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Abstract: Progress towards advanced systems for assisted or even autonomous
driving is leveraging recent advances in recognition and segmentation methods.
Yet, we are still facing challenges in particular in bringing reliable driving to inner
cities. Anticipation becomes a key element in order to react timely and prevent
accidents. In this paper we argue that it is necessary to predict at least 1 second
and we thus propose a new model that jointly predicts ego motion and pedestrian
motion over such large time horizons. Our experimental results show that it is
indeed possible to predict pedestrian movements at the desired time horizons. We
also show that both sequence modeling of trajectories as well as our novel method
of long term odometry prediction are essential for best performance.
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1 Introduction

While methods for automatic scene understanding have progressed rapidly over the past years, it is
just one key ingredient for assisted and autonomous driving. Human capabilities go beyond inference
of scene structure and encompass a broader type of scene understanding that also lends itself to
anticipating the future.

Anticipation in complex and cluttered inner city traffic situations is key in preventing collisions and
maintaining practical safety distances by predicting future trajectories of e.g. pedestrians and cars.
Even at conservative and careful driving speeds of 25miles/hour (∼ 40km/hour) in residential areas,
the distance traveled in 1 second corresponds roughly to the breaking distance. Perfect anticipation
on a 1 second time horizon would therefore support safe driving at such speeds. In this paper, we
focus on predicting future trajectories from observations on-board vehicles over long-time horizons.
We focus on pedestrians due to the particular importance for safety.

Existing works on on-board pedestrian trajectory prediction such as [1, 2] require the 3D positions
of pedestrians which are difficult to estimate reliably in unconstrained environments. Moreover, the
considered video sequences have linear or no vehicle ego-motion. Other works such as [3, 4, 5]
also consider the problem of pedestrian trajectory prediction, but in a social context and focus on
stationary or overhead camera videos.

Motion as observed from the vehicle’s on-board cameras is determined by two types of motion –
vehicle egomotion and pedestrian motion. Our key contribution is to formulate a two-stream model
for pedestrian bounding box prediction and odometry (vehicle ego motion). We build on recent
success in the field of autonomous driving [6, 7] to predict odometry. However, the focus in [6, 7]
was on short time horizons - which is insufficient to compensate for the recording from a mobile
platform over long time horizons. Our contributions in detail are: 1. First approach to long-term
prediction of pedestrian bounding boxes from a mobile platform. 2. The first method for predicting
odometry over long time horizons. 3. Detailed experimental evaluation of alternative architectures
illustrating the importance and effectiveness of using a two-stream architecture.
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Figure 1: Two stream architecture for prediction of future pedestrian bounding boxes.

2 On-board pedestrian prediction

We begin by formally describing the problem. A bounding box corresponding to the ith pedestrian
observed on-board a vehicle at time step t can be described by the top-left and bottom-right pixel
coordinates: bti = {(xtl, ytl), (xbr, ybr)}. We want to predict the future bounding box sequence
Bfuture (where | Bpast |= m) of the pedestrian. We condition our predictions on the past bounding box
sequence Bpast, the past odometry sequence Opast and the corresponding future odometry sequence
Ofuture of the vehicle. The future odometry sequence Ofuture is predicted conditioned on the past
odometry sequence Opast and on-board visual observation. Odometry sequences consists of the speed
st and steering angle dt of the vehicle, that is, ot = (st, dt) at time-step t.

Bfuture = [bt+1
i , ..., bt+n

i ] |
{

Bpast = [bt−m
i , ..., bti], Opast = [ot−m, ..., ot], Ofuture = [ot+1, ..., ot+n]

}
The prediction of future bounding box and odometry sequences constitute a multivariate sequence to
sequence learning task. RNN encoder-decoder architectures are suitable and popular [8, 9]. They
consist of an encoder RNN (RNNenc) that reads in the input sequence and produces a summary
vector v. This summary vector is used by the decoder RNN (RNNdec) for prediction. We propose a
two-stream RNN model that consists of two specialist RNN encoder-decoder pairs (streams); one for
(conditioned) bounding box prediction and another for odometry prediction (see Figure 1). We use
LSTMs as RNN encoders and decoders. We begin by describing the odometry prediction stream.

