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Abstract

Time that an imaging device needs to produce results is one of the most crucial factors in
medical imaging. Shorter scanning duration causes fewer artifacts such as those created by
the patient motion. In addition, it increases patient comfort and in the case of some imaging
modalities also decreases exposure to radiation.

There are some possibilities, hardware-based or software-based, to improve the imaging
speed. One way is to speed up the scanning process by acquiring fewer measurements. A
recently developed mathematical framework called compressed sensing shows that it is
possible to accurately recover undersampled images provided a suitable measurement matrix
is used and the image itself has a sparse representation.

Nevertheless, not only measurements are important but also good reconstruction models
are required. Such models are usually expressed as optimization problems.

In this thesis, we concentrated on the reconstruction of the undersampled Magnetic
Resonance (MR) images. For this purpose a complex-valued reconstruction model was
provided. Since the reconstruction should be as quick as possible, fast methods to find the
solution for the reconstruction problem are required. To meet this objective, three popular
algorithms FISTA, Augmented Lagrangian and Non-linear Conjugate Gradient were adopted
to work with our model.

By changing the complex-valued reconstruction model slightly and dualizing the problem,
we obtained an instance of the quadratically constrained quadratic program where both the
objective function and the constraints are twice differentiable. Hence new model opened
doors to two other methods, the first order method which resembles FISTA and is called
in this thesis Normed Constrained Quadratic FGP, and the second order method called
Truncated Newton Primal Dual Interior Point.

Next, in order to compare performance of the methods, we set up the experiments and
evaluated all presented methods against the problem of reconstructing undersampled MR
images. In the experiments we used a number of invocations of the Fourier transform to
measure the performance of all algorithms.

As a result of the experiments we found that in the context of the original model the
performance of Augmented Lagrangian is better than the other two methods. Performance
of Non-linear Conjugate Gradient and FISTA are about the same. In the context of the
extended model Normed Constrained Quadratic FGP beats the Truncated Newton Primal
Dual Interior Point method.
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic Definitions and Reconstruction Models . . . . . . . . . . . . 2

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

The structure of this brief introduction is as follows. We start from the general depiction
of the chapter. Next, we briefly summarize each subsection. Finally, we introduce some
notation exploited in the chapter.

Section 1.1 gives motivation which is behind the reconstruction of MR images. Moreover,
a few concepts such as sparsity or compressed sensing are briefly shown. In Section 1.2, we
cover basic definitions from convex optimization, and a few models that can be used in
the reconstruction of MR images are briefly presented. One of these models is the primary
model of this thesis. Section 1.3 gives references to previous work in the topic of sparse-
reconstruction algorithms. Section 1.4 shows the contributions of this thesis. Finally, Section
1.5 lists all chapters in this thesis. It also gives a brief introduction to every chapter.

If u = a + ib 2 C then <u = a denotes the real part of u and =u = b denotes the
imaginary part of u. Using this notation, we can also write u = <u + i=u.

We use notation u to denote a vector and it shouldn’t be confused with notation u used
to denote a scalar. However, if u 2 Rn or u 2 Cn we use notation uj to denote the j-th
entry of the vector. Notice that uj is a scalar in this case.

It is also assumed that indices start from zero. That is, if u 2 Rn then u
0

denotes the
first element of the vector u, u

1

denotes the second element of the vector u and so on. The
last element of the vector u can be accessed by un�1

.

1.1 Motivation

Imaging speed is an important factor in medical imaging. Usually, the longer the scanning
duration, the more the image is prone to errors due to the patient motion. In addition, the
patient comfort can be increased by speeding up the scanning process.

The imaging speed can be improved not only by constructing better hardware-based
technologies but also by developing better reconstruction algorithms, for example we can
reduce the scanning time by acquiring fewer measurements and then use them to reconstruct
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the original image. This raises the problem of how the measurement and the reconstruction
should be done in order to obtain the image which resembles the one obtained by taking all
measurements.

Compressed sensing (CS) [Donoho 2006; Candés et al. 2006] is a mathematical framework
which gives a partial solution to the posed problem. It shows that under certain conditions
on the measurement matrix, the original vector that is assumed to be strongly sparse can
be accurately recovered from a small number of measurements.

Vector is called strongly sparse if most of its coefficients vanish. However, the real data
are often not strongly sparse. This leads to another way of expressing the notion of the
vector sparsity, called weak sparsity. Vectors that are called weakly sparse or just sparse can
be represented by a few significant non-zero coefficients. In this thesis images are represented
by using the vector notation. Therefore the notion of the vector sparsity can readily be
extended to the images.

A lot of natural and medical images are not sparse in the pixel representation. However,
they can be sparse in other representations. Very often they exhibit the sparsity in a wavelet
domain or under the finite difference operator, or in some other sparse-transform domain.

Transform sparsity is also widely used in image compression, for example JPEG and
JPEG-2000 use discrete cosine transform (DCT) or a wavelet transform to map from the pixel
representation to the sparse one. However, while compression algorithms exploit transform
sparsity in the post-processing phase assuming that the acquisition was done before, the idea
of compressed sensing is to use the property of being sparse already during the acquisition
process.

The CS framework consists of three ingredients: a measurement matrix, a reconstruction
model and the sparsity assumption. In the context of Magnetic Resonance Imaging (MRI)
Lustig et al. [2007] proposed Variable density phase encoding and Seeger et al. [2009b]
proposed Bayesian experimental design as the methods to construct the measurement matrix.

The reader can find more information about the sparsity and used models in the
subsequent chapters.

1.2 Basic Definitions and Reconstruction Models

In this thesis two norms play the key roles. The first one is l
1

-norm defined as follows

8u2Cn ||u||l
1

:=

n�1

X

j=0

|ui| (1.1)

The second norm is called l
2

-norm and it is defined as follows

8u2Cn ||u||l
2

:=

v

u

u

t

n�1

X

j=0

|ui|2 (1.2)

Frequently, however, working with the square of the l
2

-norm is more useful

8u2Cn ||u||2l
2

=

n�1

X

j=0

|ui|2 (1.3)
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Both l
1

-norm and l
2

-norm are special cases of the lp-norm, where p 2 {1, 2, . . .}, defined as

8u2Cn ||u||p :=

0

@

n�1

X

j=0

|ui|p
1

A

1

p

(1.4)

In this thesis we also use the TV-seminorm. Although different versions of a TV-seminorm
can be proposed, we focus on the anisotropic version defined by

8u2Cn ||u||TV := ||rdu||l
1

(1.5)

where rd is a finite difference operator1.
In this thesis we deal with convex sets, convex functions and convex optimization

problems. Therefore it is instrumental to mention their definitions. A set D ✓ Rn is called
convex if and only if for every � 2 [0, 1] and every u,v 2 D the following holds

�u + (1� �)v 2 D

Consider a function f : Rn ! R where R := [�1,1] is the set of extended real numbers2.
We also assume that the function is defined on every point in Rn, however values f(u) = 1
or f(u) = �1 are possible for some u 2 Rn. We say that the function f is convex if and
only if for every � 2 [0, 1] and every u,v 2 Rn the following holds

f(�u + (1� �)v)  �f(u) + (1� �)f(v)

Let f : Rn ! R be a convex function and let F ✓ Rn be a non-empty, convex and closed
set3. By solving

u

? 2 arg min

u2F
f(u) (1.6)

we mean finding u

? 2 F ✓ Rn such that for every u 2 F the following (weak) inequality
holds f(u

?
)  f(u). Then, we call u

? a solution (or a minimizer) of problem (1.6), f(u

?
)

a (local) minimum of f , F a feasible set and f the objective function or the energy
function. Moreover, the condition u 2 F defines constraints imposed on the vector u. If
F := {u | 8j2J hj(u)  0} where J is a set of indices (possible empty) and for each j 2 J
function hj(·) is convex, then we say that problem (1.6) is a convex optimization problem.
In this thesis, however, we often deal with an unconstrained optimization problem where
F := Rn. In this case we sometimes write

u

? 2 arg min

u
f(u) (1.7)

and assume that the dimensionality of the Rn space can be inferred from the context.
In the whole thesis, we assume that the objective function f is a convex, continuous,

proper4 and coercive5 function. These assumptions warrant that the minimum of f exists
1Section 3.2 contains the definition of the finite difference operator used in this thesis.
2Arithmetic calculations involving both symbols 1 and �1 the reader can find in Rockafellar [1997].
3Appendix A.2 in Boyd and Vandenberghe [2004] presents the concepts of open sets, closed sets and

interior of a set.
4Function f is proper iff. 8u2D f(u) > �1^ 9u2Rn f(u) < 1.
5Function f is coercive iff. lim||u||

l

2

!1 f(u) = 1.
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and is unique, and that the set of minimizers is non-empty [Ekeland and Témam 1999].
More details about theory of convex optimization the reader can find in Rockafellar [1997],
Ekeland and Témam [1999] and Boyd and Vandenberghe [2004].

There are a few models that can be considered in the reconstruction of MR images. One
of the simplest models assumes that the signal is sparse in a wavelet-domain

arg min

u2Rn

1

2

||Xu� y||2l
2

+ ||Bau||l
1

(1.8)

where Ba is an orthonormal wavelet operator, X is some measurement matrix and  is a
model parameter (see Section 3.2 for more detailed definitions of Ba and X).

We can also consider similar model with the TV-seminorm instead of the l
1

-norm

arg min

u2Rn

1

2

||Xu� y||2l
2

+ ||u||TV (1.9)

where  is a model parameter.
A more sophisticated model includes both the l

1

-norm wavelet regularization and the
TV-seminorm

arg min

u2Rn

1

2

||Xu� y||2l
2

+ a||Bau||l
1

+ r||u||TV (1.10)

where a and r are model parameters.
Although, in theory MR images are real-valued, in reality they may contain the imaginary

part. This may happen due to the resonance frequency offsets, magnetic field inhomogeneities
or eddy currents [Bernstein et al. 2004]. Thus it could be reasonable to switch from the
real-valued models to the complex-valued ones and include a regularization term Bi that
penalizes the imaginary part

arg min

u2Cn

1

2

||Xu� y||2l
2

+ a||Bau||l
1

+ r||u||TV + i||Biu||l
1

(1.11)

where a, r and i are model parameters. Moreover, the operator Bi should be defined in
such a way that the following holds

||Biu||l
1

=

n�1

X

j=0

|=ui|

Although the last model (1.11) is defined over the complex-valued space, in this thesis we
consider slightly modified version of this model defined over the real-valued space. Chapter
3 describes both the operators and the model used in this thesis in more details.

1.3 Related Work

Several first order methods have been developed to solve the reconstruction problem (1.8)
and recently to deal with more complex models such as model (1.9) [Bioucas-Dias and
Figueiredo 2007, 2008; Figueiredo et al. 2009; Alfonso et al. 2009; Beck and Teboulle 2009a,b;
Yin et al. 2008; Goldstein and Osher 2009]. One of the difficulties that those methods face
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is non-differentiability of the presented models. Another problem is non-invertibility of some
operators such as Bi. Some authors like Lustig et al. [2007] use a differentiable surrogate
of the l

1

-norm and employ standard methods such as the Non-linear Conjugate Gradient
algorithm with backtracking line search to solve the reconstruction problem.

Although some earlier mentioned methods are quite general, it seems that direct ap-
proaches for solving problem (1.11) are needed in order to obtain the highest possible
performance. In this thesis two such methods are presented. The first one is based on the
method called FISTA [Beck and Teboulle 2009a,b] and the second one is based on Augmented
Lagrangian [Nocedal and Wright 1999]. The latter was also used to derive SALSA [Figueiredo
et al. 2009; Alfonso et al. 2009]. Also the equivalence was shown between the Bregman
method and the Augmented Lagrangian method in Yin et al. [2008]. Moreover, at least one
attempt has been made to exploit a second order method for solving problem (1.8) [Kim
et al. 2007].

In this thesis we assume, for the sake of simplicity, that images are square 6.

1.4 Contributions

The main contributions of our work are:

• Three popular first order methods, FISTA, Augmented Lagrangian and Non-linear
Conjugate Gradient, were adopted to work with model (1.11).

• The elastic extension of model (1.11) and its dual form was shown.

• Two methods, a first order method and a second order method, that can be used to
solve the elastic extension of model (1.11) were presented. The first order method is
called in this thesis Normed Constrained Quadratic FGP, and the second order method
is the adaptation of Interior Point method to work with the elastic extension of model
(1.11).

• The adopted FISTA and the adopted Augmented Lagrangian together with the Non-
linear Conjugate Gradient method were compared on the basis of model (1.11) that
arises during the reconstruction of MR images.

• Normed Constrained Quadratic FGP and the adopted Interior Point method were
compared on the basis of the elastic extension of model (1.11).

1.5 Outline of the Thesis

Chapter 1 is an introductory chapter. It gives motivation to the study of the reconstruction
of subsampled MR images. It also provides basic definitions of convex optimization theory,
presents related work and shows main contributions of our work. Finally, it outlines the whole
thesis. Chapter 2 focuses mainly on the representation of images used in the comparison.

6That is n
x

= n
y

where n
x

and n
y

is, respectively, the number of columns and the number of rows of a
given image.
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It also concisely and intuitively explains the concept of sparsity and compressed sensing.
In Chapter 3, we define linear operators that are used in this thesis and we give some
insight into the l

1

reconstruction model used in the MRI setting. In Chapter 4, we define
the system of linear equations called elastic linear system. A special case of this system
occurs frequently in algorithms as a subproblem to solve. This special case can be solved
efficiently by the method presented in that chapter. In Chapter 5, we present the concept of
projection and its generalization called proximity operator. Both concepts play important
roles in the reconstruction problem considered in this thesis. In Chapter 6, we present three
first order methods used to solve the problem given in Chapter 3. That is, we briefly describe
Non-linear Conjugate Gradient algorithm and we derive two other methods. One of them
is based on Augmented Lagrangian approach and the second one is based on the method
called FISTA. In Chapter 7, we introduce a slightly different model to the one introduced in
Chapter 3. The new model was obtained by considering additional l

2

-norm terms in the
regularization part of the original model. Next, we dualize the problem which happened to
be an instance of a quadratically constrained quadratic program. Finally, two algorithms
are introduced that are suitable for solving this type of problems. The first algorithm is a
first order method, whereas the second method is a second order method called Interior
Point. In Chapter 8, we describe the experiments and show results of the comparison of the
previously presented methods. In this chapter, we also discuss the results of the experiments.
Finally, in Chapter 9, we briefly summarize the whole thesis and show some possible future
directions.

Appendix A contains a list of notations used in this thesis. In Appendix B the reader
can find a more precise explanation of some notational issues. In particular, it includes an
explanation of the u

M symbol that is used in some other chapters. Appendix C contains
definitions that could be useful in understanding Chapter 6 and Chapter 7. However, readers
familiar with theory of convex optimization may easily skip the material presented in
Appendix C and regard it as a reference. Otherwise, a thorough reading of the definitions
that this appendix contains is recommended. Appendix D presents supplementary proofs not
included in the chapters. Appendix E defines the standard vectors. We use standard vectors
in Section 6.1 and in Section 7.4 to derive the gradient or Hessian of an energy function.
Appendix F briefly shows the differential calculus proposed by Minka [2001] and used in
this thesis. The notion of derivatives is needed since some algorithms such as Non-linear
Conjugate Gradient and Interior Point require the gradient or Hessian to be computed.
Appendix G contains a few line-search methods that can be used in order to find a suitable
step-size required by some algorithms. Appendix H shows additional figures obtained from
the experiments.

Although it is recommended to read this thesis consequently starting with Chapter 1,
there is the possibility to read the chapters in a different order. In order to avoid confusion
the graph of the chapter dependency (see Figure 1.1) have been included.
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Chapter 2

Representation and Sparsity

Contents
2.1 Representation of Images . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Sparsity of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

In this chapter, we explain how images are represented. We also show that images
considered in this thesis are sparse in some domains. We do this, by analysing their histograms
under some transformations. Thus, although we don’t provide any formal definition of the
sparsity the reader should acquire some intuitions that lie behind this concept.

Section 2.1 shows the representation of images that is used in this thesis. Briefly, images
are stored in the vector-form by taking their columns and gluing them together. Section
2.2 introduces the concept of sparsity and sparsifying transform which can be seen as a
generalization of the former. Finally, the concept of compressed sensing is briefly introduced
in Section 2.3.

2.1 Representation of Images

Ideally, the image would be a continuous mapping u from the R2 space into some set A called
the co-domain of u. In practice, however, the domain of the image u is some discrete and
bounded subset ⌦ of the set R2. So in reality we have u : ⌦ ⇢ R2 ! A. If we assume that
u(x, y) represents the light intensity which was measured at the point (x, y) then we should
take A := R as the co-domain. Similarly, if we are interested in color RGB images then
we should consider the following co-domain A := R3. In this thesis, however, we consider
complex-valued images, so in our case A := C.

Since we assumed that the domain of the image is discrete and bounded we can represent
images using the matrix notation. Therefore, if nx and ny denotes respectively the number of
columns and the number of rows of the image u, we can assume that u 2 Cn

y

⇥n
x and write

uy,x instead of u(x, y). We use notation u to denote the matrix-form or the vector-form
representation. Although, this is a convenient notation we rather use different one to denote
images. For every image u 2 Cn

y

⇥n
x we can consider its vectorized version g 2 Cn

y

n
x

obtained by taking columns of u and gluing them together to form a vector. Using the
matlab-like notation this corresponds to writing g := reshape(u, nxny, 1).

Taking the implementation into account, the reader should remember that by using the
vectorized notation, information about the number of rows ny and the number of columns nx
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is lost. So in practice either images should be implemented by using the matrix representation
or the information about nx and ny should be kept on the side. Additionally, in order to
visualize images we transform complex-valued images to the real-valued space by taking
absolute values of their coefficients.

2.2 Sparsity of Images

The image u is strongly sparse if it can be represented as a linear combination of small
number of basis bi, that is u =

P

i2D ↵ibi providing that the cardinality of D is small. In
practice images are often weakly sparse which means that most of the coefficients are small
but don’t have to be exactly zero. In this thesis, by sparsity we mean weak sparsity.

Histograms of sparse images exhibit characteristic peaks (Figure 2.1). Although, the
normalized histogram (Figure 2.2b) of the anatomical MRI scan (Figure 2.2a) also contains
the characteristic peak, it also contains ’bumps’ and so the sparsity of the image in real-valued
domain is slightly less accentuated than in the case of angiography.

The sparsifying transform maps the image from the one domain into the another domain
where the image is assumed to be sparse. We call this kind of domain the sparse domain.
The notion of the sparsifying transform can be seen as a generalization of the sparsity
itself, that is if the sparsifying transform is an identity mapping then the mapping gives
back the original domain. This concept of generalization is important in practice since
although some images are not sparse in the original domain they can exhibit sparsity in
some another domain (Figure 2.3). Therefore, if we know the sparsifying transform then we
can do the reconstruction in the sparse domain induced by the transform. Figure 2.5 shows
the normalized histograms of the image in some sparse domains induced by the imaginary
part penalizing operator, the wavelet transform and the finite difference operator. Formal
definitions of these operators can be found in Section 3.2, however at this moment the
reader, without going into details, can assume that those operators are just some sparsifying
transforms.

2.3 Compressed Sensing

Compressed sensing is a mathematical framework which deals with the problem of recon-
struction of images from the small number of measurements. This approach requires three
ingredients:

• The measurement matrix X with m rows and n columns.

• The reconstruction model.

• The sparsity assumption.

Figure 2.4 shows the two major ingredients of the compressed sensing together with the
sparsifying transform assumption.

The problem itself can be mathematically modeled as

y = Xu + "
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where u 2 Rn is the original image, y 2 Rm is the observation and " is noise. In addition,
since we are interested in taking small number of measurements, we assume that m << n.
In this thesis we use two different methods of producing measurement matrices, the first
one proposed in Lustig et al. [2007] and the second one proposed in Seeger et al. [2009b].

The reconstruction model relies on the sparsity assumption and usually two norms are
involved:

• The l
2

-norm || · ||l
2

which measures deviations from the observation.

• The l
1

-norm || · ||l
1

which can be seen as a sparsity-inducing term.

Therefore if we expect that a solution is sparse in the original domain the following model
could be suitable

arg min

u2Rn

1

2

||Xu� y||2l
2

+ ||u||l
1

(2.1)

where  2 R
+

is a model parameter and R
+

denotes the set of nonnegative real numbers.
On the other hand, if we expect from a solution to be sparse in a wavelet domain then we
should consider the following model

arg min

u2Rn

1

2

||Xu� y||2l
2

+ ||Bau||l
1

(2.2)

where Ba is an orthonormal wavelet transform. More general, if  is a sparsifying transform
then the following model can be considered

arg min

u2Rn

1

2

||Xu� y||2l
2

+ || u||l
1

(2.3)

The reader can find more about the reconstruction model used in this thesis in Section 3.3.
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(a) Angiogram
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(b) Normalized histogram

Figure 2.1: Angiogram (Figure 2.1a) showing a transverse projection of the vertebrobasilar
and the posterior cerebral circulation (http://en.wikipedia.org/wiki/Angiography). Coeffi-
cients of the image were shifted by 0.6. Its normalized histogram (Figure 2.1b) has sharp
peak which is also characteristic for weakly sparse images.

