-16

pool2 (-, 2, 2) Same as Same as Same as (-, 3, 3)
pad = 0 VGG-16 VGG-16 VGG-16 st = 2, pad = 1

3× conv3 (256, 3, 3) Same as Same as Same as Same as

pad = 1 VGG-16 VGG-16 VGG-16 VGG-16

pool3 (-, 2, 2) Same as Same as Same as (-, 3, 3)
pad = 0 VGG-16 VGG-16 VGG-16 st = 1, pad = 1

3× conv4 (512, 3, 3) Same as Same as Same as Same as

pad = 1 VGG-16 VGG-16 VGG-16 VGG-16

pool4 (-, 2, 2) Same as None None (-, 3, 3)
pad = 0 VGG-16 st = 1, pad = 1

3× conv5 (512, 3, 3) Same as Same as Same as (512, 3, 3)
pad = 1 VGG-16 VGG-16 VGG-16 dil = 2, pad = 2

pool5 (-, 2, 2) None None ROI-pool None

pad = 0 3× 3 windows

fc6 (4096, 7, 7) (1024, 3, 3) (1024, 3, 3) (1024, 1, 1) (1024, 3, 3)
pad = 0 pad = 1 pad = 1 pad = 0 dil = 12, pad = 12

fc7 (4096, 1, 1) None (1024, 3, 3) (1024, 1, 1) (1024, 1, 1)
pad = 0 pad = 1 pad = 0 pad = 0

GAP None GAP GAP Used after fc8 GAP

fc8 (20, 1, 1) Same as Same as Same as Same as

pad = 0 VGG-16 VGG-16 VGG-16 VGG-16

output heatmap (20, 1, 1) (20, 21, 21) (20, 41, 41) (20, 41, 41) (20, 41, 41)

Table 3. Detailed architecture of the GAP networks. Triplets denote (channel, height, width) for input and output; for layers, triplets

denote (output channel dim, kernel height, kernel width). st =stride and dil =width of dilated convolution, with default values 1 for

both, unless otherwise stated.



Image GAP-LowRes GAP-HighRes GAP-DeepLab GAP-ROI Ground truth

Figure 1. Qualitative examples of GAP output for GAP-LowRes, GAP-HighRes, GAP-DeepLab, and GAP-ROI. Note that all of them, except

for GAP-DeepLab, are qualitatively similar. For GAP-DeepLab, we observe repeating patterns of certain stride. Examples are chosen at

random.



Salient objects with boxes Saliency model result Salient objects with boxes Saliency model result

Figure 2. Extension of figure 6 in the main paper. Examples of saliency results on its training data. We use MSRA box annotations to

train a weakly supervised saliency model. Note that the MSRA subset employed is not biased towards the Pascal categories. Examples are

chosen at random.



Figure 3. Extension of figure 4 in the main paper. Example of saliency results on Pascal images. We note that the saliency often fails when

the central, salient objects are non-Pascal or when the scene is cluttered. Examples are chosen at random.



Image Seeds Saliency G0 G1 G2 Ground truth

Figure 4. Extension of figure 5 in the main paper. Example results for three different guide labelling strategies, G0, G1, and G2. The image,

its image labels, seeds, and saliency map are their input. White labels indicate “ignore” regions. Note that G0 and G1 give qualitatively

similar results, while G2 produces much more precise labelling by exploiting rich localisation information from the seeds. Examples are

chosen at random.
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Figure 5. Extension of figure 7 in the main paper. Qualitative examples of the different stages of the Guided Segmentation system on the

training images. White labels are “ignore” regions. Seeds have high precision and low recall; combined with saliency foreground mask

using G2 guide labeller, object extents are recovered. The generated guide labelling can still be noisy; however, the segmenter convnet can

average out the noise to produce more precise predictions. CRF post-processing further refines the predictions.
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Figure 6. Extension of figure 7 in the main paper. More qualitative examples of the different stages of the Guided Segmentation system on

the training images. White labels are “ignore” regions. Seeds have high precision and low recall; combined with saliency foreground mask

using G2 guide labeller, object extents are recovered. The generated guide labelling can still be noisy; however, the segmenter convnet can

average out the noise to produce more precise predictions. CRF post-processing further refines the predictions.