Odometry prediction. The past odometry Opast is input to the encoder RNN in the odometry
prediction stream which embeds it into a summary vector vodo. The past odometry of the vehicle
gives a strong cue about the future short term (∼100ms) odometry, the visual observation on-board
the vehicle can help in the longer term prediction of odometry; e.g. bends in the road, obstacles
etc. Similar to [7, 6] we employ a convolutional neural network (CNN-encoder) to embed the visual
information provided by the last observed frame; a visual summary vector vvis.

As we are interested in long-term (multi-step versus single-step in [7, 6]) odometry prediction; we
use a more complex CNN compared to [6] and during training we learn the parameters from scratch
(unlike [7]). Our CNN-encoder has 10 convolutional layers with ReLU non-linearities. We use a
fixed, small filter size of 3x3 pixels. We use max-pooling after every two layers. After max-pooling
we double the number of convolutional filters; we use {32,64,128,256,512} convolutional filters. The
convolutional layers are followed by three fully connected layers with 1024, 256 and 128 neurons and
ReLU non-linearities. The output of the last fully connected layer is the visual summary vvis. We use
a dropout layer (20% probability) before the last fully connected layer to obtain a robust embedding.

The decoder RNN in the odometry prediction stream takes as input the summaries vodo, vvis and
predicts the future odometry sequence Ofuture.

Two Stream Bounding Box and Odometry Prediction. The RNN encoder in the bounding box
prediction stream takes as input the concatenated bounding box sequence Bpast and the corresponding
vehicle odometry sequence Opast and produces the summary vbbox. The RNN decoder predicts the
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|Bpast|
Method Odometry 2 4 6 8

Kalman Filter x x 1938 1289 1098
RNN x 906 754 712 689

RNN-CL x 899 692 663 650
RNN-CL Ground-truth 742 417 353 349

Table 1: Bounding box prediction error (MSE) with varying |Bpast|

Method MSE

Social LSTM [5] 1514
Our RNN 695

Our BBox centers 648
Table 2: Bounding box cen-
ter prediction error (MSE).

|Bpast|,|Opast|
Method Streams Visual 4 8

Kalman Filter x None 1938 1098
RNN One None 621 555
RNN Two None 593 536
RNN Two RGB 565 516

Table 3: Evaluation of the two stream model (MSE) against a
joint model (Figure 1).
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Table 4: MSE per time-step of the
models in Table 1 row 1, 4, 5 and
Table 3 row 4.

future bounding box sequence Bfuture conditioned on the summary of vector vbbox of the RNN encoder
and the prediction of the RNN decoder of the odometry prediction stream for that time-step.

Model training We first train the odometry stream of our two-stream model independently. We then
train the bounding box prediction stream keeping the the parameters of the odometry prediction stream
fixed. We use mean square error for training, using the ADAM optimizer [10]. We fix the LSTM
hidden and cell state vector sizes to 128. For sequences in the training set longer than |Bpast|+ |Bfuture|
(|Opast + Ofuture| respectively) we use a sliding window to convert to multiple sequences. Moreover,
as the sequences in the training set can be of varying lengths, we use a curriculum learning (CL)
approach. We fix the length of the conditioning sequence |Bpast|, |Opast| and train for increasing longer
time horizons |Bfuture|, |Ofuture| (initializing the model parameters with those for shorter horizons).
This allows us to train on sequences shorter than |Bfuture|, |Ofuture| of the final model and leads to
faster convergence.

3 Experiments

Dataset and evaluation metric. We use the Cityscapes dataset [11] which contains 2975 training
and 1525 test high definition (recorded on-board a vehicle) video sequences of length 1.8 seconds (30
frames), with associated odometry information. The video resolution is 2048x1024 pixels. Pedestrian
bounding box tracks were obtained using the tracking by detection method of [12]. Detections were
obtained using the Faster R-CNN based method of [13]. We use as evaluation metric the mean
squared error (MSE) averaged across all time-steps and also report plots per time-step.