(a) MR image
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0
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(b) Pixel representation (only the real part)

Figure 2.2: Figure 2.2a shows the sagittal MR image of the subject 1 (slice 8, TE=92ms).
Since the image is complex-valued, the absolute value of every coefficient is shown. Figure
2.2b shows the normalized histogram of the Figure 2.2a in the pixel domain (only the real
part of the image is shown).
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(a) The ’natural’ image
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(b) Pixel representation
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(c) Wavelet representation

Figure 2.3: Normalized histograms of natural images might not be sparse. Most coefficients
of the normalized histogram (Figure 2.3b) are not small enough and there is more than one
peak. However, sparsity of the image can be still achieved in some another representation,
for example in the wavelet-domain (Figure 2.3c).
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Figure 2.4: Two main ingredients of the compressed sensing: a measurement matrix and a
reconstruction model. The third ingredient is the assumption that the image itself is sparse
in some domain.
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Chapter 3

l1 Reconstruction
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In this chapter, the reconstruction model that is central to this thesis is introduced. This
model itself is formulated as a convex optimization problem and consist of two major terms

• The data fitting term which measures deviations from the observed image. The smaller
this term is, the closer the image is to the observation.

• The regularization term which enforces sparsity. The smaller this term is, the sparser
the image is.

Section 3.1 shows the real-valued surrogate of the complex field C. This notation is useful
whenever work with real-valued models instead of the corresponding complex-valued models
is wanted. Section 3.2 introduces operators used in the reconstruction model. Although,
they are presented in the matrix-form, they are not stored in this form. Instead, a function
application whenever the matrix-vector multiplication takes place is performed. Section 3.3
introduces the MRI energy function which is the objective function of the optimization
problem. Section 3.4 shows how the transposition of the operators should be interpreted. In
this thesis we have to deal with operators that are defined in both real-valued space and
complex-valued space, and in order to make calculations easier proper interpretation of the
transposition is needed.

The following notation u

(j) is used to distinguish between different vectors and compo-
nents of the vector. For example, u

(a)

and u

(r) denote different vectors, whereas uj denotes
j-th entry of the vector u 2 Cn. However, we use notation Ba and Br to denote different
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operators. In the same way we distinguish scalars, that is µa and µr are different scalars. If
we want to refer to a particular entry of some matrix A then we use notation with double
indices, that is Ak,l denotes the (k, l) entry of the matrix A.

The notation u

M is used to denote matrix-form representation of the vector u. Precise
definitions can be found in Appendix B.

3.1 Real-valued Surrogate of the Complex Field

Put C := R2 to be the real-valued surrogate of the complex field C and assume from now
that calculations are done in Cn instead of C. If v 2 Rn then vi 2 R denotes the i-th entry
of the vector v. Similarly, if u 2 Cn then

ui =

"

<ui

=ui

#

denotes the i-th entry of the vector u and ui 2 C. Under this definition the absolute value
of z 2 C can be seen as

|<z + i =z| =

�

�

�

�

�

�

�

�

�

�

"

<z

=z

#

�

�

�

�

�

�

�

�

�

�

l
2

and l
1

-norm can be stated as a sum of l
2

norms. More precisely, if u 2 Cn then

||u||l
1

=

X

j

||uj ||l
2

Both sets Cn and R2n are transparent and can be used interchangeably.

3.2 Operators

The reconstruction model that we consider depends on the four matrices (also called operators
and some of them - transforms):

• The measurement matrix X.

• The wavelet transform Ba.

• The finite difference operator Br.

• The operator Bi that penalizes the existence of the imaginary part.

The measurement matrix X is a part of the data fitting term, whereas other operators occur
in the regularization term.

3.2.1 Discrete Fourier Operator

Consider a complex-valued vector u 2 Cn and its matrix form u

M. Moreover, let the matrix
u

M has ny rows and nx columns, and n = nx · ny. The 2-D discrete Fourier transform F

M
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is an operator defined as follows

(Fu)

M
�,! :=

1p
n

n
x

�1

X

x=0

n
y

�1

X

y=0

u

M
y,x exp

✓

�i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

(3.1)

In this thesis we use F to denote the discrete Fourier operator where the operation Fu

can be described as follows:

• Convert the vector u into its matrix-form u

M.

• Apply the 2-D discrete Fourier transform to the matrix u

M. Let the matrix u

M be
the result of this application.

• Convert the matrix u

M into its vector-form u.

Conversion can be done by using matlab-like reshape(A, m, n) operation1 which returns
the m-by-n matrix B. The elements of the matrix B were taken column-wise from the
matrix A. Then the conversion from the matrix-form u

M into the vector-form u can be
defined as u := reshape(uM, n, 1). Similarly, the conversion from the vector-form u into
the matrix-form u

M can be defined as u

M
:= reshape(u, ny, nx).

Apart from the discrete Fourier transform we also need its inverse. Define

(F

H
u)

M
y,x :=

1p
n

n
x

�1

X

!=0

n
y

�1

X

�=0

u

M
�,! exp

✓

i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

(3.2)

We can define F

H by using the same procedure to the one that we exploited in order to
establish F .

It can also be shown that (F (F

H
u))

M
= (F

H
(Fu))

M
= u

M (see Theorem D.1) which
shows that F

H is really the inverse of F .

3.2.2 Subsampling Fourier Operator

Consider the measurement matrix. In our setting, this matrix consists of two parts:

• The discrete Fourier transform which appears in MRI setting due to sampling of the
k-space.

• The subsampling operator which cuts off some columns in the Fourier spectrum.

Intuitively, the latter operator transforms an image from the high resolution one to the low
resolution one. We start from this operator

Definition 3.1 (Subsampling Operator). Let C be the real-valued surrogate of the complex
field C and v 2 Cn. For fixed subset of indices J ⇢ {0, 1, .., n� 1} let define

IJ ,· v :=

h

vj

i

j2J

The operator IJ ,· is the subsampling operator and set J is the set of chosen indices.
1 MathWorks: http://www.mathworks.com/help/techdoc/ref/reshape.html.

http://www.mathworks.com/help/techdoc/ref/reshape.html
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and its adjoint

Definition 3.2 (Upsampling Operator). Let C be the real-valued surrogate of the complex
field C and v 2 Cm. For fixed subset of indices J ⇢ {0, 1, .., n� 1} let define

(I ·,J v)j :=

8

<

:

vj if j 2 J

0 otherwise

where 0 2 R2 is the zero vector. The operator I ·,J is the upsampling operator.

Equipped with the subsampling operator we can define the subsampling Fourier operator
X. Note that this matrix depends on a set of indices that has to be chosen in advance.
Different choices of this set lead to different subsampling schemes, and consequently to
different reconstructions. So the reconstruction may be poorer under some choices of this
set. Often, the smaller the set, the harder the reconstruction. Therefore small sets of the
chosen indices usually lead to poor reconstructions.

Definition 3.3 (Subsampling Fourier Operator). Put

X := IJ ,·F

where F is the discrete Fourier operator and IJ ,· is the subsampling operator for fixed set
of chosen indices J ⇢ {0, 1, .., n� 1}.

Similarly, we can define the upsampling inverse Fourier operator

Definition 3.4 (Upsampling Inverse Fourier Operator). Put

X

H
:= F

H
I ·,J ,·

where F

H is the discrete inverse Fourier operator and I ·,J ,· is the upsampling operator for
fixed set of chosen indices J ⇢ {0, 1, .., n� 1}.

Note that X contains orthonormal rows and XX

H
= I holds but it doesn’t have to be

X

H
X = I. In this thesis the subsampling operator can be identified with dropping columns

of the matrix v

M.

3.2.3 Wavelet Operator

We used an orthonormal wavelet transform (Daubechies wavelet) to perform operation Bau

where Ba denotes the wavelet operator.
The wavelet operator will not be explained in this thesis. For further reading please see

Mallat [2008].

3.2.4 Finite Difference Operator

The finite difference operator contains two ’building blocks’: the horizontal finite difference
operator and the vertical finite difference operator. So, in order to define the finite difference
operator, first we should have a look at these two operators.
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The horizontal finite difference operator is a discrete approximation of the continuous
differential operator @ along the ’horizontal direction’. Definition 3.6 introduces the horizontal
finite difference operator and relates the operator to the swapping matrix. The latter is
defined as follows

Definition 3.5 (Swapping Matrix). Let A

(n)

2 Rn⇥n be

A

(n)

=

0

B

B

B

B

B

B

B

B

B

@

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 1

1 0 0 0 . . . 0

1

C

C

C

C

C

C

C

C

C

A

The matrix A

(n)

is called the swapping matrix.

Now we define the horizontal finite difference operator

Definition 3.6 (Horizontal Finite Difference Operator). Let P h be a permutation operator
such that

P h =

0

B

B

B

B

B

B

B

B

B

@

0n
y

In
y

0n
y 0n

y . . . 0n
y

0n
y 0n

y

In
y

0n
y . . . 0n

y

0n
y 0n

y 0n
y

In
y

. . . 0n
y

...
...

...
...

. . .
...

0n
y 0n

y 0n
y 0n

y . . . In
y

In
y

0n
y 0n

y 0n
y . . . 0n

y

1

C

C

C

C

C

C

C

C

C

A

= A

(n
x

)

⌦ In
y

where 0n
y denotes the ny-by-ny block-matrix of zeros, In

y

denotes the ny-by-ny identity
matrix and A

(n
x

)

is the swapping matrix. The operator defined as

r
1,h := P h � I

is the horizontal finite difference operator.

Note that for a given u we have (P hu)

M
(y,x)

= u

M
(y,[x+1]

n

x

)

where [·]n
x

is the cycling
operator 2. Therefore we also have (r

1,hu)

M
(y,x)

= u

M
(y,[x+1]

n

x

)

� u

M
(y,x)

.
Now we can easily derive transpose of the horizontal operator rT

1,h

rT
1,h = P

T
h � I

where

P

T
h =

0

B

B

B

B

B

B

B

B

B

@

0n
y 0n

y 0n
y . . . 0n

y

In
y

In
y

0n
y 0n

y . . . 0n
y 0n

y

0n
y

In
y

0n
y . . . 0n

y 0n
y

0n
y 0n

y

In
y

. . . 0n
y 0n

y

...
...

...
...

. . .
...

0n
y 0n

y 0n
y . . . In

y

0n
y

1

C

C

C

C

C

C

C

C

C

A

= A

T
(n

x

)

⌦ In
y

2
[a]

n

x

:= a mod n
x
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So P

T
h is also a permutation operator (P

T
h u)

M
(y,x)

= u

M
(y,[x�1]

n

x

)

and (rT
1,hu)

M
(y,x)

=

u

M
(y,[x�1]

n

x

)

� u

M
(y,x)

.
The vertical finite difference operator is the second operator which is required to fully

define the finite difference operator. It approximates continuous differential operator @ along
the ’vertical direction’.

Definition 3.7 (Vertical Finite Difference Operator). Let

P v =

0

B

B

B

B

B

B

B

@

A

(n
y

)

0n
y 0n

y . . . 0n
y

0n
y

A

(n
y

)

0n
y . . . 0n

y

0n
y 0n

y

A

(n
y

)

. . . 0n
y

...
...

...
. . .

...
0n

y 0n
y 0n

y . . . A

(n
y

)

1

C

C

C

C

C

C

C

A

= In
x

⌦A

(n
y

)

where 0n
y is the ny-by-ny block-matrix of zeros, In

x

denotes the nx-by-nx identity matrix
and A

(n
y

)

is the swapping matrix. The operator defined as

r
1,v := P v � I

is the vertical finite difference operator.

Note that for a given u we have (P vu)

M
(y,x)

= u

M
([y+1]

n

y

,x)

and so (r
1,vu)

M
(y,x)

=

u

M
([y+1]

n

y

,x)

� u

M
(y,x)

. The transpose of P v is

P

T
v =

0

B

B

B

B

B

B

B

@

A

T
(n

y

)

0n
y 0n

y . . . 0n
y

0n
y

A

T
(n

y

)

0n
y . . . 0n

y

0n
y 0n

y

A

T
(n

y

)

. . . 0n
y

...
...

...
. . .

...
0n

y 0n
y 0n

y . . . A

T
(n

y

)

1

C

C

C

C

C

C

C

A

= In
x

⌦A

T
(n

y

)

So P

T
v is also a permutation matrix and (P

T
v u)

M
(y,x)

= u

M
([y�1]

n

y

,x)

holds. SincerT
1,v = P

T
v �I,

we have (rT
1,vu)

M
(y,x)

= u

M
([y�1]

n

y

,x)

� u

M.
Finally, we can define the finite difference operator

Definition 3.8 (Finite Difference Operator). The whole finite difference operator can be
expressed as

r
1

:=

"

r
1,h

r
1,v

#

We also use symbol Br to denote the finite difference operator, that is Br := r
1

.

3.2.5 Total Variation Seminorm

The finite difference operator can be used to define seminorm. This leads to the so called
total variation seminorm. In this thesis the following definition is used
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Definition 3.9 (Anisotropic Total Variation Seminorm). Let r
1

be a finite difference
operator. The (anisotropic) total variation seminorm for u is

||u||TV := ||r
1

u||l
1

We may use the shorter name TV-seminorm to denote the (anisotropic) total variation
seminorm.

The total variation seminorm on the one hand induces smoothness of the image and on
the other hand it preserves sharp edges. This regularization term was proposed in Rudin
et al. [1992] in order to denoise images.

The finite difference operator Br derived in Subsection 3.2.4 leads to the circular and
anisotropic version of the total variation seminorm.

3.2.6 Imaginary Part Penalizing Operator

In the context of the MR images’ reconstruction, it is useful to penalize the imaginary part
(the imaginary part of the MR image might not vanish due to acquisition errors). This can
be done by introducing special operator

Definition 3.10 (Imaginary Part Penalizing Operator). Let C := R2 be the real-valued
surrogate of the complex field and u 2 Cn be such that uj := [<uj ,=uj ]

T 2 C. Let Bi 2
{0, 1}n⇥2n be defined as

Biu := [=uj ]j2{0,1,...,n�1}

Such operator Bi is the imaginary part penalizing operator.

Let look more precisely how matrix Bi can be defined

Bi =

0

B

B

B

B

B

B

B

@

0 1 0 0 0 0 . . . 0 0

0 0 0 1 0 0 . . . 0 0

0 0 0 0 0 1 . . . 0 0

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 . . . 0 1

1

C

C

C

C

C

C

C

A

= I ⌦ �

T
2

So its transpose is

B

T
i =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 . . . 0 0

1 0 0 0 0 0 . . . 0 0

0 0 0 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

0 0 0 0 0 0 . . . 0 0

0 0 1 0 0 0 . . . 0 0

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 . . . 0 0

0 0 0 0 0 0 . . . 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= I ⌦ �

2
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where �

2

:=

"

0

1

#

. It is easy to see that Bi drops the ’real positions’ and B

T
i fills vector with

zeros at the ’real positions’. More precisely, if v 2 Rn then B

T
i 2 {0, 1}2n⇥n and

8v2Rn

B

T
i v =

"

0

vj

#

j2{0,1,...,n�1}

Moreover BiB
T
i 2 {0, 1}n⇥n, B

T
i Bi 2 {0, 1}2n⇥2n,

BiB
T
i = I

and

B

T
i Bi =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 . . . 0 0

0 1 0 0 0 0 . . . 0 0

0 0 0 0 0 0 . . . 0 0

0 0 0 1 0 0 . . . 0 0

0 0 0 0 0 0 . . . 0 0

0 0 0 0 0 1 . . . 0 0

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 0 . . . 0 0

0 0 0 0 0 0 . . . 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

= I ⌦ �

2

�

T
2

Notice also the subtle difference between the following operators:

1. Av :=

"

0

vj

#

j

2. Cv := [vj ]j

For every v 2 Cn the first operator returns a vector which is still in Cn space (but with 0’s
at the ’real positions’), whereas the second operator maps from Cn to Rn.

3.2.7 Implementation Issues

Although, the matrix-form representation of the operators was shown, in practice, it would
not be possible to store all operators in this form. For example, dealing with the real-valued
image of the size 256⇥ 256 leads to the matrix-form representation of some operators to
have 256

4

= 4294967296 entries. This is far too much if we wanted to store them explicitly.
Fortunately, there is no need to store operators in this form. Instead, they were implemented
as functions that can be applied to vectors. For instance, implementation of the fast Fourier
transform (FFT)3 was used to represent the operation Fu and the inverse fast Fourier
transform4 was used to represent the operation F

H
u; provided that the set of chosen

indices J was given the subsampling operator IJ ,· uses matlab-like instruction u

M
(:,J ) to

implement IJ ,·u; the fast implementation of the wavelet transform5 was used to represent
3MathWorks: http://www.mathworks.com/help/techdoc/ref/fft2.html; one should also check if the

current implementation corresponds to the orthonormal discrete Fourier transform.
4MathWorks: http://www.mathworks.com/help/techdoc/ref/ifft2.html.
5FWTN written by Hannes Nickisch: http://hannes.nickisch.org/code/index.html.

http://www.mathworks.com/help/techdoc/ref/fft2.html
http://www.mathworks.com/help/techdoc/ref/ifft2.html
http://hannes.nickisch.org/code/index.html
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operation Bau; matlab function diff was executed whenever the finite difference operator
Br was used; and finally, matlab-like expression u(2 : 2 : end) was executed whenever the
operation Biu took place.

Matrix-vector multiplication operations of the operators exhibit the following time
complexity c(Xv) = O(n log(n)) and 8j2{a,r,i} c(Bjv) = O(n) where n accounts for the
number of entries of the vector v and c(Av) denotes the time complexity of performing the
operation Av.

3.3 l
1

Reconstruction of the MR Images

Consider the reconstruction of a MR image from the incomplete Fourier measurements
under the assumption that the image has sparse representation under some transformation.
Let u 2 Cn be the complex-valued image. Suppose that y 2 Cm is the noisy observation
given by the subsampling Fourier operator X. The relation between the observation y and
the image u is modeled as

y = Xu + " (3.3)

where " ⇠ N(0,�2

I) is interpreted as noise. In this thesis the matrix X is called the mea-
surement matrix. Let  be a sparsifying transform; the linear operator that transforms the
image from the pixel-valued representation to the sparse representation. The reconstruction
problem can now be formulated as the following unconstrained optimization problem

arg minu2Cn

1

2

||Xu� y||2l
2

+ || u||l
1

(3.4)

Intuitively, formula (3.4) can be interpreted as a trade-off between the fidelity of the
reconstruction to the measured data where the error is measured as a squared l

2

norm
|| · ||2l

2

and sparsity of the vector  u. It is well-known that the latter can be done by the
sparsity-inducing term || · ||l

1

[Chen et al. 1999; Lustig et al. 2007; Seeger et al. 2009b]. The
parameter  can be seen as a trade-off parameter. So, in other words, we want to find a
solution u that is both ’close’ to the observation y and  u is ’sparse enough’.

The objective function of the optimization problem (3.4) is not differentiable. Therefore
some popular methods such as Non-linear Conjugate Gradient [Lustig et al. 2007] cannot
be directly applied. One may consider the differentiable surrogate of the || · ||l

1

defined as

||z||" :=

X

j

q

|zj |2 + " for every z 2 Cn

and convert the non-differentiable objective function into the differentiable one.
In the MRI setting it is useful to optimize over the complex-valued domain instead of

the real-valued one. The reason lies on the imperfections of the acquisition process, that is
because of resonance frequency offsets, magnetic field inhomogeneities or eddy currents, the
reconstruction contains a phase [Bernstein et al. 2004; Seeger et al. 2009a].

Since some expressions in problem (3.4) are not complex analytic we cannot work directly
in the complex vector space. Instead we use R2 as a surrogate of the complex field C (Section
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3.1). This leads to the real-valued models over twice as many variables as the corresponding
complex-valued models contain.

In the MRI setting we may consider each of the following operators, the wavelet transform
Ba, the finite difference operator Br and the imaginary part penalizing operator Bi to be
the sparsifying transform. Although the imaginary part penalizing operator works already
with the real-valued surrogate of the complex set, we have to slightly redefine the other
operators:

8j2{a,r} Bj := Bj ⌦ I

2

(3.5)

The optimization problem suitable for the reconstruction of MR images uses the following
objective function

Definition 3.11 (MRI Energy Function). Let Ba, Br, Bi, X be, respectively, the wavelet
transform, the finite difference operator, the imaginary part penalizing operator and the
subsampling Fourier operator, and assume that all of them are tailored to work with the
real-valued surrogate of the complex set C := R2. For every u 2 Cn let

 

MRI
(u) :=

1

2

||Xu� y||2l
2

+ a||Bau||l
1

+ r||Bru||l
1

+ i||Biu||l
1

(3.6)

where for each j 2 {a, r, i} j := ⌧j�, ⌧j is a model parameter and �2 is the noise variance.
The function  MRI

(·) is called the MRI energy function. Operators Ba, Br, Bi are also
called penalizing operators.

Since the subsampling Fourier operator can be written as X = IJ ,·F (Definition 3.3),
different choice of IJ ,· leads to different measurement matrices. In this thesis two kinds of
the measurement matrices are considered. The first one produced by Variable density phase
encoding and the second one produced by Bayesian experimental design. These measurement
matrices differ from each other by IJ ,·.

Equipped with the MRI energy function we can consider the following model, which is
formulated over Cn-space, for reconstructing MR images

arg min

u2Cn

 

MRI
(u) (3.7)

By putting more than one sparsifying transform, we expect that the reconstruction is
sparse in more than one transform-domain6. It is known that ’natural’ images are sparse
under the wavelet transform [Taubman and Marcellin 2002]. The study of MR images have
shown that the orthonormal wavelet transform or the finite difference operator can be
also used as a sparsifying transform for MRI (Figure 3 in Lustig et al. [2007] shows the
transform-domain sparsity of the axial brain image and the contrast enhanced angiogram of
the peripheral leg under the wavelet transform, dct and finite difference operator).

3.4 Transpose Operation

In this thesis we often mix operators such as the subsampling Fourier operator X which
works with the complex-valued space with operators that work with the real-valued space.

6Domain of the transformed image.
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Model (3.7) is such an example of mixing operators working in different spaces. Therefore
we need clear notion of the transpose operation (·)T .

Let start from the following term

||Xu� y||2l
2

where u, y and X are complex-valued. From the definition of the norm in the complex-valued
space, that is ||u||l

2

=

p
u

H
u, we can derive

||Xu� y||2l
2

= ||Xu||2l
2

+ ||y||2l
2

� 2<
⇣

(X

H
y)

H
u

⌘

where <(u) = v denotes the vector v obtained from the vector u by taking the real-valued
part of the latter. Let ⌫(·) : C ! C be a mapping from the complex-valued field into the
real-valued surrogate defined as

8z:=a+ib2C ⌫(z) :=

"

a

b

#

The extension of this mapping to vectors can readily be obtained by

8z2Cn ⌫(z) := [⌫(zj)]
n
j=1

Note that under this definition of the mapping the term <
⇣

(X

H
y)

H
u

⌘

can be rewritten

as ⌫(XH
y)

T ⌫(u). Note that the latter is a real-valued dot product. Therefore

||Xu� y||2l
2

= ||⌫(Xu)||2l
2

+ ||⌫(y)||2l
2

� 2⌫(XH
y)

T ⌫(u) (3.8)

and so the right hand side of eq. (3.8) can be computed by using real-valued vectors twice
as long as their complex-valued counterparts. Consider now ||Xu||2l

2

, then we have

||Xu||2l
2

= ||⌫(Xu)||2l
2

= ⌫(u)

T
M⌫(u)

where M is some real-valued symmetric matrix called here M = X

H
X. Put A :=

X

H
X +

P

j2{a,r,i} µjB
T
j Bj where Ba, Br and Bi are operators described in Section

3.2. Note that this matrix is symmetric since X

H
X and B

T
j Bj are symmetric for every

j 2 {a, r, i}.
In this thesis, for the sake of brevity, the mapping ⌫ is dropped and we use only the

real-valued calculations.
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Solving the Elastic Linear System
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All algorithms presented in Chapter 7 and some algorithms presented in Chapter 6
require some specific linear system to be solved. In this thesis this system is called the
elastic linear system and it can be solved if we concentrate only to the penalizing operators
presented in Section 3.2. Moreover, since the dimensionality of the elastic linear system
discussed in this chapter is high1, solving this system should not only be possible but also
computationally efficient. In practice, computing the solution of this system should be at
most linearithmic2 with respect to its dimensionality.

Section 4.1 presents the elastic linear system, a system of linear equations to be solved,
and which occurs in some algorithms as a subproblem. If operators that occur in the elastic
linear system happened to be exactly those defined in Section 3.2 then the whole linear
system can be solved. Section 4.2 shows how to do this efficiently. Although in this thesis we
mainly work with the three penalizing operators, the wavelet operator, the finite difference
operator and the imaginary part penalizing operator, one could consider different set of the
penalizing operators. Section 4.2 briefly discusses the possibility of solving the elastic linear
system where different penalizing operators are used.

4.1 Elastic Linear System

Some algorithms such as Augmented Lagrangian (Section 6.3) or Normed Constrained
Quadratic Fast Gradient Projection (Section 7.3) requires the following problem to be solved

Definition 4.1 (Elastic Model). Let X, Bj be some operators, u, d

(j), v be some vectors
and µj some parameters for j 2 {1, 2, . . . ,K}. The following model

arg min

u

8

<

:

E(u) :=

1

2

||Xu� y||2l
2

+

K
X

j=1

µj

2

||Bju� d

(j)||2l
2

+ v

T
u

9

=

;

(4.1)

1If the linear system is Au = b, then the dimensionality of this system is equal to the number of entries
of the vector u.

2The time and space complexity of solving the system should be at most O(n log(n)).
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is called the elastic model.

Taking gradient of the E(u) and setting it to zero yields the following linear system to
solve

Definition 4.2 (Elastic Linear System).

(X

H
X +

K
X

j=1

µjB
T
j Bj)u = X

H
y +

K
X

j=1

µjB
T
j d

(j) � v (4.2)

which is called here the elastic linear system.

Solution of the system given by eq. (4.2) is a minimizer of problem (4.1). Moreover, it is
also useful to identify the matrix on the left-hand side of eq. (4.2) and the vector on the
right-hand side of eq. (4.2). Therefore consider the following definition

Definition 4.3 (Elastic Matrix and Elastic Observation). Let

A := X

H
X +

X

j2{1,2,...,K}

µjB
T
j Bj (4.3)

be the elastic matrix and

b := X

H
y +

X

j2{1,2,...,K}

µjB
T
j d

(j) � v (4.4)

be the elastic observation. Note that, the elastic matrix is symmetric in the sense described
in Section 3.4.

In Chapter 7 it is more clear why the names were chosen in this way. In addition, we
also assume that all operators, vectors and parameters are known from the context.

4.2 Efficient Way of Solving the Elastic Linear System

The solution of the system given by eq. (4.2) can be obtained if we know the inverse of
the elastic matrix (Definition 4.3). Although in general it might not be possible to solve
this system since the system depends on the operators X and Bj for j 2 {1, 2, . . . ,K}, in
this thesis we have to only deal with the operators, the subsampling Fourier operator X,
an orthonormal wavelet operator Ba, the finite difference operator Br and the imaginary
part penalizing operator Bi, defined in Section 3.2. Moreover, we consider the set of chosen
indices J containing those indices which correspond to cutting off columns in the Fourier
space. Therefore, in the context of our interest

I ·,J IJ ,· = Ij2J

where IJ ,· is the subsampling operator, I ·,J is the upsampling operator3, Ij2J := diag(�j2J )

and �j2J is the Kronecker delta defined as

�j2J :=

8

<

:

1 if j 2 J

0 otherwise

3 Definition 3.1 and Definition 3.2.
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Moreover, the elastic matrix has the following form

A := X

H
X +

X

j2{a,r,i}

µjB
T
j Bj (4.5)

and the elastic observation is

b := X

H
y +

X

j2{a,r,i}

µjB
T
j d

(j) � v (4.6)

Under this definition of the elastic matrix and the elastic observation we have to show how
the following system

Au = b (4.7)

can be solved.
We have

Au = b

(X

H
X + µaB

T
a Ba + µrB

T
r Br + µiB

T
i Bi)u = b

(X

H
X + µaI + µrB

T
r Br + µiB

T
i Bi)u = b

F (X

H
X + µaI + µrB

T
r Br + µiB

T
i Bi)u = Fb

(I ·,J IJ ,·F + µaF + µrFB

T
r (FB

T
r )

T
F + µiF (B

T
i Bi)F

H
F )u = Fb

(Ij2J + µaI + µrD + µiDi)Fu = Fb

D̄Fu = Fb

(4.8)

where
Ij2J := diag(�j2J )

D := FB

T
r (FB

T
r )

T

Di := FB

T
i BiF

H

D̄ := (Ij2J + µaI + µrD + µiDi)

Therefore the solution of the linear system given by eq. (4.7) is

u = F

H
D̂Fb

where D̂ := (Ij2J + µaI + µrD + µiDi)
�1

(4.9)

and we can conclude that
A

�1

= F

H
D̂F (4.10)

It only remains to show how the matrix D̂ can be computed. Let start from the following
matrix Df := Ij2J + µaI + µrD. Since

B

T
r =

h

P

T
h � I, P

T
v � I

i

where (see Subsection 3.2.4 for more details)

(P

T
h u)

M
(y,x)

= u

M
(y,[x�1]

n

x

)

(P

T
v u)

M
(y,x)

= u

M
([y�1]

n

y

,x)
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by the virtue of shift theorem we have

(FP

T
h u)

M
(!,�)

= e�i2⇡ �

n

x

(Fu)

M
(!,�)

and
(FP

T
v u)

M
(!,�)

= e
�i2⇡ !

n

y

(Fu)

M
(!,�)

Therefore

D = F

h

P

T
h � I, P

T
v � I

i

(F

h

P

T
h � I, P

T
v � I

i

)

T

=

h

diag(e�i2⇡ �

n

x � 1)F diag(e
�i2⇡ !

n

y � 1)F

i

"

F

Hdiag(e�i2⇡ �

n

x � 1)

H

F

Hdiag(e
�i2⇡ !

n

y � 1)

H

#

= diag(|e�i2⇡ �

n

x � 1|2) + diag(|e�i2⇡ !

n

y � 1|2)

(4.11)

Summarizing Df = Ij2J + µaI + µrD is a diagonal matrix. Moreover, because µa > 0,
µr > 0 and µi > 0 all diagonal entries of the matrix are strictly positive and so the matrix
itself has full rank4. Note that the operator Df can also be seen as the following function in
the Fourier domain

(Dfu)

M
(!,�)

= (��2J + µa + µr(|e
�i2⇡ !

n

y � 1|2 + |e�i2⇡ �

n

x � 1|2))uM
(!,�)

(4.12)

Let v 2 Cn be a complex-valued vector and n := nx·ny. Now the matrix B

T
i Bi = I⌦�

2

�

T
2

gains the interpretation of the operator which leaves the imaginary part intact, that is

B

T
i Bi {v := a + ib} = ib (4.13)

Under this interpretation we have

F

H
v � F

H
v

2

= B

T
i Bi(F

H
v) (4.14)

where v is the complex conjugate. Let define the reverse operation in the following way

v

M
R := [v

[n�k]n
]

n�(1,1)
k=(0,0) (4.15)

where n := (ny, nx), k := (y, x) and v
[(a,b)]

(n

a

,n

b

)

is the cycling operator5. We may also use
notation vR to refer to (4.15). Notice that the reverse operation is a self-invertible and linear
operation, that is both (vR)R = v and (↵v + �u)R = ↵(v)R + �(u)R hold (Lemma D.3 and
Lemma D.4).

Since F

H
v = F

H
vR holds (Lemma D.2) we can establish equivalence between eq. (4.14)

and

F

H v � vR

2

= B

T
i Bi(F

H
v) (4.16)

Let P a be a linear operator defined as

P av :=

v � vR

2

4 The embedding D
f

:= D
f

⌦ I
2

(see eq. (3.5)) preserves the invertibility of this matrix.
5v

[(a,b)]

(n

a

,n

b

)

:= v
(a mod n

a

, b mod n

b

)

.
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By plugging P a into eq. (4.16) yields the following equation

F

H
(P av) = B

T
i Bi(F

H
v) (4.17)

Therefore

P av = FB

T
i BiF

H
v

P av = Div

and we can conclude that

P a = Di (4.18)

Interestingly, the left hand side of eq. (4.18) doesn’t require any Fourier transform to be
performed, and so P av can be efficiently computed. The following lemma shows that P a is
a projection

Lemma 4.1. Let P a be a linear operator defined as

P av :=

v � vR

2

Then the following holds
8v2Cn

P a(P av) = P av

That is P a is a projection.

Proof. Pick up v 2 Cn. Then we have P av =

v�v
R

2

. Moreover,

P a(P av) =

P av � (P av)R

2

=

v � vR � vR + (vR)R

4

=

v � vR

2

= P av

where we used the property that the operator (·)R is self-invertible and linear.

Define P h :=

v+v
R

2

. Likewise P a the operator P h is also a projection. Because we have
P av = �(P av)R and P hv = (P hv)R we call P a the projection onto antihermitians and
P h the projection onto hermitians.

Since (P a + P h)v = v and P a(P hv) = P h(P av) = 0 every complex-valued vector
v 2 Cn can be decomposed in v = va + vh where va := P av and vh := P hv. We call
the equation v = va + vh the decomposition in antihermitians and hermitians. This is
the orthogonal decomposition in the sense that the antihermitian va is orthogonal to the
hermitian vh, or in other words the equation v

T
h va = 0 holds.

Consider the following equation

(Df + µiP a)Fu = Fb (4.19)

where Df = Ij2J + µaI + µrD is a diagonal matrix with strictly positive entries6. Since
P a = Di holds both equations. (4.19) and (4.8) are equivalent. Let f := Fu and f = fa+fh

be the decomposition in antihermitians and hermitians. Since P a is the projection onto
antihermitians we have P af = P a(fa+fh) = fa. Similarly, we have P hf = P h(fa+fh) =

6 See discussion under eq. (4.11).
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fh. Let r := Fb and r = ra + rh be the decomposition in antihermitians and hermitians.
Now, we can establish the following equation

Dff + µifa = ra + rh (4.20)

Eq. (4.20) is equivalent to eq. (4.19). In addition, let

Df = Da + Dh

where Df = diag d, Da := diag da, Dh := diag dh, da := P ad and dh := P hd. Therefore

Dff + µifa = (Da + Dh)(fa + fh) + µifa

= Dafa + Dafh + Dhfa + Dhfh + µifa = ra + rh

where ra is the antihermitian and rh is the hermitian. Moreover, both Dhfh, Dafa are
hermitians and both Dhfa, Dafh are antihermitians. Therefore we can establish the
following two relations

Dhfh + Dafa = rh (4.21)

Dafh + Dhfa + µifa = ra (4.22)

From eq. (4.22) we have

fa = (Dh + µiI)

�1

(ra �Dafh) (4.23)

Computing inverse of the matrix Dh + µiI is allowed because it is a diagonal matrix with
strictly positive entries. Plugging eq. (4.23) into eq. (4.21) yields

fh = (Dh �Da(Dh + µiI)

�1

Da)

�1

(rh �Da(Dh + µiI)

�1

ra) (4.24)

Since the matrix Df is a diagonal matrix with strictly positive entries, we have Dh < Da

where < denotes the component-wise weak inequality �. Moreover, since

a >
a2

a + µ
for any µ > 0

the following also holds
Dh � Dh(Dh + µiI)

�1

Dh

where � denotes the component-wise strong inequality >. Therefore

Dh �Da(Dh + µiI)

�1

Da < Dh �Dh(Dh + µiI)

�1

Dh � 0

and so computing inverse of the matrix Dh �Da(Dh + µiI)

�1

Da is allowed. Moreover,
computing fa and fh is not only possible but it is also tractable because both matrices
Dh + µiI and Dh �Da(Dh + µiI)

�1

Da are diagonal and so their inverse can be efficiently
computed. Then u can be recovered from the following equation

fa + fh = Fu (4.25)
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In summary, the solution of the linear system (4.7) is

u = F

H
(fa + fh) (4.26)

where
ra := P aFb

rh := P hFb

fh = (Dh �Da(Dh + µiI)

�1

Da)

�1

(rh �Da(Dh + µiI)

�1

ra)

and
fa = (Dh + µiI)

�1

(ra �Dafh)

This shows how the linear system given by eq. (4.2) can be solved in the context of our
interest. Moreover, the space and time complexity of applying operators Ba, Br, Bi, P a,
P h and X to any vector v is at most linearithmic with respect to the number of entries
of the vector v, and the complexity of computing the inverse of any diagonal matrix is in
worst case linear. Therefore the solution given by eq. (4.26) can also be computed in the
linearithmic time and space complexity.

4.3 Efficient Way of Solving the Elastic Linear System -
Different Set of the Penalizing Operators

One can consider the objective function (Definition 3.11) with different penalizing operators.
If obtained elastic linear system satisfies some conditions, briefly discussed in this section,
this linear system can still be efficiently solved. Similarly to eq. (4.8), we have

(Ij2J +

X

j

µjDj)Fu = Fb (4.27)

where Dj := F (B

T
j Bj)F

H . Note that, if there exist k such that Dk is a diagonal matrix
with strictly positive entries, and for every j 6= k the matrix Dj is a diagonal matrix with
non-negative entries, then (Ij2J +

P

j µjDj) is also a diagonal matrix with strictly positive
entries, and so the system (4.27) can be efficiently solved. The solution is

u = F

H
(Ij2J +

X

j

µjDj)
�1

Fb

To conclude, although in this thesis we mainly focus on three penalizing operators Ba, Br,
Bi, one can consider different set of the penalizing operators, and use algorithms presented
in Chapter 6 and Chapter 7 assuming that for every v the efficient way of performing the
following operation

(Ij2J +

X

j

µjDj)
�1

v

is provided.
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Most algorithms described in this thesis split the original problem to subproblems that
can be efficiently solved by using a projection or proximity operators. This chapter provides
definitions and show some instances of these operators that play crucial roles in this thesis.

In Section 5.1, two important operators, a projection operator and a proximity operator,
are defined. In Section 5.2, a few special cases of the proximity operators are shown. Finally,
in Section 5.3, the soft-thresholding operator is introduced. This operator applied to a vector
comes into play as the solution of one of the subproblems.

5.1 From Projection to Proximity Operator

This section starts from the projection operator defined as

Definition 5.1 (Projection onto K). Assume that K 6= ; is a closed and convex subset of
Rn. For every y 2 Rn let

PK(y) := arg min

u2K

1

2

||u� y||2l
2

(5.1)

The operator PK(·) is called the projection operator.

Figure 5.1 shows geometrical interpretation of this concept. The projection operator is
the solution of the following problem

min

u2K

1

2

||u� y||2l
2

where K 6= ; is some closed and convex subset of Rn. The same problem can be also
formulated as an unconstrained problem

min

u2Rn

◆K(u) +

1

2

||u� y||2l
2

where ◆K(·) is the indicator function of the set K defined as

◆K(u) :=

8

<

:

0 if u 2 K

1 otherwise



38 Chapter 5. Proximity Operator

Although the indicator function ◆K is used nothing prevents us from using other functions.
This leads to the generalization of the projection operator known as the proximity operator

Definition 5.2 (Proximity Operator). Let g : Rn ! R be a continuous and convex function.
For every y 2 Rn let consider the following minimization problem

minimize

u2Rn

1

2

||u� y||2l
2

+ g(u)

which admits a unique solution denoted by the proxg(y). The operator proxg(·) is called the
proximity operator [Combettes and Pesquet 2010].

5.2 Examples of the Proximity Operator

In this thesis two special cases of the proximity operator are encountered. If we take
g(·) := || · ||l

1

in the proximity operator, we get a so called denoising problem defined as

Definition 5.3 (Denoising Problem). Let consider, for fixed y 2 Rn, the following mini-
mization problem

arg min

u2Rn

1

2

||u� y||2l
2

+ �||u||l
1

(5.2)

This problem is called the denoising problem.

We can also consider another version of the denoising problem with TV-seminorm instead
of L

1

-norm, that is

Definition 5.4 (TV-based Denoising Problem). Let consider, for fixed y 2 Rn, the following
minimization problem

arg min

u2Rn

1

2

||u� y||2l
2

+ �||u||TV (5.3)

This problem is called the TV-based denoising problem.

The problem related to the TV-based denoising problem is

Definition 5.5 (TV-based Deblurring Problem). For every y 2 Rn let

arg min

u2Rn

1

2

||Xu� y||2l
2

+ �||u||TV (5.4)

where X : Rn ! Rm is some linear operator. This problem is called the TV-based deblurring
problem.