Evaluation of bounding box prediction. We first evaluate the bounding box prediction stream of
our two stream model, without conditioning it on predicted odometry. We predict 15 time-steps into
the future and report the results in Table 1. We compare its performance with a linear Kalman filter.
We evaluate the effectiveness of curriculum learning (CL) and as an oracle case compare against
a version in which the RNN encoder can see the past odometry (concatenated with Bpast) and the
RNN decoder can see the true future odometry. We also vary the length of the conditioning sequence
|Bpast|. In Table 1, we see that our RNN encoder-decoder model (2nd row) outperforms the linear
Kalman filter (1st row). This shows that many bounding box sequences have a non-linear trajectory
and therefore cannot be modelled by a Kalman filter. In order to ensure comparability, training/test
sets are kept constant across varying |Bpast|). We see that increasing the length of the conditioning
sequence improves the model performance saturating at |Bpast| = 8. Curriculum learning (CL)
improves performance (2nd to 3rd row). Furthermore, in oracle study (4th row) our RNN model
performs significantly better. This shows that knowledge odometry is crucial for good performance.

Comparison with Social LSTM [5]. We compare our RNN encoder-decoder model with the vanilla
LSTM model of Alahi et al. [5] (with 128 neurons) that predicts trajectories independently in Table 2.
Both models are trained to predict sequences of bounding box centers. Our RNN model (without
CL) performs better as it is more robust to mistakes during recursive prediction. The model of [5]
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Last visual observation Prediction: T + 5 Prediction: T + 10 Prediction: T + 15

Pedestrians 1 Pedestrians 1 Pedestrians 1

Pedestrians 2 Pedestrians 2 Pedestrians 2

Pedestrian 1 Pedestrian 1 Pedestrian 1

Pedestrian 2 Pedestrian 2 Pedestrian 2

Figure 2: Visual examples of prediction of pedestrian bounding boxes by models in Table 3. Color
codes: Blue: Ground-truth, Red: Kalman Filter, Yellow: Our one-stream RNN, Green: Our two-
stream RNN with visual input. Top: case with vehicle deceleration, Bottom: case with turning
vehicle. In these cases with non-linear vehicle ego-motion, our two-stream RNN with visual input
outperforms other methods. Video results in supplementary material.

observes true past pedestrian coordinates during training. However, during prediction it observes its
own predictions causing errors to be propagated though multiple steps of prediction. Furthermore,
we compare both methods to the centers obtained from the predictions of our single-stream RNN
(second row of Table 1). The results show that we can improve upon bounding box center prediction
by predicting bounding boxes.

Evaluation of our two-stream model. We perform an ablation study of our two-steam model
in order to evaluate different aspects of our architecture: we compare to i) a joint single-stream
RNN encoder-decoder model where the encoder observes the concatenated past bounding box and
velocity sequence {Bpast,Opast} and the decoder jointly predicts the future odometry and bounding
box sequence {Bfuture,Ofuture} (with double the learn-able LSTM parameters for fair comparison); ii)
a model where the odometry specialist RNN has no CNN-encoder (odometry specialist decoder RNN
sees only vodo). We evaluate the models and report the results in Table 3, Table 4 and Figure 2. The
results show that jointly predicting odometry with pedestrian bounding boxes (3rd row) significantly
improves performance (2nd row). The superior performance of our two-stream model over a joint
model validates our modelling approach. Overall, our two-stream model with the CNN-encoder (and
odometry specialist RNN decoder seeing both {vodo, vvis}) performs best. This is due to the superior
performance of the odometry prediction stream with the CNN-encoder. Better odometry prediction is
leveraged for better bounding box prediction (4th row in Table 3).

4 Conclusion

We highlight the importance of anticipation for practical and safe driving inner city traffic scenes. We
contribute to this important research direction the first model for long term prediction of pedestrians
from on-board observations. We show predictions over long time horizons. Key to our success is
the first long term prediction of egomotion by predicting odometry into the future. We evaluate and
compare several different architecture choices and arrive at a two-stream encoder-decoder model
with separate losses on odometry prediction and pedestrian prediction.
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