5.3 Soft-Thresholding Operator

In this section we introduce soft-thresholding operator which can be used to obtain the
solution of the denoising problem. Soft-thresholding operator shrinks all coefficients of the
vector above the threshold in absolute value and kills completely other coefficients (see also
Figure 5.2). Formally this operator can be defined as follows
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Definition 5.6 (Soft-Thresholding Operator). For every non-zero z 2 R or z 2 C let

S⌧ (z) :=

z

|z| (|z|� ⌧)
+

where

(x)

+

:=

8

<

:

x if x > 0

0 otherwise

and ⌧ is the threshold. In addition we may consider the following extension to vectors. Let
z 2 Rn or z 2 Cn. Then

S⌧ (z) := [S⌧ (zi)]i2I

where I is the set of indices of the vector z. The operator S⌧ (·) is called the soft-thresholding
operator. This operator can also be readily extended to work with the real-valued surrogate of
the complex field, it is enough to define

|z| := ||z||l
2

for every z 2 C

where C := R2.

The following theorem establishes relationship between the proximity operator with
|| · ||l

1

and the soft-thresholding operator. It also shows that the soft-thresholding operator
is the solution of the denoising problem (Definition 5.3).

Theorem 5.1. The soft-thresholding operator is the solution of the denoising problem. More
precisely, the following holds

S⌧ (z) = prox⌧ ||·||
l

1

(z)

Proof. Proof can be found in Combettes and Wajs [2005].

By using Proposition 3.1 in Combettes and Wajs [2005] we can also deduce the following
statement

Corollary 5.1. Consider the following problem

arg min

u2Rn

1

2

||Gu� y||2l
2

+ ⌧ ||u||l
1

(5.5)

where G is some matrix. Let u

? 2 Rn. Then the following two statements are equivalent

• u

? is a solution of problem 5.5

• u

?
= prox�⌧ ||·||

l

1

(u

? � �GT
(Gu

? � y)) = S�⌧ (u

? � �GT
(Gu

? � y))

where 1

� � ||GT
G||l

2

.

Also worth mentioning is that the fixed-point equation provided in Corollary 5.1 can be
used to establish the fixed-point iteration in the Constant-step Forward-backward algorithm
[Combettes and Pesquet 2010].
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Figure 5.1: Geometrical interpretation of the projection operator. Intuitively, the solution of
the projection of a point u onto set K is the point PK(u) in set K which is the closest to u

among all points belonging to K.
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Figure 5.2: Figure shows linear response and soft-thresholding response S
1

(·) to one dimen-
sional variables in interval between 0 and 3. Threshold was set to be ⌧ := 1.
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In this chapter, two first order methods that are used in the comparison are derived.
Both deal with the problem of finding the minimizer of the MRI energy function (Definition
3.11). Furthermore, both algorithms have been derived from different frameworks. First
method comes from the FISTA framework. The second method comes from the Augmented
Lagrangian framework. In addition, the third algorithm used in the comparison called
Non-linear Conjugate Gradient is briefly shown.

Section 6.1 defines the differentiable surrogate of the l
1

-norm which is used to modify
the energy function. Next, the Non-linear Conjugate Gradient method is briefly presented.
Finally, the gradient of the modified energy function is derived. Section 6.2 describes Steepest
Descent which is a simple algorithm suitable for solving unconstrained problems with convex
and differentiable objective function. Next, Gradient Projection and Fast Gradient Projection
are presented. Both can be seen as an extension of Steepest Descent suitable for solving
optimization problems constrained to closed and convex feasible sets. Subsequently, FISTA
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and TV-FISTA are introduced. The former is a general method which exploits the proximity
operator in order to solve an optimization problem, latter was derived for problems with the
total-variation regularization. Finally, l

1

-FISTA is shown, a first order method that can be
used in order to solve problems with the regularization term of kind

P

j ||Bju||l
1

. Section 6.3
starts with the Variable Splitting and the Quadratic Penalty approaches. The former method
utilizes splitting in order to decouple the objective function by introducing new variables and
coupling them together. The main idea of the Quadratic Penalty approach is transforming the
equality constrained optimization problem into unconstrained one by introducing a special
function which penalizes for violating the equality constraints. The Augmented Lagrangian
approach augments the Quadratic Penalty approach with the Lagrangian in order to obtain
a method with better behavior. Finally, method based on the Variable Splitting approach
and the Augmented Lagrangian approach is derived. We also show application of this method
to the problem of finding the minimizer of the MRI energy function.

6.1 Non-linear Conjugate Gradient

6.1.1 Differentiable Surrogate of MRI Energy Function

Since the MRI energy function (3.6) is not differentiable, in order to apply the Non-linear
Conjugate Gradient method this energy function has to be modified

Definition 6.1 (Differentiable Surrogate of the MRI Energy Function). Let Ba, Br, Bi,
X be, respectively, the wavelet transform, the finite difference operator, the imaginary part
penalizing operator and the subsampling Fourier operator, and assume that all of them are
tailored to work with the real-valued surrogate of the complex set C := R2. Let || · ||" be the
differentiable surrogate of the l

1

-norm defined as

||s||" :=

X

j

q

||sj ||2l
2

+ " (6.1)

for some " > 0 and every s 2 Cn. For every u 2 Cn let

 

MRI
" (u) :=

1

2

||Xu� y||2l
2

+ a||Bau||" + r||Bru||" + i||Biu||" (6.2)

where for each j 2 {a, r, i} j := ⌧j�, ⌧j is a model parameter, �2 is the noise variance. The
function  MRI

(·) is called the differentiable surrogate of the MRI energy function. Operators
Ba, Br, Bi are also called penalizing operators.

Note that the differentiable surrogate of the l
1

-norm is an upper bound of the latter,
that is

||s||l
1

=

X

j

||sj ||l
2

<
X

j

q

||sj ||2l
2

+ " = ||s||" for every " > 0

Therefore, if " gets smaller this upper bound becomes more tight. However, in practice, we
may run in numerical troubles if we decide to pick too small ".



6.1. Non-linear Conjugate Gradient 43

6.1.2 Algorithm

Algorithm 1 Non-linear Conjugate Gradient Algorithm for Problem (3.7)
Require: Initial value u

0

1: t
max

:= 1

2: for k = 0, 1, . . . do
3: (f, g) :=

�

 

MRI
" (u

k
),r MRI

" (u

k
)

�

4: gSqNorm := ||g||2l
2

5: if k == 0 then
6: d := �g

7: else
8: ⌫ :=

gSqNorm
gSqNormOld+"

machine

where "machine is the machine precision
9: d := �g + ⌫d

10: if g

T
d � 0 then

11: Restart the search direction: d := �g

12: end if
13: end if
14: gSqNormOld := gSqNorm

15: {Line-search on the line
�

u

k
+ ↵d

 

↵
:}

16: tr := g

T
d

17: ti := (<g)

T =d� (=g)

T <d where <s :=

⇣

I ⌦ �

T
1

⌘

s and =s :=

⇣

I ⌦ �

T
2

⌘

s

18: r := 0.01

p

t2r + t2i
19: ↵ := t

max

20: fn =  

MRI
" (u

k
+ ↵d)

21: l := 1

22: while fn > f � ↵r and l < l
max

do
23: ↵ := � · ↵
24: fn =  

MRI
" (u

k
+ ↵d)

25: l := l + 1

26: end while
27: {We found good ↵}
28: {Update solution:}
29: u

k+1

= u

k
+ ↵d

30: {Adapt initial step size:}
31: if l > labove then
32: t

max

:= � · t
max

33: else if l == lbelow then
34: t

max

:=

t
max

�

35: end if
36: if stopping criterion is satisfied then
37: break the loop
38: end if
39: end for
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Algorithm 1 is a standard Non-linear Conjugate Gradient algorithm tuned to our setting
[Nocedal and Wright 1999]. Similar algorithm was also used by Lustig et al. [2007]. In our
setup l

max

:= 20, � := 0.6, labove := 3, lbelow := 1 and " := 4 · 10

�12. We also chose the
maximal number of iterations as a stopping criterion.

In order to obtain good efficiency of Algorithm 1 we have to minimize the number
of invocations of the fast Fourier transform which means that for any s the number of
occurrences of Xs and X

H
s should be minimal. Let

 reg(u) := a||Bau||" + r||Bru||" + i||Biu||" (6.3)

Note that

 

MRI
" (u + ↵d)

=

1

2

||X (u + ↵d)� y||2l
2

+  reg(u + ↵d)

=

1

2

||Xu� y||2l
2

+

↵2

2

||Xd||2l
2

+ ↵ (Xu� y)

T
d +  reg(u + ↵d)

=

1

2

||r||2l
2

+

↵2

2

||Xd||2l
2

+ ↵r

T
d +  reg(u + ↵d)

where r := Xu� y. In addition, the update step for u

k is

u

k+1

= u

k
+ ↵d

and can be transformed into

r

k+1

= r

k
+ ↵Xd

where r

k
:= Xu

k � y. Similarly, we have

r MRI
" (u)

= X

H
(Xu� y) +r reg(u)

= X

H
r +r reg(u)

This means that if we compute r

0

:= Xu

0�y before iterations start and maintain r

k along
the iterations, this algorithm requires only two invocations of the fast Fourier transform per
iteration: to compute Xd and to compute X

H
r.

Nocedal and Wright [1999] contains good introduction to both Conjugate Gradient
algorithm and Non-linear Conjugate Gradient.

6.1.3 Gradient

Recall the energy function used in the Non-linear Conjugate Gradient algorithm

 

MRI
" (u) :=

1

2

||Xu� y||2l
2

+  reg(u) (6.4)

where
 reg(u) := a||Bau||" + r||Bru||" + i||Biu||"
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We have to figure out gradient of the energy function given by eq. (6.4) in order to run the
Non-linear Conjugate Gradient algorithm. We have

r MRI
" (u) = X

H
(Xu� y) +r reg(u)

Let focus on r reg(u). For every sj 2 C, define

|sj |" :=

q

||sj ||2l
2

+ " (6.5)

Notice that given (6.5), for every s 2 Cn, the differentiable surrogate of the l
1

-norm can be
expressed as

||s||" =

X

j

|sj |"

Let ej be the j-th standard vector in Cn (the standard vectors were described in Appendix
E). Since rs

j

|sj |" =

s
j

|s
j

|
"

we have

rs||s||" =

X

j

1

|sj |"
ejsj (6.6)

Put s := Bu. Because of (6.6) we have (see also Appendix F)

ru||s||" = ru||Bu||" =

X

j

1

|sj |"
B

T
ejsj = B

T �
W

�1 ⌦ I

2

�

Bu (6.7)

where W is a diagonal matrix with the following diagonal elements

W j,j :=

q

||(Bu)j ||2l
2

+ "

Equipped with eq. (6.7) we can easily compute the whole gradient of  MRI
" (·).

6.2 FISTA

6.2.1 Gradient Projection

Steepest Descent. Consider the following unconstrained minimization problem

u

?
= arg min

u
f(u) (6.8)

where it is assumed that f is a convex and continuously differentiable function. A natural
algorithm that solves problem (6.8) could be the one which constructs a sequence {uk}k of
decreasing objective values, that is

8k8j<k f(uk) < f(uj)

In this context it means that directional derivative

f 0(u;d) := lim

h!0

f(u + hd)� f(u)

h
where ||d||l

2

 1

is negative. This suggests the following relation between two consecutive points

u

k+1

= u

k
+ ↵kd

k
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where ↵k is called the step-size and d

k is a descent direction. We have to also take a special
care of the choice of step-size. Otherwise the algorithm may not converge. Now we can
establish the following optimization problem to find the direction

d

k
= arg min

||d||
l

2

1

f 0(uk
;d)

and since f 0(u;d) = rf(u)

T
d also holds it follows that d

k
:= � rf(uk

)

||rf(uk

)||
l

2

. The whole
algorithm can be summarized as follows

Algorithm 2 Steepest Descent
Require: u

0

1: for k = 0, 1, . . . do
2: d

k
= �rf(u

k
)

3: Perform line-search, that is ↵k 2 arg min↵>0

f(u

k
+ ↵d

k
)

4: u

k+1

= u

k
+ ↵kd

k

5: if stopping criterion is satisfied then
6: break the loop
7: end if
8: end for

There are a few methods to find the step-size ↵k in Algorithm 2, for example it can be
found analytically or by using a backtracking line-search1.

We can use the maximal allowed number of iterations as the stopping criterion. Another
possibility is to monitor the two consecutive solutions and stop whenever the difference is
small enough. More precisely, the algorithm stops when the condition ||uk+1�u

k||l
2

< "stop

holds for some chosen in advance "stop.
Intuition behind the algorithm is straightforward, we want to find a descent direction d

and then minimize the objective function along the line given by d.
Gradient Projection. Consider the following optimization problem

u

?
= arg min

u2K
f(u) (6.9)

where K is a closed and convex set, f is a convex differentiable function with Lipschitz-
continuous gradient and with Lipschitz constant L, that is

8u,v ||rf(u)�rf(v)||l
2

 L||u� v||l
2

(6.10)

Lipschitz-continuity imposed on the gradient implies [Beck and Teboulle 2009a]

8u,v f(u)  f(v) +rf(v)

T
(u� v) +

L

2

||u� v||2l
2

(6.11)

Keeping fixed v := u

k and minimizing over u yields the Gradient Projection algorithm with
the following fixed point iteration

u

k+1

= PK(u

k � ↵rf(u

k
)) (6.12)

1Two backtracking line-search algorithms are presented in Appendix G.
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where ↵ is such that L  1

↵ and PK is a projection onto the set K (Definition 5.1).
Intuitively, the update step given by eq. (6.12) can be explained as follows. When the

descent direction d

k
= �rf(u

k
) and the step-size ↵ are chosen the algorithm makes a move

to the new point u

+

:= u

k
+ ↵d

k. If the point u

+ is feasible then u

k+1

:= u

+, otherwise
the projection PK warrants the new point u

k+1 to be feasible by taking u

k+1

:= PK(u

+

).
Now we can establish the following algorithm

Algorithm 3 Gradient Projection
Require: u

0, ↵ > 0

1: for k = 0, 1, . . . do
2: u

k+1

= PK(u

k � ↵rf(u

k
))

3: if stopping criterion is satisfied then
4: break the loop
5: end if
6: end for

where PP(u) is the projection of u onto the set K. The order of the rate of convergence
of this algorithm is O(1/k) [Beck and Teboulle 2009b].

Fast Gradient Projection. Fast Gradient Projection (FGP) warrants better theoretical
rate of convergence than Gradient Projection. The order of rate of convergence of FGP
is O(1/k2

) [Beck and Teboulle 2009b]. Fixed point iteration of FGP can be expressed as
follows

u

k
= PK(v

k � ↵rf(v

k
))

tk+1

=

1 +

p

1 + 4 t2k
2

v

k+1

= u

k
+

tk � 1

tk+1

(u

k � u

k�1

)

So speeding up was gained by taking the update step for v

k+1 to be a linear combination of
two feasible points u

k and u

k�1.
This idea can be summarized in the form of the following algorithm

Algorithm 4 Fast Gradient Projection
Require: u

0, v

1 , t
1

(by default t
1

:= 1), ↵ > 0

1: for k = 1, 2, . . . do
2: u

k
= PK(v

k � ↵rf(v

k
))

3: if stopping criterion is satisfied then
4: break the loop
5: else
6: tk+1

=

1+

p
1+4 t2

k

2

7: v

k+1

= u

k
+

t
k

�1

t
k+1

(u

k � u

k�1

)

8: end if
9: end for

where PK(u) is the projection of u onto the set K.
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6.2.2 Introduction to FISTA

FISTA. Fast Iterative Shrinkage/Thresholding Algorithm, or shorter FISTA, was introduced
to deal with the following optimization problem

minimize

u
{F (u) := f(u) + g(u)}

where it is assumed that both functions f and g are continuous and convex. In addition it is
assumed that f is continuously differentiable and has Lipschitz-continuous gradient with
Lipschitz-constant L, that is 8u,v ||rf(u)�rf(v)||l

2

 L||u� v||l
2

.
In Beck and Teboulle [2009a] fixed point iteration of FISTA was proposed to be

u

k
= prox↵g(v

k � ↵rf(v

k
))

tk+1

=

1 +

p

1 + 4t2k
2

v

k+1

= u

k
+ (

tk � 1

tk+1

)(u

k � u

k�1

)

where ↵  1

L and prox is the proximity operator (Definition 5.2).
The algorithm is similar to Fast Gradient Projection (Algorithm 4) and can be summarized

as follows

Algorithm 5 FISTA
Require: u

0, v

1 , t
1

(by default t
1

:= 1)
1: for k = 1, 2, . . . do
2: u

k
= prox↵g(v

k � ↵rf(v

k
))

3: if stopping criterion is satisfied then
4: break the loop
5: else
6: tk+1

=

1+

p
1+4 t2

k

2

7: v

k+1

= u

k
+

t
k

�1

t
k+1

(u

k � u

k�1

)

8: end if
9: end for

It was proven that FISTA exhibits the global convergence rate of order O(1/k2

) [Beck
and Teboulle 2009a]. Although FISTA is a general method the major difficulty is to find
the proximity operator prox↵g(·) in the closed-form. Note also that the difference between
Algorithm 4 and Algorithm 5 is that the former uses projection whereas the latter uses the
proximity operator.

6.2.3 Dual Norm

Consider the lp-norm given by eq. (1.4). For every u 2 Rn the dual of the lp-norm is

||u||⇤p := maximize

v2Rn

�

u

T
v | ||v||p  1

 

(6.13)
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In this thesis we focus only on the l
2

-norm. It can be shown that the l
2

-norm is self-dual
[Boyd and Vandenberghe 2004], that is

|| · ||⇤l
2

= || · ||l
2

(6.14)

We will use eq. (6.14) in Subsection 6.2.4 to derive the dual of the TV-seminorm.

6.2.4 Dual of the TV-seminorm

In this subsection, we show the dual form of the TV-seminorm. Later, we will use it in
Subsection 6.2.5 to derive TV-FISTA. Let start from the definition of P-Set

Definition 6.2 (P-Set). Let C := R2, the following set

P(n) =

�

p 2 Cn | ||pj ||l2  1

 

is the P-Set. If dimensionality of the problem can be inferred from the context we may use
P := P(n) to simplify notation.

Equipped with the definition of P-Set we can show the dual of the TV-seminorm

Theorem 6.1 (Dual of the TV-seminorm). Let T (u,p) =

P

i p

T
i si, s = Bru and P be

P-Set. Then we have
||u||TV = maximize

p2P
T (u,p)

where ||u||TV := ||Bru||l
1

(Subsection 3.2.5).

Proof. By duality of the l
2

-norm we have

||u||TV =

X

i

||si||l
2

=

X

i

maximize

||p
i

||
l

2

1

p

T
i si = maximize

p2P

X

i

p

T
i si = maximize

p2P
T (u,p)

Therefore the TV-seminorm can be reformulated as an optimization problem.

6.2.5 TV-FISTA

Consider the following TV-based deblurring problem

minimize

u

�

E(u) := ||u� y||2l
2

+ 2�||u||TV

 

(6.15)

where ||u||TV := ||Bru||l
1

. Finding the solution of problem (6.15) is not straightforward;
there are two main problems:

• The energy function E(·) is not differentiable, so we cannot use classic optimization
methods such as Steepest Descent which exploit information about the gradient of
E(·).

• Matrix Br is not invertible, so we cannot use directly the soft-thresholding operator
to obtain the solution.
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TV-FISTA is an algorithm which tries to solve problem (6.15) by exploiting dual of the
TV-seminorm.

The following theorem allows us, under some assumptions, to exchange the minimization
with the maximization

Theorem 6.2 (Minimax Theorem). Let A and B be non-empty closed convex sets in Rm

and Rn, respectively, and let function f be continuous finite concave-convex function on
A⇥ B. If either A or B is bounded then

inf

b2B
sup

a2A
f(a, b) = sup

a2A
inf

b2B
f(a, b)

Proof. Proof can be found in Rockafellar [1997] (Corollary 37.3.2).

TV-FISTA. TV-FISTA exploits dual approach to solve problem (6.15) [Beck and
Teboulle 2009b; Chambolle 2004]. Since our derivation of the l

1

-FISTA is based on the same
idea, it is instrumental to derive TV-FISTA for the case K = Cn. Theorem 6.1 tells that

||u||TV = maximize

p2P
T (u,p)

where T (u,p) =

P

i p

T
i Brui and pj ,uj 2 C.

Now

minimize

u
||u� y||2l

2

+ 2�||u||TV

= minimize

u
maximize

p2P
||u� y||2l

2

+ 2�T (u,p)

= maximize

p2P
minimize

u
||u� y||2l

2

+ 2�T (u,p)

= maximize

p2P
minimize

u
||u� y||2l

2

+ 2�
X

i

p

T
i Brui

= maximize

p2P
minimize

u
||u� y||2l

2

+ 2� p

T
Bru

= maximize

p2P
�||y � �B

T
r p||2l

2

+ C

= �minimize

p2P

n

h(p) := ||y � �B

T
r p||2l

2

o

+ C

where we used Theorem 6.2 to exchange the minimization with the maximization, and where
P

i a

T
i bi = a

T
b for ai, bi 2 C, and C is some term independent of neither u nor p. Notice

that, due to the duality, we can transform the non-differentiable objective function into the
differentiable one. However, nothing is given freely. It was done at the expense of additional
constraints.

Now we can use the Gradient Projection approach to solve arg minp2P h(p). Fixed point
iteration becomes

p

k+1

= PP(p

k � ↵rh(p

k
))

It is easy to see that2

rh(p

k
) = �2�Br(y � �B

T
r p)

2See also Appendix F.
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We have to also figure out the value of ↵. Notice that ↵ is such that L  1

↵ . Since L  16�2

(see Lemma 4.2 in Beck and Teboulle [2009b]) we can set ↵ :=

1

16�2

, and thus the fixed
point iteration becomes now

p

k+1

= PP(p

k
+

1

8�
Br(y � �B

T
r p

k
))

and solution of the primal problem can be obtained from

u

?
= y � �B

T
r p

?

All in all the algorithm can be described as

Algorithm 6 TV-FISTA
Require: p

0, q

1 , t
1

(by default t
1

:= 1), ↵ > 0

1: for k = 1, 2, . . . do
2: p

k
= PP(q

k
+

1

8�Br(y � �B

T
r q

k
))

3: if stopping criterion is satisfied then
4: u

?
= y � �B

T
r p

k

5: break the loop
6: else
7: tk+1

=

1+

p
1+4t2

k

2

8: q

k+1

= p

k
+ (

t
k

�1

t
k+1

)(p

k � p

k�1

)

9: end if
10: end for

where PP(p) is the projection of p onto P-Set.
In Beck and Teboulle [2009b] and Beck and Teboulle [2009a] it was proven that the

following holds

F (u

k
)� F (u

?
) 

2

ˆL||u0 � u

?||2l
2

(k + 1)

2

where {uk} is a sequence generated by the TV-FISTA or FISTA, F (·) is the objective
function and ˆL is an upper bound of the Lipschitz constant. Therefore, it is beneficial for
the performance of both methods to find as small upper bound of the Lipschitz constant as
possible and as close initial value u

0 to u

? as possible.

6.2.6 FISTA in the Deblurring Problem

Beck and Teboulle [2009b] also showed how FISTA can be used to solve the TV-based
deblurring problem defined as

Definition 6.3 (TV-based Deblurring Problem). Put

fy(u) :=

1

2

||Xu� y||2l
2

and
g(u) := �||u||TV
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where X : Rn ! Rm is some linear operator. For every y 2 Rn let

arg min

u2Rn

fy(u) + g(u) (6.16)

This problem is called the TV-based deblurring problem.

Since

rfy(u) = X

H
(Xu� y)

and the subproblem

prox↵||·||
T V

(v

k � ↵rfy(v

k
))

can be solved by TV-FISTA, we can use FISTA presented in Subsection 6.2.2 (Algorithm 5)
to solve problem (6.16). The algorithm can be written as follows

Algorithm 7 FISTA for Problem (6.16)
Require: u

0, v

1 , t
1

(by default t
1

:= 1), ↵ > 0

1: for k = 1, 2, . . . do
2: u

k
= prox↵||·||

T V

⇣

v

k � ↵X

H �
Xv

k � y

�

⌘

3: if stopping criterion is satisfied then
4: break the loop
5: else
6: tk+1

=

1+

p
1+4 t2

k

2

7: v

k+1

= u

k
+

t
k

�1

t
k+1

(u

k � u

k�1

)

8: end if
9: end for

Algorithm 7 is nested. It contains the outer iterations where u

k is updated and the inner
iterations where the subproblem prox↵||·||

T V

(v

k � ↵rfy(v

k
)) is solved by TV-FISTA.

6.2.7 l
1

-FISTA

Consider the following minimization problem

minimize

u
||u� y||2l

2

+ 2

X

j

j ||Bju||l
1

Let P :=

n

p = [p

(j)]j | p(j) 2 Pj

o

where Pj := {p | ||pi||l
2

 1} is a P-set. Note that the set
P is also a P-set. Like before we have ||s

(j)||l
1

= maximizep2P T (s

(j),p) where s

(j) := Bju.
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Put v :=

P

j jB
T
j p

(j), then we have

minimize

u
||u� y||2l

2

+ 2

X

j

j ||Bju||l
1

= minimize

u
maximize

p2P
||u� y||2l

2

+ 2

X

j

jp
T
(j)Bju

= maximize

p2P
minimize

u
||u� y||2l

2

+ 2 v

T
u

= �minimize

p2P
||y � v||2l

2

+ C

= �minimize

p2P

8

<

:

h(p) := ||y �
X

j

jB
T
j p

(j)||2l
2

9

=

;

+ C

where C is some term which is independent of neither u nor p. Note that

rkh(p) = rk||y �
X

j

jB
T
j p

(j)||2l
2

= �2kBk(y �
X

j

jB
T
j p

(j))

So the whole gradient of h(p) is

rh(p) = �2B(y �B

T
p)

where B = [jBj ]j and p =

h

p

(j)

i

j
.

This idea is transformed into the following algorithm

Algorithm 8 l
1

-FISTA
Require: Constant ↵ such that 1

↵ � L, p

0, q

1, t
1

(by default t
1

:= 1), ↵ > 0

1: for k = 1, 2, . . . do
2: p

k
= PP(q

k
+ 2↵B(y �B

T
q

k
))

3: if stopping criterion is satisfied then
4: u

?
= y �B

T
p

k

5: break the loop
6: else
7: tk+1

=

1+

p
1+4t2

k

2

8: q

k+1

= p

k
+ (

t
k

�1

t
k+1

)(p

k � p

k�1

)

9: end if
10: end for

Note that Algorithm 8 works with the P-set instead of the original space and dimension
of this working space can be much higher than dimension of the original space.

6.2.8 Projection onto P-set

Let P be a P-Set (Definition 6.2). Then projection of v 2 Cn onto the P-set can be
accomplished by

PP(v)i =

vi

max{1, ||vi||l
2

}
Term max{1, ·} is necessary since we don’t want to touch points that are already in the set.
Note that PP(·) is a component-wise projection onto the l

2

-ball.
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6.2.9 l
1

-FISTA in Minimizing MRI Energy Function

6.2.9.1 Upper Bound of the Lipschitz Constant

In order to be sure that FISTA converges we have to find an upper bound of the Lipschitz
constant L. Subsection 6.2.9.2 shows that in order to obtain this upper bound we actually
need the upper bound of the operator norm of the operator BB

T where

B :=

2

6

4

aBa

iBi

rBr

3

7

5

The following two lemmas are necessary to prove Theorem 6.3 which, in turn, provides
the upper bound of L

Lemma 6.1. Let Br be the finite difference operator. Then ||Br||l
2


p

8 holds.

Proof. Proof can be found in Beck and Teboulle [2009b].

Lemma 6.2. Let Ba be an orthonormal wavelet transform and Bi the imaginary part
penalizing operator. Then we have ||Ba||l

2

= 1 and ||Bi||l
2

 1.

Proof. Pick up v such that ||v||l
2

= 1. Since the wavelet operator Ba is orthonormal, it
preserves norm of a vector. So the following holds

||Bav||l
2

= ||v||l
2

= 1 (6.17)

Notice that also the following holds

||Biv||2l
2

=

X

j

=vj
2 

X

j

(<vj
2

+ =vj
2

) = ||v||2l
2

= 1 (6.18)

Equation (6.17) and equation (6.18) finish the proof.

By using Lemma 6.1 and Lemma 6.2 we can prove Theorem 6.3 and derive the appropriate
upper bound of the Lipschitz constant

Theorem 6.3. Let

B :=

2

6

4

aBa

iBi

rBr

3

7

5

where Ba is an orthonormal wavelet transform, Bi the imaginary part penalizing operator
and Br the finite difference operator. Then we have

||BB

T ||l
2


q

72 2

max

(2

a + 2

i + 82

r)

where 
max

:= max {a,i,r}.

Proof. At the beginning consider a more general case with K operators B

1

, B

2

, . . . , BK .
Pick up p such that ||p||l

2

= 1 and let 
max

= max {
1

,
2

, . . . ,K}. In addition, let B

max

be the operator such that

8k2{1,2,...,K} ||Bk||l
2

 ||B
max

||l
2
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and
9k2{1,2,...,K} B

max

= Bk

Put v := B

T
p =

PK
k=1

kB

T
k p

(k)

. Then we have

||v||2l
2

 ||
K
X

k=1


max

B

T
k p

(k)

||2l
2

= 2

max

||
K
X

k=1

B

T
k p

(k)

||2l
2

 2

max

 

K
X

k=1

||BT
k p

(k)

||l
2

!

2

 2

max

 

K
X

k=1

||Bk||l
2

||p
(k)

||l
2

!

2

 2

max

 

K
X

k=1

||B
max

||l
2

||p
(k)

||l
2

!

2

= 2

max

||B
max

||2l
2

 

K
X

k=1

||p
(k)

||l
2

!

2

 2

max

||B
max

||2l
2

K2

Therefore, if v :=

P

j2{a,i,r} jB
T
j p

(j) then

||v||2l
2

 8 · 9 2

max

= 72 2

max

and finally

||BB

T
p||2l

2

=

X

j2{a,i,r}

||jBjv||2l
2


X

j2{a,i,r}

2

j ||Bj ||2l
2

||v||2l
2

 ||v||2l
2

(2

a + 2

i + 8 2

r)

 72 2

max

(2

a + 2

i + 8 2

r)

6.2.9.2 Algorithm

We can solve problem (3.7) similarly to the TV-based deblurring problem (see Subsection
6.2.6). Each iteration in the deblurring problem requires the denoising problem to be solved.
For the latter we can use l

1

-FISTA. Thus the whole algorithm can be divided into outer
iterations where the deblurring problem is being solved and inner iterations where the
denoising problem is being solved.

Consider the denoising problem

arg min

u
||u� y||2l

2

+ 2

X

j2{a,r,i}

j ||Bju||l
1



56 Chapter 6. First Order Methods

or equivalently (see Subsection 6.2.7)

arg min

p2P

8

<

:

h(p) := ||y �
X

j

jB
T
j p

(j)||2l
2

9

=

;

where the solution can be obtained from the relation u

?
= y �B

T
p

k. Put all penalizing
operators into one matrix

B =

2

6

4

aBa

iBi

rBr

3

7

5

In order to run l
1

-FISTA method we need an upper bound of the Lipschitz constant. Note
that

||rh(p

1

)�rh(p

2

)||l
2

= 2||BB

T
(p

2

� p

1

)||l
2

 2||BB

T ||l
2

||p
2

� p

1

||l
2

(6.19)

Therefore we can take ↵̄ which satisfies

1

↵̄
� 2||BB

T ||l
2

Eq. (6.19) warrants that 1

↵̄ � L where L is the Lipschitz constant. Following Subsection
6.2.9.1 we can set

↵̄ := 1/(2

q

72 2

max

(2

a + 2

i + 82

r))

where 
max

:= max {a,i,r}. All in all we have the following update step for l
1

-FISTA

p

(k+1)

= PP(q

(k)

+

1

p

72 2

max

(2

a + 2

i + 82

r)
B(y �B

T
q

(k)

)) (6.20)

Since the TV-based deblurring problem is the same as introduced in Subsection 6.2.6
we have to only derive an appropriate upper bound LD of the Lipschitz constant for the
measurement matrix X := IJ ,·F . Since we have

||XH
(Xu

1

� y)�X

H
(Xu

1

� y)||l
2

= ||XH
X(u

1

� u

2

)||l
2

 ||XH
X||l

2

||u
1

� u

2

||l
2

 ||u
1

� u

2

||l
2

we can set LD := 1.

Equipped with all these results we can employ l
1

-FISTA method (Algorithm 8) with
↵ := ↵̄ to minimize the MRI energy function. The algorithm is nested, it performs the inner
iterations and the outer iterations, and is stated as follows
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Algorithm 9 FISTA for the MRI energy function
Require: ↵ > 0 (default ↵ := ↵̄), LD > 0 (default LD := 1), u

0, v

1, t
1

(by default t
1

:= 1)

1: for k = 1, 2, . . . do
2: u

k
= D(v

k � 1

L
D

X

T
(Xv

k � y), ↵
L

D

)

3: if stopping criterion is satisfied then
4: break the loop
5: end if
6: tk+1

=

1+

p
1+4t2

k

2

7: v

k+1

= u

k
+ (

t
k

�1

t
k+1

)(u

k � u

k�1

)

8: end for

where D(u,↵) is l
1

-FISTA (Algorithm 8) with warm start u and step-size parameter ↵.
Note that Algorithm 9 needs only two invocations of the Fourier transform per iteration.

6.3 Augmented Lagrangian in Minimizing MRI Energy
Function

6.3.1 Variable Splitting and Quadratic Penalty Approaches

Consider an unconstrained optimization problem such that the objective function can be
expressed as a sum of two functions f

1

, f
2

where the second one is a composition of a
function and a matrix T . More formally, consider the following problem

minimize

u2Rn

f
1

(u) + f
2

(Tu) (6.21)

The Variable Splitting approach transforms the unconstrained problem (6.21) into the
constrained one by adding equality constraints v = Tu. This leads to the following formula

minimizeu,v2Rn f
1

(u) + f
2

(v)

s.t. v = Tu

(6.22)

The rationale behind splitting is to transform an unconstrained problem into the constrained
problem which may happen to be easier to solve by the use of conventional methods, for
instance the methods proposed by Beck and Teboulle [2009a] or Bioucas-Dias and Figueiredo
[2007]. Splitting can also be helpful in dealing with a linear combination of more than two
functions

↵
1

f
1

(T

1

u) + ↵
2

f
2

(T

2

u) + ↵
3

f
3

(T

3

u) + . . . + ↵kfk(T ku)

We can convert problem (6.22) into the unconstrained one by considering the modified
version of the objective function. The modified objective function consists of the original
objective function f

1

(u) + f
2

(v) and an additional regularization term. The role of this
additional term is to penalize the objective function whenever the current point (u,v) is
not feasible. Such an approach is sometimes called the Exterior Penalty approach [Nocedal
and Wright 1999]. Here, we consider an instance of the Exterior Penalty approach called
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Quadratic Penalty which utilizes the quadratic penalty function to penalize deviations from
being feasible. This function is defined as follows

Definition 6.4 (Quadratic Penalty Function). The quadratic penalty function for problem
(6.22) is expressed as

Q(u,v;µ) := f
1

(u) + f
2

(v) +

µ

2

||Tu� v||2l
2

where µ > 0 is the penalty parameter.

In Bioucas-Dias and Figueiredo [2008] (see also Alfonso et al. [2009]) the problem

minimize

u,v
Q(u,v;µ) (6.23)

was solved by minimizing Q once over u and once over v, and by embedding the penalty
parameter µ into a continuation process where µ was a slowly increasing parameter. The
former can also be seen as a block-coordinate descent algorithm where for fixed u := u

k

the problem minimizev Q(u

k,v;µ) is solved and similarly for fixed v := v

k the problem
minimizeu Q(u,vk

;µ) is solved. The continuation process can be intuitively explained as
follows: by driving µ to 1, we penalize the constraints violations more and more severe but
at the expense of solving more difficult problems. In Nocedal and Wright [1999] (Section
17.1) these intuitions were formalized and it was proven that under certain conditions, the
approximate minimizers u

k, v

k of Q(u,v;µk) satisfy

Tu

k � v

k
=

1

µk
�? (6.24)

where �? is a multiplier that satisfies the KKT3 conditions (see Theorem 17.2 in Nocedal
and Wright [1999] for details). Eq. (6.24) can also be seen as a perturbation in the KKT
conditions that vanishes whenever µk ! 1. Note also that for big enough µk we have
Tu

k � v

k ⇡ 0, and so the constraints for problem (6.22) are approximately satisfied.

6.3.2 Augmented Lagrangian Method

We start from the augmented Lagrange function which is the main ’building block’ of the
Augmented Lagrangian approach

Definition 6.5 (Augmented Lagrange Function). Consider the following optimization
problem

minimizeu2Rn f(u)

s.t. Au� y = 0
(6.25)

The augmented Lagrange function for problem (6.25) is defined as

LA(u,�, µ) = f(u) + �

T
(Au� y) +

µ

2

||Au� y||2l
2

(6.26)

where � is a vector of Lagrange multipliers and µ > 0 is the penalty parameter.
3Information about the KKT conditions can be found in Nocedal and Wright [1999] or Boyd and

Vandenberghe [2004], or in Appendix C.
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By the Augmented Lagrangian approach we can formulate and solve the following
optimization problem

maximize

�
minimize

u
LA(u,�, µ) (6.27)

By comparing gradients of the augmented Lagrange function (6.26) and the Lagrange
function (C.2) one can derive the update step for �, and the following algorithm for problem
(6.27) can be proposed

Algorithm 10 Augmented Lagrangian Method
Require: µ

0

> 0,�0

1: for k = 0, 1, . . . do
2: u

k+1 2 arg minu LA(u,�k, µk)

3: if stopping criterion is satisfied then
4: break the loop
5: else
6: �

k+1

= �

k
+ µk(Au

k+1 � y)

7: Pick up µk+1

2 [µk,1)

8: end if
9: end for

The Augmented Lagrangian approach has some interesting properties. As it was pointed
in Nocedal and Wright [1999] we have

Au

k � y ⇡ 1

µk
(�

? � �

k
)

so we can conclude that perturbation in the KKT conditions vanishes whenever µk !1 or
�

k is close enough to the optimal Lagrange multiplier �

?. This observation allows us to fix
the penalty parameter µk from the beginning. Precise argument about the convergence of
the Augmented Lagrangian method (Algorithm 10) for some fixed µ > 0 the reader can find
in Nocedal and Wright [1999].

Notice that

f(u) + �

T
(Au� y) +

µ

2

||Au� y||2l
2

⌘
ˆ�:=

1

µ

�
f(u) +

µ

2

||Au� y +

ˆ

�||2l
2

� µ

2

||ˆ�||2l
2

⌘
d:=y�ˆ�

f(u) +

µ

2

||Au� d||2l
2

� µ

2

||y � d||2l
2

Since the last term µ
2

||y � d||2l
2

is independent of u assuming fixed d, we can derive the
following update step for u

uk+1

2 arg min

u
f(u) +

µ

2

||Au� d

k||2l
2

The update step for d becomes now

d

k+1

= y + (d

k �Au

k+1

)
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Now we can derive the alternative version of Algorithm 10

Algorithm 11 Augmented Lagrangian Method (Alternative Version with Fixed µ)
Require: µ > 0,d0

1: for k = 0, 1, . . . do
2: u

k+1 2 arg minu f(u) +

µ
2

||Au� d

k||2l
2

3: if stopping criterion is satisfied then
4: break the loop
5: else
6: d

k+1

= y + (d

k �Au

k+1

)

7: end if
8: end for

As it was shown in Yin et al. [2008] such constructed Augmented Lagrangian is equivalent
to the Bregman Iterative method.

The augmented Lagrange function for problem (6.22) is

LA(u,v,�, µ) = f
1

(u) + f
2

(v) + �

T
(Tu� v) +

µ

2

||Tu� v||2l
2

(6.28)

and can be seen as the Lagrangian approach for this problem with the quadratic penalty
function

minimizeu,v f
1

(u) + f
2

(v) +

µ
2

||Tu� v||2l
2

s.t. v = Tu

Algorithm 11 can be extended to work with the Variable Splitting approach

Algorithm 12 Variable Splitting Augmented Lagrangian
Require: µ > 0,v0,d0

1: for k = 0, 1, . . . do
2: u

k+1 2 arg minu f
1

(u) +

µ
2

||Tu� v

k � d

k||2l
2

3: v

k+1 2 arg minv f
2

(v) +

µ
2

||Tu

k+1 � v � d

k||2l
2

4: if stopping criterion is satisfied then
5: break the loop
6: else
7: d

k+1

= d

k � Tu

k+1

+ v

k+1

8: end if
9: end for

Algorithm 12 also occurs under the name Alternating-direction Method of Multipliers
and, in particular in the image processing community, as the Alternating Split Bregman
algorithm [Combettes and Pesquet 2010]. Similar steps were also used to derive SALSA
[Alfonso et al. 2009]. In the Variable Splitting Augmented Lagrangian algorithm the crucial
step is computing both proximity operators proxT

1

µ

f
1

(v

k
+ d

k
) and prox 1

µ

f
2

(Tu

k+1 � d

k
)

efficiently (see Chapter 5 for definitions of both proximity operators).
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6.3.3 Variable Splitting Augmented Lagrangian Method

Let reformulate problem (3.7) as follows

minimizeu,s
(a)

,s
(r)

,s
(i)

,r
1

2

||Xu� y||2l
2

+ a||s
(a)

||l
1

+ r||s
(r)||l

1

+ i||s
(i)||l

1

s.t. Bau = s

(a)

Bru = s

(r)

u = (I ⌦ �
1

)r + (I ⌦ �
2

)s

(i)

(6.29)

where �
1

= [1, 0]

T , �
2

= [0, 1]

T . Put ~µ := [µa, µr, µi], s :=

⇥

s

(a)

, s
(r), s(i)

⇤

and d :=

⇥

d

(a)

,d
(r),d(i)

⇤

. Applying the Variable Splitting Augmented Lagrangian method (Algorithm
12) to problem (6.29) yields the following algorithm

Algorithm 13 Variable Splitting Augmented Lagrangian for Problem (6.29)
Require: ~µ > 0, s0,d0, r0

1: for k = 0, 1, . . . do

2:

u

k+1 2 arg minu
1

2

||Xu� y||2l
2

+

+

µ
a

2

||Bau� s

k
(a)

� d

k
(a)

||2l
2

+

µ
r

2

||Bru� s

k
(r) � d

k
(r)||2l

2

+

µ
i

2

||u� (I ⌦ �
1

)r

k � (I ⌦ �
2

)s

k
(i) � d

k
(i)||2l

2

3: s

k+1

(a)

2 arg mins
(a)

a||s
(a)

||l
1

+

µ
a

2

||Bau

k+1 � s

(a)

� d

k
(a)

||2l
2

4: s

k+1

(r) 2 arg mins
(r)

r||s
(r)||l

1

+

µ
r

2

||Bru
k+1 � s

(r) � d

k
(r)||2l

2

5: s

k+1

(i) 2 arg mins
(i)

i||s
(i)||l

1

+

µ
i

2

||uk+1 � (I ⌦ �
1

)r

k � (I ⌦ �
2

)s

(i) � d

k
(i)||2l

2

6: r

k+1 2 arg minr ||uk+1 � (I ⌦ �
1

)r � (I ⌦ �
2

)s

k+1

(i) � d

k
(i)||2l

2

7: d

k+1

(a)

= d

k
(a)

�Bau

k+1

+ s

k+1

(a)

8: d

k+1

(r) = d

k
(r) �Bru

k+1

+ s

k+1

(r)

9: d

k+1

(i) = d

k
(i) � u

k+1

+ (I ⌦ �
1

)r

k+1

+ (I ⌦ �
2

)s

k+1

(i)

10: end for

For each j 2 {a, r} the subproblem

s

k+1

(j) 2 arg min

s
(j)

j ||s
(j)||l

1

+

µj

2

||Bju
k+1 � s

(j) � d

k
(j)||2l

2

(6.30)

can be recognized as the denoising problem and the solution can be obtained by applying
the soft-thresholding operator (Definition 5.6; see also Theorem 5.1), that is

s

k+1

(j) = S 

j

µ

j

(Bju
k+1 � d

k
(j)) (6.31)

Based on Corollary 5.1 we can derive the update step for s

(i)

s

k+1

(i) = S 

i

µ

i

(s

(i) � (I ⌦ �T
2

)((I ⌦ �
2

)s

(i) � (u

k+1 � (I ⌦ �
1

)r

k � d

k
(i))))

= S 

i

µ

i

((I ⌦ �T
2

)(u

k+1 � d

k
(i)))

(6.32)

Note that Bi = (I⌦ �T
2

) can be interpreted in the complex-valued vector space as a function
which cuts off the real part of a given vector and leaves the imaginary part of the vector
intact.



62 Chapter 6. First Order Methods

The next subproblem that has to be solved is

r

k+1 2 arg min

r
||uk+1 � (I ⌦ �

1

)r � (I ⌦ �
2

)s

k+1

(i) � d

k
(i)||2l

2

(6.33)

Taking derivative w.r.t. r yields the following update step for r

r

k+1

= (I ⌦ �T
1

)(u

k+1 � d

k
(i)) (6.34)

The operator (I ⌦ �T
1

) can be interpreted in the complex-valued vector space as a function
which cuts off the imaginary part of a given vector and leaves the real part of the vector
intact.

Finally, consider the following subproblem

u

k+1 2 arg minu
1

2

||Xu� y||2l
2

+

+

µ
a

2

||Bau� s

k
(a)

� d

k
(a)

||2l
2

+

µ
r

2

||Bru� s

k
(r) � d

k
(r)||2l

2

+

µ
i

2

||u� (I ⌦ �
1

)r

k � (I ⌦ �
2

)s

k
(i) � d

k
(i)||2l

2

(6.35)

which can be identified as the elastic model (Definition 4.1 with operators: Ba, Br and I)
and the minimizer can be found by solving the following system of linear equations

(X

H
X + µaI + µrB

T
r Br + µiI)u = b (6.36)

where
v

(a)

:= s

k
(a)

+ d

k
(a)

v

(r) := s

k
(r) + d

k
(r)

v

(i) := (I ⌦ �
1

)r

k
+ (I ⌦ �

2

)s

k
(i) + d

k
(i)

b := X

H
y + µaB

T
a v

(a)

+ µrB
T
r v

(r) + µiv
(i)

It was shown in Section 4.2 that if

A := X

H
X + µaI + µrB

T
r Br + µiI

is the elastic matrix and b is the elastic observation then the solution is

u = F

H
D̂Fb (6.37)

where

D̂ := (Ij2J + µaI + µrD + µiI)

�1

and

D := FB

T
r (FB

T
r )

T

Moreover, since D is a diagonal matrix (see eq. (4.11)), the matrix Ij2J + µaI + µrD + µiI

is also diagonal with strictly positive entries. Therefore its inverse D̂ can be computed
efficiently.

Similarly to eq. (4.12), the operator D̂ can be also seen as the following function in the
Fourier domain

(D̂u)

M
(!,�)

= (��2J + µa + µr(|e
�i2⇡ !

n

y � 1|2 + |e�i2⇡ �

n

x � 1|2) + µi)
�1

u

M
(!,�)

(6.38)
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To reduce of the use of the Fourier transform F per iteration, we can pull F inside b,
that is

Fb = F (X

H
y + µaB

T
a v

(a)

+ µrB
T
r v

(r) + µiv
(i))

= F (F

H
I ·,J y + µaB

T
a v

(a)

+ µrB
T
r v

(r) + µiv
(i))

= I ·,J y + F (µaB

T
a v

(a)

+ µrB
T
r v

(r) + µiv
(i))

(6.39)

To sum up the new version of Algorithm 13 is

Algorithm 14 Variable Splitting Augmented Lagrangian for Problem (6.29) - Explicit
Version
Require: ~µ > 0, s0,d0, r0

1: for k = 0, 1, . . . do
2: v

(a)

:= s

k
(a)

+ d

k
(a)

3: v

(r) := s

k
(r) + d

k
(r)

4: v

(i) := (I ⌦ �
1

)r

k
+ (I ⌦ �

2

)s

k
(i) + d

k
(i)

5: u

k+1

= F

H
D̂(I ·,J y + F (µaB

T
a v

(a)

+ µrB
T
r v

(r) + µiv
(i)))

6: s

k+1

(a)

= S 

a

µ

a

(Bau

k+1 � d

k
(a)

)

7: s

k+1

(r) = S 

r

µ

r

(Bru
k+1 � d

k
(r))

8: s

k+1

(i) = S 

i

µ

i

((I ⌦ �T
2

)(u

k+1 � d

k
(i)))

9: r

k+1

= (I ⌦ �T
1

)(u

k+1 � d

k
(i))

10: d

k+1

(a)

= d

k
(a)

�Bau

k+1

+ s

k+1

(a)

11: d

k+1

(r) = d

k
(r) �Bru

k+1

+ s

k+1

(r)

12: d

k+1

(i) = d

k
(i) � u

k+1

+ (I ⌦ �
1

)r

k+1

+ (I ⌦ �
2

)s

k+1

(i)

13: end for

Algorithm 14 requires only two invocations of the Fourier transform per iteration. In
addition, it turns out that all subproblems from Algorithm 13 can be solved in closed form
and so we may expect fast performance per iteration of Algorithm 14.

6.3.4 Alternative Splitting

We can consider alternative splitting to the one presented in problem (6.29)

minimizeu,s
(a)

,s
(r)

,s
(i)

1

2

||Xu� y||2l
2

+ a||s
(a)

||l
1

+ r||s
(r)||l

1

+ i||s
(i)||l

1

s.t. Bau = s

(a)

Bru = s

(r)

Biu = s

(i)

(6.40)

One of the benefits of the new splitting scheme given by model (6.40) is that all constraints
are treated in the same way. Therefore all subproblems

8j2{a,r,i} s

k+1

(j) 2 arg min

s
(j)

j ||s
(j)||l

1

+

µj

2

||Bju
k+1 � s

(j) � d

k
(j)||2l

2

(6.41)

can be solved by applying the soft-thresholding operator

8j2{a,r,i} s

k+1

(j) = S 

j

µ

j

(Bju
k+1 � d

k
(j)) (6.42)
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In order to obtain the update step for u we have to solve the following problem

u

k+1 2 arg minu
1

2

||Xu� y||2l
2

+

+

µ
a

2

||Bau� s

k
(a)

� d

k
(a)

||2l
2

+

µ
r

2

||Bru� s

k
(r) � d

k
(r)||2l

2

+

µ
i

2

||Biu� s

k
(i) � d

k
(i)||2l

2

(6.43)

which is equivalent to solving the following elastic linear system

(X

H
X + µaI + µrB

T
r Br + µiB

T
i Bi)u = b

(6.44)

where
v

(a)

:= s

k
(a)

+ d

k
(a)

v

(r) := s

k
(r) + d

k
(r)

v

(i) := s

k
(i) + d

k
(r)

b := X

H
y + µaB

T
a v

(a)

+ µrB
T
r v

(r) + µiB
T
i v

(i)

It was shown in Section 4.2 that the solution of the system given by eq. (6.44) is

u = F

H
D̂Fb (6.45)

where

D̂ := (Ij2J + µaI + µrD + µiDi)
�1

and

Di := FB

T
i BiF

H

D := FB

T
r (FB

T
r )

T

Therefore we can conclude that the update step for u should be

u

k+1

= F

H
D̂Fb (6.46)

Section 4.2 provides details how the solution can be obtained from eq. (6.45).
The update steps for u and s

(j) for every j 2 {a, r, i} yield the following algorithm

Algorithm 15 Variable Splitting Augmented Lagrangian for Problem (6.40)
Require: ~µ > 0, s0,d0

1: for k = 0, 1, . . . do
2: For every j 2 {a, r, i} compute v

(j) := s

k
(j) + d

k
(j)

3: u

k+1

= F

H
D̂

⇣

I ·,J y + F

⇣

P

j2{a,r,i} µjB
T
j v

(j)

⌘⌘

4: For every j 2 {a, r, i} compute the update step s

k+1

(j) = S 

j

µ

j

(Bju
k+1 � d

k
(j))

5: For every j 2 {a, r, i} compute the update step d

k+1

(j) = d

k
(j) �Bju

k+1

+ s

k+1

(j)

6: end for

This algorithm, similarly to Algorithm 14, requires only two invocations of the Fourier
transform per iteration. However, unlike Algorithm 14, the update steps for v

(j), s

(j) and
d

(j) for every j 2 {a, r, i} are treated equally. Therefore Algorithm 15 can be easily extended
to work with more than three penalizing operators providing that the operator D̂ or the
matrix-vector multiplication D̂v is specified.
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In this chapter, the MRI energy function (Definition 3.11) is reformulated by adding
additional l

2

-norm terms. The new energy function, called in this thesis the MRI elastic
energy function, that arises from the reformulation opens the door for second order methods
such as Interior Point method.

Section 7.1 defines the new energy function where the regularization term contains both
l
1

-norm terms and l
2

-norm terms. The dualization of the new problem, which is a working
space for new algorithms, is also shown. . If we want to solve the dual problem, we have
to know how to compute the inverse of the so called elastic matrix A. However, from the
algorithmic perspective it is suffice to show how to compute A

�1

v instead of showing the
whole inverse A

�1. Section 7.2 shows how to do this efficiently. Section 7.3 introduces a first
order method which works on the dual problem. This method is strongly based on the Fast
Gradient Projection algorithm introduced in Subsection 6.2.1. Section 7.4 shows how to use
the second order method called the Interior Point method in order to solve the problem of
finding the minimizer of the MRI elastic energy function.

7.1 MRI Elastic Energy Function

Consider the following extension to the original model

Definition 7.1 (MRI Elastic Energy Function). Let Ba, Br, Bi, X be, respectively, the
wavelet transform, the finite difference operator, the imaginary part penalizing operator and
the subsampling Fourier operator, and assume that all of them are tailored to work with the
real-valued surrogate of the complex set C := R2. For every u 2 Cn let

 

MRI
Elastic(u) :=

1

2

||Xu� y||2l
2

+

P

j2{a,r,i}
�

j ||Bju||l
1

+

µ
j

2

||Bju||2l
2

 

(7.1)
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where for each j 2 {a, r, i} j := ⌧j�, ⌧j is a model parameter, µj is an elastic parameter and
�2 is the noise variance. The function  MRI

Elastic(·) is called the MRI elastic energy function.
Operators Ba, Br, Bi are also called penalizing operators. Then the extended model is

minimize

u
 

MRI
Elastic(u) (7.2)

In this chapter we will work with the special case of the elastic matrix and the elastic
observation. Both are defined as follows

Definition 7.2 (Elastic Matrix and Elastic Observation). Put

v :=

X

j2{a,r,i}

jB
T
j p

(j) = B

T
p

Let

A := X

H
X +

X

j2{a,r,i}

µjB
T
j Bj (7.3)

be the elastic matrix and

b := X

H
y � v (7.4)

be the elastic observation. Note that, the elastic matrix is symmetric in the sense described
in Section 3.4.

The following optimization problem

minimize

u
 

MRI
Elastic(u)

can be transformed into1

minimize

u2P

1

2

||Xu� y||2l
2

+

X

j2{a,r,i}

n

j ||Bju||l
1

+

µj

2

||Bju||2l
2

o

(7.5)

= maximize

p2P
minimize

u

1

2

||Xu� y||2l
2

+ v

T
u +

1

2

X

j2{a,r,i}

µj ||Bju||2l
2

(7.6)

where v

T
:=

P

j jp
T
(j)Bj and P is the P-Set (Definition 6.2). Note that, problem (7.6)

consists of the inner optimization problem

 

MRI
Inner(p) := minimize

u

1

2

||Xu� y||2l
2

+ v

T
u +

1

2

X

j

µj ||Bju||2l
2

and the outer optimization problem

maximize

p2P
 

MRI
Inner(p)

Lemma 7.1 shows that the objective function of the optimization problem (7.6) has the
quadratic form

1Similar transformation was presented in more details in Subsection 6.2.7.
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Lemma 7.1. Let q(u;

¯

b, ¯

A) :=

1

2

u

T
¯

Au� ¯

b

T
u. Then, for every u, we have

1

2

||Xu� y||2l
2

+ v

T
u +

1

2

X

j

µj ||Bju||2l
2

= q(u; b,A) + C (7.7)

where A is the elastic matrix, b is the elastic observation and C is some expression inde-
pendent of u and p.

Proof.

1

2

||Xu� y||2l
2

+ v

T
u +

1

2

X

j

µj ||Bju||2l
2

=

1

2

(u

T
X

H � y

T
)(Xu� y) + v

T
u +

1

2

X

j

µju
T
B

T
j Bu

=

1

2

u

T
(X

H
X +

X

j

µjB
T
j Bj)u + (v

T � y

T
X)u + C

=

1

2

u

T
Au� b

T
u + C = q(u; b,A) + C

The next lemma shows that the solution of the inner optimization problem  

MRI
Inner(p) is

u

?
= A

�1

b

Lemma 7.2. For every fixed p, consider the following problem

minimize

u

1

2

||Xu� y||2l
2

+ v

T
u +

1

2

X

j

||Bju||2 (7.8)

Then the solution of problem (7.8) is

u

?
= A

�1

b (7.9)

where A is the elastic matrix and b is the elastic observation.

Proof. We can obtain the solution of the problem (7.8) by solving the elastic linear system
given by eq. (4.2). It is easy to see that the solution of this system is u

?
= A

�1

b.

Interestingly, when we apply q(u; b,A) to the argument u

?
= A

�1

b we obtain another
quadratic function. Thus the inner optimization problem  

MRI
Inner(·) has a quadratic form given

u

?. This is shown by the next lemma

Lemma 7.3. Assume that A is the elastic matrix, b is the elastic observation and let
u

?
:= A

�1

b. Then

q(u?
; b,A) = �1

2

b

T
A

�1

b (7.10)

Proof.

q(u?
; b,A) =

1

2

(u

?
)

T
Au

? � b

T
u

?

=

1

2

b

T
A

�1

b� b

T
A

�1

b = �1

2

b

T
A

�1

b
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Therefore instead of dealing with problem (7.5) we can work with its dual which objective
has the quadratic form given by eq. (7.10). Therefore we can conclude that

Corollary 7.1. Let A be the elastic matrix and b the elastic observation. Then problem
(7.5) is equivalent to

�minimize

p2P

⇢

 

MRI
Inner(p) :=

1

2

b

T
A

�1

b

�

(7.11)

and the solution u

? can be obtained by applying A

�1 to b.

By expanding b and canceling all terms that are independent of p, we can work with the
following optimization problem

arg min

p2P

⇢

 

MRI
Inner(p) :=

1

2

p

T
BA

�1

B

T
p� y

T
XA

�1

B

T
p

�

(7.12)

Therefore, in order to solve the optimization problem

u

?
= arg min

u
 

MRI
Elastic(u) (7.13)

we can solve the following quadratically constrained quadratic program

p

?
= arg min

p2P
 

MRI
Inner(p) (7.14)

and apply transformation A

�1 to the argument p

? in order to obtain the minimizer u

?,
shortly u

?
= A

�1

p

?.
Let Q be a symmetric and positive semidefinite matrix. In this thesis, every problem

which has the following form

arg minp p

T
Qp + r

T
p

subject to ||pi||l2  1

(7.15)

is called the normed constrained quadratic program. Under this convention, model (7.14)
can be seen as an instance of the normed constrained quadratic program.

7.2 Inverse of the Elastic Matrix

Since the optimization problem (7.12) requires the inverse of the elastic matrix, we have to
find efficient way to compute A

�1. Fortunately, we don’t have to specify the inverse of the
elastic matrix explicitly. Instead, we can show how to solve the elastic linear system

Au = b (7.16)

where
A = X

H
X +

X

j2{a,r,i}

µjB
T
j Bj

and
b =

X

j2{a,r,i}

jB
T
j p

(j)

Section 4.2 showed how to efficiently compute the solution of the system given by eq.
(7.16). Hence the reading of Chapter 4 in order to understand the method of solving this
kind of linear systems is vital.
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7.3 Normed Constrained Quadratic FGP

Consider the following normed constrained quadratic program

arg minp
1

2

p

T
Qp + r

T
p

subject to ||pi||l2  1

(7.17)

where pi 2 C := R2 and it is assumed that Q is a symmetric, positive semidefinite matrix. For
Q := BA

�1

B

T and r

T
:= �y

T
XA

�1

B

T problem (7.17) becomes equivalent to problem
(7.14).

The Fast Gradient Projection (FGP) algorithm, introduced in Subsection 6.2.1, can be
adapted in order to solve the problem (7.17). Recall that fixed point iteration of the FGP is

p

k
= PP(q

k � ↵rf(q

k
))

tk+1

=

1 +

p

1 + 4 t2k
2

q

k+1

= p

k
+

tk � 1

tk+1

(p

k � p

k�1

)

where PP is a projection onto some set P and f is the objective function. In the context of
problem (7.17) the set P is the P-set (Definition 6.2) and f(p) := p

T
Qp + r

T
p. Since the

gradient of the objective function is rf(p) = Qp + r we have the following algorithm

Algorithm 16 Normed Constrained Quadratic Fast Gradient Projection
Require: p

0, q

1 , t
1

(by default t
1

:= 1), ↵
1: for k = 1, 2, . . . do
2: p

k
= PP(q

k � ↵
�

Qq

k
+ r

�

)

3: if stopping criterion is satisfied then
4: break the loop
5: else
6: tk+1

=

1+

p
1+4t2

k

2

7: q

k+1

= p

k
+ (

t
k

�1

t
k+1

)(p

k � p

k�1

)

8: end if
9: end for

In the context of the problem

arg min

u
 

MRI
Elastic(u)

we have Q := BA

�1

B

T and so Algorithm 16 requires two invocations of the Fourier trans-
form per iteration. Moreover, since equation A

�1

= F

H
D̂F holds2, one invocation of the

Fourier transform is needed in order to compute r

T
:= �y

T
XA

�1

B

T
= �y

T
IJ ,·D̂FB

T

and two additional in order to compute u

?
= A

�1

b = F

H
D̂ (I ·,J y � Fv) where b is the

elastic observation and A is the elastic matrix (Definition 7.2). However, since r can be
computed in the preprocessing step and u

? in the postprocessing step, the invocations of
2See eq. (4.10) in Section 4.2.
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the Fourier transform required in computation of r and u

? can be amortized over the whole
performance of the algorithm. Naturally, if a backtracking line-search, for instance Algorithm
23, is used then the number of the Fourier transform invocations may increase.

7.4 Interior Point Method

7.4.1 Introduction

Newton Method. Consider the following unconstrained optimization problem

minimize

u
f(u) (7.18)

where f is assumed to be convex and twice continuously differentiable function. In order to
solve problem (7.18) first order methods such as Steepest Descent or second order methods
can be used. The former methods use only information about the gradient to solve the
optimization problem, whereas latter methods use also information about the Hessian in
order to solve the problem.

Newton method is a popular second order method that can be used to solve the uncon-
strained problem (7.18). Algorithm 17 presents this method.

Algorithm 17 Newton
Require: u

0

1: for k = 0, 1, . . . do
2: Find direction d

k which satisfies r2f(u

k
)d

k
= �rf(u

k
)

3: ↵k 2 arg min↵>0

f(u

k
+ ↵d

k
)

4: u

k+1

= u

k
+ ↵kd

k

5: if stopping criterion is satisfied then
6: break the loop
7: end if
8: end for

Algorithm 17 has to solve the following linear system

r2f(u

k
)d

k
= �rf(u

k
) (7.19)

in order to find direction d

k. Although sometimes the inverse of the Hessian r2f is known,
quite often it is not the case. Then we have to resort to methods that compute the solution
of the linear system given by eq. (7.19), for instance the method of Gaussian elimination
or the Conjugate Gradient algorithm. The latter has this advantage over the former that
iterations can be truncated in order to gain time and still obtain good approximation of
the solution. Such the Newton method which employs Conjugate Gradient in order to find
direction d

k is also called the Truncated Newton method.
Apart from the direction-search problem, the line-search ↵k 2 arg min↵>0

f(u

k
+ ↵d

k
)

is also required. There are a few methods to find ↵k. In some circumstances the step-size
↵k can be found analytically, in some others a line-search algorithm should be used (see
Appendix G for some line-search methods).
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Interior Point Method. Consider the following constrained convex optimization prob-
lem

minimizeu f(u)

subject to gi(u)  0 i 2 {1, 2, . . . ,m}
(7.20)

where f, g
1

, g
2

, . . . , gm : Rn ! R are convex and twice continuously differentiable functions.
In addition, it is assumed that the problem is strictly feasible, that is, there exists u 2
dom(f) such that gi(u) < 0 for all i 2 {1, 2, . . . ,m}. Let F be the feasible set, that is
F :=

�

u | 8j2{1,2,...,m}gj(u)  0

 

. Intuitively, the Interior Point method approaches a
solution from the interior of the feasible set F .

The constrained optimization problem (7.20) can be transformed into the unconstrained
one by putting inequality constraints into the objective

minimize

u
f(u) +

m
X

j=1

I�(gj(u)) (7.21)

where I� is the indicator function defined as

I�(a) =

8

<

:

0 if a  0

1 if a > 0

The role of the indicator function I�(·) is to prevent the solution from leaving the feasible
set. For this reason the function I�(·) is also called the barrier function.

In practice, however, another barrier function is often used, the so called logarithmic
barrier function defined as

ˆI�(a; t) :=

8

<

:

� 1

t log(�a) if a < 0

1 if a � 0

(7.22)

The logarithmic barrier function ˆI�(·, tk) can be seen as an approximation of the barrier
function I� for the increasing sequence (tk)k2{0,1,2,...}. Figure 7.1 shows how ˆI�(·, tk) is
changing and is approaching I� with respect to tk. Since ˆI� is twice continuously differentiable
and convex, increasing function in a the whole objective f(u) +

Pm
j=1

ˆI�(gi(u); tk) is also
twice differentiable and convex function. Thus, for fixed t, a second order method can be
employed to solve the centering problem

arg min

u

8

<

:

 (u; t) := f(u) +

m
X

j=1

ˆI�(gj(u); t)

9

=

;

(7.23)

Function  is called the centering function.
For fixed t, the gradient and the Hessian of the logarithmic barrier function ˆI�(·; t) are

given by [Boyd and Vandenberghe 2004]

rˆI�(gj(u); t) =

1

�t gj(u)

rgj(u) (7.24)

r2

ˆI�(gj(u); t) =

1

t gj(u)

2

rgj(u)rgj(u)

T
+

1

�t gj(u)

r2gj(u) (7.25)
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The whole algorithm can be summarized as follows

Algorithm 18 Interior Point Method
Require: u

0 such that for all j 2 {1, 2, . . . ,m} gj(u
0

) < 0 holds, t
0

> 0

1: for k = 0, 1, . . . do
2: Solve the centering problem û 2 arg minu f(u) +

Pm
j=1

ˆI�(gj(u); tk)

3: tk+1

:= Update(tk)

4: if stopping criterion is satisfied then
5: break the loop
6: end if
7: end for

If the Truncated Newton method is used to solve the centering problem, Algorithm 18
can be written as follows (now the update step for tk+1

depends on the step-size ↵k as well)

Algorithm 19 Truncated Newton Interior Point Method
Require: u

0 such that for all j 2 {1, 2, . . . ,m} gj(u
0

) < 0 holds, t
0

> 0

1: for k = 0, 1, . . . do
2: Use an iterative solver to compute direction d

k which satisfies

r2

 (u

k
; tk)d

k
= �r (u

k
; tk)

3: ↵k 2 arg min↵>0

 (u

k
+ ↵d

k
; tk)

4: u

k+1

= u

k
+ ↵kd

k

5: tk+1

:= Update(tk,↵k)

6: if stopping criterion is satisfied then
7: break the loop
8: end if
9: end for

Let assume that the dual of problem (7.20) is known, that is

maximize

v2D
d(v) (7.26)

for some feasible set D and a dual function d. By weak duality for every feasible point
v̄ 2 D the inequality d(v̄)  p? holds, where p? is the optimal value of the primal problem
(7.20). Providing that a dual point v̄ can be calculated, we can exploit information about
the duality gap ⌫ := f(u)� d(v̄) to develop the following modified version of Algorithm 19
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Algorithm 20 Truncated Newton Primal Dual Interior Point Method
Require: u

0 such that for all j 2 {1, 2, . . . ,m} gj(u
0

) < 0 holds, t
0

> 0

1: for k = 0, 1, . . . do
2: Use an iterative solver to compute direction d

k which satisfies

r2

 (u

k
; tk)d

k
= �r (u

k
; tk) (7.27)

and where the maximal number of iterations required for solving the linear system
(7.27) is computed based on the duality gap ⌫k

3: ↵k 2 arg min↵>0

 (u

k
+ ↵d

k
; tk)

4: u

k+1

= u

k
+ ↵kd

k

5: Construct dual point v̄

6: Evaluate duality gap ⌫k+1

:= f(u

k+1

)� d(v̄)

7: tk+1

:= Update(tk, ⌫k+1

,↵k)

8: if stopping criterion is satisfied then
9: break the loop

10: end if
11: end for

Similar approach was also used in Kim et al. [2007] to develop the Interior Point method
suitable for solving large-scale l

1

-regularized least squares problems. The main difference
between Algorithm 19 and Algorithm 20 is that in the latter the update step for t and the
maximal number of iterations required in order to find a direction d are explicitly based on
the duality gap.

7.4.2 Application to the Normed Constrained Quadratic Program

Recall the normed constrained quadratic program (problem (7.17)) which can be equivalently
written as

arg minp

�

f(p) :=

1

2

p

T
Qp + r

T
p

 

subject to ||pj ||2l
2

� 1  0

(7.28)

where pj 2 C and it is assumed that Q is a symmetric, positive semidefinite matrix. Moreover,
the objective function f and constraint’s functions gj(p) := ||pj ||2l

2

�1 are twice continuously
differentiable. In order to employ the Truncated Newton Primal Dual Interior Point method
we have to specify, for fixed t, the gradient and the Hessian of the centering function

 (p; t) := f(p) +

m
X

j=1

ˆI�(gj(p); t)

where

ˆI�(gj(p); t) =

8

<

:

� 1

t log(1� ||pj ||2l
2

) if ||pj ||2l
2

< 1

1 otherwise
(7.29)
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The gradient and the Hessian of the objective function f are just

rf(p) = Qp + r (7.30)

r2f(p) = Q (7.31)

Let ej be the j-th standard vector in Cn 3. Then the gradient of the logarithmic barrier
function ˆI�(gj(·); t) can be computed to be

rˆI�(gj(p); t) =

2

t
�

1� ||pj ||2l
2

�

ejpj (7.32)

Eq. (7.25) tells that in order to compute the Hessian of the logarithmic barrier function
ˆI�(gj(·); t) we only need its gradient given by eq. (7.32) and

r2

(||pj ||2l
2

� 1) = r2

(||eT
j p||2l

2

� 1) = 2eje
T
j (7.33)

Having eq. (7.25), eq. (7.32) and eq. (7.33) we can show the Hessian-vector multiplication of
the logarithmic barrier function ˆI�(gj(p); t)

r2

ˆI�(gj(p); t)v =

1

t
p̂

2

(j)ejpjp
T
j e

T
j v +

1

t
p̂

(j)eje
T
j v (7.34)

=

1

t
p̂

2

(j)ejpjp
T
j vj +

1

t
p̂

(j)ejvj (7.35)

where p̂

(j) :=

2

1�||p
j

||2
l

2

.
Let ⌫ be the duality gap. Similarly to Kim et al. [2007], we use the following formula for

the update-step

Update(t, ⌫,↵) :=

8

<

:

max

�

µmin

�

2n
⌫ , t

 

, t
 

if ↵ � ↵m

t otherwise
(7.36)

where ↵m 2 (0, 1], µ > 1 and n is the length of vector p. Moreover, the number of iterations
for direction-search is limited by the adaptive rule

"iteration := min

⇢

0.1, ⇣
⌫

||g||l
2

�

(7.37)

where ⇣ > 0 is some parameter and g is the gradient at the current point [Kim et al. 2007].
Intuitively, we search for the direction with low accuracy at early iterations when the duality
gap is quite big and gradually we increase accuracy at later iterations when the duality gap
becomes smaller.

In the context of problem (7.14) we have Q := BA

�1

B

T and r

T
:= �y

T
XA

�1

B

T .
Therefore Algorithm 20 can be used in order to solve problem (7.14).

3The standard vectors were described in Appendix E.
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Figure 7.1: Plots of the logarithmic barrier function given by eq. (7.22) with respect to
different t.
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In this chapter, the setup for the experiments is presented. In the trials design matrices
of two kinds have been used, the first one created by Variable density phase encoding [Lustig
et al. 2007] and the second one produced by Bayesian experimental design [Seeger et al.
2009b]. Next, outcomes of the experiments are shown and a short discussion about the
results of the experiments is provided.

Many thanks to Max-Planck-Institut für Biologische Kybernetik in Tübingen1 for pro-
viding data for our experiments.

Section 8.1 contains the overview of the experiments. It also briefly recalls algorithms,
explains how we measured the complexity and how the graphs were produced. Section 8.2
presents the setup of the experiments with the MRI energy function used as the objective
function. In particular free parameters that were found to work well with the problem are
provided. Section 8.3 presents discussion and outcomes providing that the MRI energy
function was used as the objective function. Section 8.4 presents the setup of the experiments
with the MRI elastic energy function used as the objective function. Again, free parameters
that were found to work well with the problem are provided. Section 8.5 presents discussion
and outcomes providing that the MRI elastic energy function was used as the objective
function.

8.1 Introduction

We took images of the vertical profiles of the four subjects (so called sagittal MR images).
Each image contains 256 rows and 256 columns. Next, we chose the MR images for each

1
http://www.kyb.mpg.de/.

http://www.kyb.mpg.de/
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subject that represent two neighbouring slices (number 8 and number 9) 2. Every MR image
was corrupted by the phase noise during the acquisition process and next subsampled in the
Fourier-space [Seeger et al. 2009b].

Mathematically this setting can be modeled as

y = Xutrue

where utrue is the original MR image (already containing noise) and y is the subsampled
image (our observation). The subsampling Fourier operator (Definition 3.3) was used as the
measurement matrix X. Two different subsampling schemes were chosen, one produced by
the Bayesian experimental design proposed in Seeger et al. [2009b], and the second produced
by the Variable density phase encoding proposed in Lustig et al. [2007]. In order to obtain
the image as close to the original as possible, two reconstruction models were established:
model (3.7) and model (7.2).

Three algorithms that deal with model (3.7), namely FISTA, Augmented Lagrangian and
Non-linear Conjugate Gradient were compared. Although, for the sake of brevity we call first
two methods FISTA and Augmented Lagrangian, we actually refer to the algorithms that
were described in Subsection 6.2.9.2 and Subsection 6.3.4 (Figure 8.3 shows the difference
between two versions of Augmented Lagrangian, in the rest of the experiments Algorithm
15 was used). All three algorithms differ slightly from each other. For instance, Non-linear
Conjugate Gradient uses the differentiable surrogate ||u||" :=

P

j

q

||uj ||2l
2

+ " of the l
1

-
norm, Augmented Lagrangian splits the variables in the objective function in order to solve
easier subproblems, whereas FISTA exploits the duality and the proximity operator to
tackle the problem. Despite differences all three methods perform only two fast Fourier
transforms per iteration.

We also compared two algorithms that deal with model (7.2). Both algorithms were
presented in Section 7.3 and Section 7.4. For the sake of brevity, by Quadratic FGP and
Interior Point we refer to the Normed Constrained Quadratic FGP method and the Truncated
Newton Primal Dual Interior Point method respectively. Quadratic FGP is a first order
method resembling FISTA, whereas Interior Point is a second order method that exploits
the information about the Hessian in order to solve the problem. Every iteration of the
Interior Point has to solve the linear system (7.27) in order to obtain a search direction.
We used Matlab function pcg3 to solve this system.

To make the comparison, we have to also specify how we measured the complexity of
the algorithms. Note that c(Xu) = O(n log(n)) and c(Bau) = c(Bru) = c(Biu) = O(n)

(the implementation of the operators was briefly described in Subsection 3.2.7), where n

is the length of the vector u and c is the time complexity with respect to n. Since all
algorithms perform only matrix-vector multiplication operations we can say that the cost of
one iteration is dominated by computing Xu, which, in turn, amounts to executing one
fast Fourier transform (FFT). The cost of dropping columns of the transformed image is
negligible in comparison to computing FFT of the image. Thus, in this thesis, we measured

2The reader who is not familiar with the details of the setup can assume that two neighbouring and
middle slices were taken.

3Preconditioned conjugate gradients method http://www.mathworks.com/help/techdoc/ref/pcg.html.

http://www.mathworks.com/help/techdoc/ref/pcg.html
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the complexity of the algorithms by the number of performed FFT. Moreover, fft is an unit
that corresponds to performing exactly one FFT.

In the y-axis of the graph we measured l
2

distance between u

? and utrue. More precisely,
we measured the error defined as

error against true solution = |||u?|� |utrue|||l
2

(8.1)

where u

? is the reconstruction obtained by the algorithm and utrue is the image used
to generate the subsampled image y. In the x-axis we measured the complexity of the
algorithms. All results were averaged over two slices and over four subjects in order to
eliminate bias that potentially may arise between some methods, models and observations.

In order to visualize the complex-valued images, we computed absolute value of their
coefficients.

8.2 Setup - MRI Energy Function

8.2.1 Bayesian Experimental Design

We conducted experiments using the Bayesian experimental design [Seeger et al. 2009b]
together with four different design sizes4: 48, 64, 96, 128. Hyperparameters were set to be
⌧a := 0.07, ⌧r := 0.04, ⌧i := 0.1, �2

:= 2.4 · 10

�4 and 8l2{a,r,i} l := �⌧l [Seeger and Nickish
2011]. The Daubechies 4 wavelets were chosen as the wavelet-part regularization term.

We compared the following methods: FISTA, Augmented Lagrangian and Non-linear
Conjugate Gradient. All algorithms start from zero vectors, that is u

start
:= 0, s

start
(j) := 0,

r

start
:= 0, d

start
(j) := 0 for all j 2 {a, r, i}.

The " parameter in || · ||" for Non-linear Conjugate Gradient was fixed to be " := 4 ·10

�12.
In the case of Augmented Lagrangian, we found that extra parameters set to µa := 20ka,
µr := 20kr and µi := 20ki where kl := �⌧l for l 2 {a, r, i} work fine. FISTA requires in
addition the number of inner iterations to be set. Since we want to keep computing Xu as
a dominating factor we cannot allow the number of inner iterations to be too large. For the
purpose of these experiments FISTA performs exactly 3 inner iterations.

8.2.2 Variable Density Phase Encoding

Now we consider the Variable density phase encoding proposed in Lustig et al. [2007]. The
setting is the same as in the case of the Bayesian experimental design, however, this time in
addition we also averaged over ten randomly generated matrices. The results are shown in
Figures H.13, H.14, H.15 and H.16. Error bars indicate deviations from the average. Figures
H.17, 8.7, H.19, H.20 show the average plots over ten randomly generated matrices, two
slices and four subjects. Algorithm 21 presents this process of averaging in a formal way.
The following list shows the meaning of functions and constants used in this algorithm:

• take_observation(j, k, l) takes the observation of the subject number k, the slice
number l, and where the j-th measurement matrix was used.

4In our setting the design size is the cardinality of the set of chosen indices divided by the number of
rows. In the experiments the design size is N

design

:=

|J |
256

(see also Definition 3.1 in Subsection 3.2.2).
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• perform_reconstruction(observation, j) returns an array of reconstructions. Ele-
ment d in this array is a reconstruction obtained after d iterations.

• compute_error(trueImage, reconstructions) returns an array of errors computed
between the true image and every reconstruction from the array reconstructions. The
errors were computed by using eq. (8.1).

• max (errorBarsUp, cumulativeError) returns the piecewise maximum between vec-
tors: errorBarsUp and cumulativeError.

• min (errorBarsDown, cumulativeError) returns the piecewise minimum between
vectors: errorBarsDown and cumulativeError.

• Nm is the number of measurement matrices.

• Ns is the number of subjects.

• Nl is the number of slices.

Algorithm 21 Averaging of Results
1: averageError := [0, 0, . . . , 0]

T

2: errorBarsUp := � [inf, inf, . . . , inf]

T

3: errorBarsDown := [inf, inf, . . . , inf]

T

4: for j = 0, 1, . . . , Nm do
5: cumulativeError := [0, 0, . . . , 0]

T

6: for k = 0, 1, . . . , Ns do
7: for l = 0, 1, . . . , Nl do
8: observation = take_observation(j, k, l)

9: reconstructions = perform_reconstruction(observation, j)

10: err = compute_error(trueImage, reconstructions)

11: cumulativeError := cumulativeError + err

12: end for
13: end for
14: averageError := averageError + cumulativeError

15: errorBarsUp := max (errorBarsUp, cumulativeError)

16: errorBarsDown := min (errorBarsDown, cumulativeError)

17: end for
18: averageError :=

averageError
N

m

·N
s

·N
l

19: errorBarsUp :=

errorBarsUp
N

s

·N
l

20: errorBarsDown :=

errorBarsDown
N

s

·N
l

Since every trial may result in a different design matrix, we have to specify how the
image is shown. Let the median image denote the reconstructed image which corresponds
to the median error5. If the median error consists of two values, the median image is the

5 Here, if e
i

 e
i+1

then median({e
1

, e
2

, . . . , e
2k�1

}) = {e
k

} and median({e
1

, e
2

, . . . , e
2k

}) = {e
k

, e
k+1

}.
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one which additionally yields the reconstruction error that is closer to the average. This
uniquely defines the median image. Figures 8.8, 8.9, 8.10 and 8.11 show median images for
different design sizes.

Let the difference image be an image obtained from the absolute difference between the
true image and the reconstruction. Figures H.22, H.24, H.26 and H.28 show the difference
images where either the Bayesian experimental design or the Variable density phase encoding
was used.

While Augmented Lagrangian produced good results after 10 iterations if the Bayesian
experimental design was used, for the Variable density phase encoding this number had
to be increased to 30. Then we could compare the reconstructions given by the Bayesian
experimental design with the reconstructions given by the Variable density phase encoding.

8.3 Results and Discussion - MRI Energy Function

Figure 8.1 shows that Augmented Lagrangian converges faster than the other methods. In
addition, it gives very good results after only 20 ffts, better than results of the other methods
(see Figure 8.4). The Non-linear Conjugate Gradient method also performs quite well; after
exactly 20 ffts it gives result around 1.0 unit of the l

2

-error better than FISTA. However,
if we allow the solvers to work for longer than 60 FFTs then their performance becomes
almost the same and the advantage of using one of them is not so clear. Other experiments
(Figures H.1, H.3, H.4) also confirm this claim.

Figure 8.5 shows the impact of the design size on the reconstruction. Clearly, the bigger
design size was chosen the more details were added and the overall reconstruction was
improved which results in smaller errors (see also Figures H.1, 8.1, H.3, H.4). So, in many
applications, we can easily go to 1/2 of the Nyquist rate which corresponds to the design
size Ndesign = 128 (the top-right image in Figure 8.5) and sometimes even go beyond that
to 1/4 of the Nyquist rate (Ndesign = 64, second-left image in Figure 8.5).

All parameters in both methods FISTA and Non-linear Conjugate Gradient have some
interpretation: Non-linear Conjugate Gradient depends on the precision " and FISTA
depends on the step-size ↵ which can be also interpreted as a reciprocal of the upper
bound of the Lipschitz constant. However, the meaning of extra parameters in Augmented
Lagrangian method is not so clear. Therefore special care must be taken in order to fix them.
Figure 8.2 shows that Augmented Lagrangian is sensitive to changing its parameters. We
chose the following parameters:

• Setting 1: µa := 100 · a, µr := 100 · r, µi := 3 · i.

• Setting 2: µa := 610 · a, µr := 420 · r, µi := 70 · i.

• Setting 3: µa := 20 · a, µr := 20 · r, µi := 20 · i.

to illustrate the impact of these parameters on the algorithm.
Figure 8.6 show the naive reconstruction which amounts to filling the missing columns

with zeros in the Fourier space. Clearly, the naive reconstruction doesn’t give good results.
See also additional Figures H.9, H.10, H.11, H.12.
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Figure 8.1: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).

Figure 8.7 shows that the performance of FISTA and Non-linear Conjugate Gradient
per fixed design size is also very similar in the case of using the Variable density phase
encoding. Also in this case, the Augmented Lagrangian method outperforms other methods
(see also Figures H.17, H.19, H.20, and Figures H.13, H.14, H.15, H.16). It suggests that the
observations where the Bayesian experimental design was used are also valid for a different
measurement matrix which was given by Lustig et al. [2007].

Moreover, the Variable density phase encoding doesn’t perform well when small design
sizes were used and the advantage of using the Bayesian experimental design over the
Variable density phase encoding is noticeable in these cases (Figures 8.8 and 8.9). Using
bigger design sizes makes this advantage less visible (Figures 8.10 and 8.11).

Figures H.22, H.24, H.26 and H.28 show that the difference between the true image and
the reconstruction is more structured in the case of the smaller design sizes.
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Figure 8.2: Design size: 64. Shown are l
2

distances to utrue produced by Augmented La-
grangian with different parameters (averaged over two slices and four different subjects).
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Figure 8.3: Design size: 64. The Bayesian experimental design was used. Shown are l
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distances to utrue (averaged over two slices and four different subjects).
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Design size: 64, error = 10.2738

(a) Naive reconstruction

Design size: 64, error = 6.0689

(b) Reconstruction with model (3.7)

Figure 8.6: Design size: 64. The reconstruction with model (3.7) was done by Augmented
Lagrangian. The number of iterations was limited to 10 steps. Bayesian experimental design
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.
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Figure 8.7: Design size: 64. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices).
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Design size: 48, error = 11.4004

(a) Variable Density Phase Encoding

Design size: 48, error = 8.4509

(b) Bayesian Experimental Design

Figure 8.8: Design size: 48. The median image for the Variable density phase encoding is
shown in Figure 8.8a and the reconstructed image for the Bayesian experimental design is
shown in Figure 8.8b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.

Design size: 64, error = 8.7679

(a) Variable Density Phase Encoding

Design size: 64, error = 6.0689

(b) Bayesian Experimental Design

Figure 8.9: Design size: 64. The median image for the Variable density phase encoding is
shown in Figure 8.9a and the reconstructed image for the Bayesian experimental design is
shown in Figure 8.9b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.



88 Chapter 8. Experiments

Design size: 96, error = 5.2733

(a) Variable Density Phase Encoding

Design size: 96, error = 3.9816

(b) Bayesian Experimental Design

Figure 8.10: Design size: 96. The median image for the Variable density phase encoding is
shown in Figure 8.10a and the reconstructed image for the Bayesian experimental design is
shown in Figure 8.10b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.

Design size: 128, error = 3.3389

(a) Variable Density Phase Encoding

Design size: 128, error = 2.6841

(b) Bayesian Experimental Design

Figure 8.11: Design size: 128. The median image for the Variable density phase encoding is
shown in Figure 8.11a and the reconstructed image for the Bayesian experimental design is
shown in Figure 8.11b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.
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8.4 Setup - MRI Elastic Energy Function

8.4.1 Bayesian Experimental Design

We conducted experiments using the Bayesian experimental design [Seeger et al. 2009b]
together with four different design sizes: 48, 64, 96, 128. Hyperparameters were set to be
⌧a := 0.07, ⌧r := 0.04, ⌧i := 0.1, �2

:= 2.4 · 10

�4 and 8l2{a,r,i} l := �⌧l [Seeger and Nickish
2011]. The Daubechies 4 wavelets were chosen as the wavelet-part regularization term. The
elastic parameters were set to be µa := 10

�3, µr := 10

�3 and µi := 10

�3.
Two algorithms were employed in the experiments: Quadratic FGP and Interior Point.

Both algorithms were described in Chapter 7. All algorithms start from zero vectors, that
is p

start
:= 0. Since the found upper bound of the Lipschitz constant was too big to be

useful in practice, we chose experimentally the step-size ↵ in Quadratic FGP to ↵ := 700.
The backtracking (Algorithm 22) was embedded in Interior Point in order to perform
the line-search. Parameters for the line-search were chosen as follows: ↵

0

:= 1.0, � := 0.5.
We set the parameters in the update function (7.36) as it was done in Kim et al. [2007]:
µ := 2.0, ↵m := 0.5. Parameter ⇣ in the adaptive rule (7.37) was set to be 0.01. We used
Matlab function pcg6 to perform Conjugate Gradient iterations. The truncation rule in our
implementation of the Interior Point method is as follows: we stop cg-iterations whenever the
cumulative number of the cg-iterations exceeds the maximal allowed number of cg-iterations,
or we computed a point with a relative tolerance less than "iteration (7.37). We also set t

0

,
needed by the update rule 7.36, by using similar rule to Kim et al. [2007], that is

t
0

:=

1

⌧a · �

In the main experiments, we set the maximal number of cg-iterations to be 600. The
rationale behind this number is simple:

• On the one hand we expect from the adaptive rule (7.37) to decide when to stop
cg-iterations.

• On the other hand we stop cg-iterations if there are too many of them.

Although, one could limit the cg-iterations even more to make this method faster, we found
that in this case the method produces the results with lower quality (Figures 8.13 and 8.14).
This happens since Interior Point converges prematurely if the number of cg-iterations is
not big enough.

8.5 Results and Discussion - MRI Elastic Energy Func-
tion

Figure 8.12 shows the average performance of two algorithms Quadratic FGP and Interior
Point providing the design size was chosen to be 64. The former algorithm outperforms
the latter. The reason for the bad performance of Interior Point was the number of steps

6
http://www.mathworks.com/help/techdoc/ref/pcg.html.

http://www.mathworks.com/help/techdoc/ref/pcg.html
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Figure 8.12: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects). The elastic model
(7.2) was used.

that Conjugate Gradient had to execute in order to find a good direction. The first order
method Quadratic FGP also outperforms Interior Point when other design sizes were chosen
(Figures H.29, H.31, H.32).

Figures 8.13 and 8.14 show that if the cg-iterations in the Interior Point method are
truncated too early, then the algorithm may converge prematurely which results in the
reconstruction of lower quality. On the other hand, the more cg-iterations, the larger number
of performed FFT, and so the worse complexity of the algorithm.

Figure 8.15 shows the performance of Augmented Lagrangian which works with model
(3.7) and the performance of Quadratic FGP which works with model (7.2). We can see
that Augmented Lagrangian converges faster than Quadratic FGP (see also Figures H.33,
H.35 and H.36).

Figure 8.16 shows the reconstruction for two models, the original model (3.7) and its
elastic extension given by model (7.2). Augmented Lagrangian was employed to find the
reconstruction where the former model was used and Quadratic FGP was used to find the
reconstruction where the latter model was chosen. The reconstruction where the original
model was used yields slightly smaller errors. In addition, the original model is simpler and
presented methods which work with the original model are faster. Therefore, the original
model is slightly more preferred. (see also Figures H.37, H.39 and H.40).

Figure 8.17 shows the impact of the design size on the reconstruction. Similarly to the
case when model (3.7) was used, we can see the monotonic impact of the design size. That
is, the more lines that were added the smaller the error obtained (see also Figures H.29,
H.31, H.32).
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Interior Point Method, error = 6.4485
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Figure 8.13: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue. The elastic model (7.2) was used. The number of iterations was limited
to 30 steps. The maximal number of cg-iterations was limited to 50 steps. Image description:
TE=92ms, subject 2, slice 8, sagittal image.

Interior Point Method, error = 6.1311
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Figure 8.14: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue. The elastic model (7.2) was used. The number of iterations was limited to
18 steps. The maximal number of cg-iterations was limited to 600 steps. Image description:
TE=92ms, subject 2, slice 8, sagittal image.
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Figure 8.15: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue. Augmented Lagrangian was used to solve Problem (3.7). Quadratic FGP
was used to solve Problem (7.2).

Design size: 64, error = 6.1141

(a) Elastic extension

Design size: 64, error = 6.0689

(b) Original model

Figure 8.16: Design size: 64. The Bayesian experimental design was used. Figure 8.16a
shows the reconstruction made by Quadratic FGP with model (7.2). Figure 8.16b shows
the reconstruction made by Augmented Lagrangian with model (3.7). Image description:
TE=92ms, subject 2, slice 8, sagittal image.
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Chapter 9

Summary and Future Work
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9.1 Summary

In Chapter 2, we explained how the images were represented. We also briefly and informally
presented the concept of sparsity, a sparsifying transform and compressed sensing.

In Chapter 3, we introduced the optimization problem that is the central model of
this thesis. This model consists of the data fitting term and the regularization term. The
latter is a linear combination of ||Bau||l

1

, ||Bru||l
1

, ||Biu||l
1

where Ba is an orthonormal
wavelet transform, Br is a finite difference operator and Bi is the imaginary part penalizing
operator. These operators were also described in that chapter.

In Chapter 4, we defined the elastic linear system. A special case of this system occurs
frequently in this thesis and can be solved efficiently in the Fourier domain.

In Chapter 5, we defined the projection and its generalization called the proximity
operator. We also showed a few examples of the proximity operator that play important
role in this thesis. Moreover, we can compute the solution of the denoising problem which
is an instance of the proximity operator very efficiently by utilizing the soft-thresholding
operator.

In Chapter 6, we derived and presented two algorithms that are based on FISTA and
Augmented Lagrangian frameworks. Both algorithms belong to the class of the first order
methods and exploit only the information about the gradient to solve the optimization
problem. On the one hand both methods share the same complexity - two invocations of
the fast Fourier transform per iteration. On the another hand, they use a different approach
to tackle the problem. In addition, another first order method, called Non-linear Conjugate
Gradient, was briefly described in that chapter.

In Chapter 7, we introduced the elastic extension of the original problem by adding l
2

-
norm regularization. This leads to the invertible elastic matrix. Next, we showed dualization
of the problem which turns out to be an instance of the normed constrained quadratic
programming. The dual problem is also a working space for two algorithms, the first order
method called Normed Constrained Quadratic Fast Gradient Projection and the second
order method called Truncated Newton Primal Dual Interior Point.
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In Chapter 8, all algorithms presented in this thesis against the problem of the recon-
struction of MR images from incomplete measurements were empirically confronted.

In the experiments conducted and presented in Section 8.3, it was shown that two methods
derived in Chapter 6, the Non-linear Conjugate Gradient method and the method based
on the FISTA framework, performed almost equally well given our settings. However, the
better performance of the third presented method that was based on Augmented Lagrangian
is visible. In that section the impact of the design size on the reconstruction was also
shown. Basically, the more lines in the Fourier space dropped, the bigger the error becomes.
In addition, we also presented the importance of the model. If the naive reconstruction
which amounts to filling the missing lines with zeros in the Fourier space was used, the
reconstruction became much worse. Finally, we showed the impact of different measurement
matrices on the reconstruction error. In the experiments the measurement matrices of two
kinds were used: the first one produced by the Bayesian experimental design and the second
one produced by the Variable density phase encoding.

In the experiments conducted and presented in Section 8.5, it was shown that the
first order method called Normed Constrained Quadratic FGP surpassed the second order
method called Truncated Newton Primal Dual Interior Point in terms of the performance.
However, the bad performance of the latter method was mainly caused by the large number
of iterations required to find a good direction. This suggests that preconditioning may be
necessary to obtain better performance of Truncated Newton Primal Dual Interior Point
and it is itself an interesting future extension to the algorithm.

Finally, we compared the reconstructions based on the original model with the reconstruc-
tions based on the elastic extension to the original model. Although, both reconstructions
were very similar to each other, and produced similar errors, since the original model is
simpler it is slightly more preferred.

9.2 Future Work

There are a few interesting directions that can extend the work done in this thesis. We
showed worse performance of Truncated Newton Primal Dual Interior Point than Normed
Constrained Quadratic FGP. However, this bad performance of the former can be explained
by the large number of iterations that is required to solve the linear system (7.19). Therefore,
by considering different preconditioning concepts we may speed up the whole method.

Next, if we adapt Non-linear Conjugate Gradient to work with model (7.2) then we
could compare this method to Normed Constrained Quadratic FGP and Truncated Newton
Primal Dual Interior Point. The results of this comparison would be an interesting extension
of this thesis.

In the experiments we used Normed Constrained Quadratic FGP with some fixed step-
size to optimize problem (7.2). Although this step-size works well in our setting its inverse
might not be an upper bound of the Lipschitz constant. Therefore it would be interesting to
find an upper bound which is also useful in practice.

Finally, in the whole thesis the equispaced Fourier transform was used. However, the
measurements may not be taken on the grid. For instance, one may consider spiral sampling
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[Yudilevich and Stark 1988]. Therefore it would be interesting to compare the methods
described in this thesis against the same optimization problems but with different sampling
schemes.
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Appendix A

Notation

↵, t, . . . scalars
u, v, . . . vectors
i the imaginary unit
↵g defines function f(x) := ↵g(x)

|| · ||" is the differentiable surrogate of the l
1

-norm
||A||l

2

stands for the operator norm; ||A||l
2

= sup||u||
l

2

=1

||Au||l
2

⌘a equality modulo terms independent of a; t
1

(a) + t
2

(

¯

c)⌘a t
1

(a)

⌘a:=b substitution of all occurrences of b in the lhs by a in the rhs
· denotes the scalar multiplication
⌦ denotes the Kronecker product
� denotes the component-wise multiplication
v denotes the complex conjugate
(x)

+

denotes max {x, 0}
R denotes set of real numbers
R denotes set of extended real numbers, that is R := [�1,1]

R
++

denotes set of positive real numbers
R

+

denotes R
++

[ {0}
C denotes set of complex numbers
N denotes set of natural numbers
Z denotes set of integers
C denotes real-valued surrogate of the complex field C, formally C := R2

P denotes P-set
�a2A indicator function of the set A
In denotes n-by-n identity matrix
B

(a)

denotes the wavelet transform
B

(r) denotes the differential operator
B

(i) denotes the imaginary part penalizing operator
F denotes the Fourier transform
X denotes the subsampling Fourier operator
J denotes set of the chosen indices
IJ ,· denotes the subsampling operator
I ·,J denotes the upsampling operator; I ·,J = I

T
J ,·

[ai]i vector that contains values ai from some set of indices I
v

M for a given v the corresponding matrix is denoted as v

M

nx number of columns in the image
ny number of rows in the image
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A Few Words about Notation

Assume that I is a finite subset of the set of natural numbers N with cardinality m. For a
given vector v 2 Rn, where n � m, the notation vI stands for

vI := [vi]i2I where ui 2 R

In similar way if u 2 Cn, where n � m, we have

uI := [ui]i2I where ui 2 C

Assume that a vector v 2 Rn is given. If it is known that v was obtained from a matrix A 2
Rn

y

⇥n
x (n = nxny) by the matlab-like reshape operation, that is v := reshape(A, nxny, 1),

then v

M
:= A.

For each z = a + ib 2 C let ⌫ : C ! C be a mapping, between complex-set C and its

real-valued surrogate C, defined to be ⌫(z) :=

"

a

b

#

. We can consider the following extension

of ⌫ for an arbitrary vector z 2 Cn

⌫(z) := [⌫(zj)]
n
j=1

Assume now that a vector u 2 Cn is given. The vector u corresponds to the complex-valued
vector z such that ⌫(z) = u. If it is known that z was obtained from a matrix Z 2 Cn

y

⇥n
x

(n = nxny) by the matlab-like reshape operation then u

M
:= Z. To conclude, the notation

u

M denotes the matrix form of the vector u.
In similar way, for fixed matrix B, by B

M we mean the linear operator that corresponds
to B but works with matrix u

M. More precisely, if for every u and every v there exist a
linear operator P such that v = Bu if and only if v

M
= Pu

M, then B

M
:= P . Sometimes

we also use (AB)

M to denote A

M
B

M.
We also use column-storage representation of matrices. Using matlab-like notation it

corresponds to u := reshape(uM, nxny, 1).





Appendix C

Mathematical Background

Definition C.1 (Linear Operator). Let T : Rn ! Rm be an operator. Then T (·) is linear
if and only if, for every u,v 2 Rn, the following holds

8↵,�2R T (↵v + �u) = ↵T (v) + �T (u)

Definition C.2 (Projection). Let T : Rn ! Rn be a linear operator. Then T (·) is a
projection if and only if, for every u 2 Rn, the following holds

T (T (u)) = T (u)

Definition C.3 (Convex Set). A set C is convex if and only if for every c

1

, c
2

2 C and
every 0  ↵  1, we have

↵c

1

+ (1� ↵)c

2

2 C

Definition C.4 (Extended-valued Function). Let f : Rn ! R be any function. Its extended-
valued version is defined as

ˆf(x) =

8

<

:

f(x) if x 2 dom(f)

1 otherwise

In this thesis we always assume extended-valued versions of functions.

Definition C.5 (Proper Function). A function f : Rn ! R is proper if and only if there
exists x such that f(x) < 1 and for every y the following f(y) > �1 holds.

Definition C.6 (Coercive Function). A function f : Rn ! R is coercive if and only if
f(x) !1 as ||x||!1.

Definition C.7 (Convex Function). A function f : Rn ! R is convex if and only if its
domain dom(f) is a convex set and for every x,y 2 dom(f) and every 0  ↵  1, we have

f(↵x + (1� ↵)y)  ↵f(x) + (1� ↵)f(y)

Definition C.8 (Operator-norm). Let A : Rm⇥n be a matrix. Then the operator-norm is
defined as

||A||l
2

:= sup

v2Rn,||v||
l

2

=1

||Av||l
2

Definition C.9 (p-norm). Let V := Cn be a complex-valued vector space. Then the lp-norm
is defined as

8u2Cn ||u||p :=

0

@

n�1

X

j=0

|ui|p
1

A

1

p
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In this thesis two important special cases of the lp-norm are considered: the l
1

-norm and the
l
2

-norm.

Definition C.10 (Dual Norm). Let V := Rn be a vector space endowed with a norm || · ||.
Then the dual norm || · ||⇤ is defined as

8v2Rn ||v||⇤ := sup

u2Rn

{hu,vi | ||u||  1}

Definition C.11 (Convex Optimization Problem). Convex optimization problem in standard
form is stated as

minimizeu f(u)

s.t. Xu = y

hj(u)  0 j 2 J
(C.1)

where f and hj are convex functions for all j 2 J . In addition, we say that a point u is
feasible if all equality and inequality constraints are satisfied at u. Moreover, a feasible point
u

? is called a solution (or a minimizer) of problem (C.1) if and only if

f(u

?
)  f(u) for every feasible u

Definition C.12 (Lagrangian). The so called Lagrange function associated to the problem
C.1 is

L(u,�,�) = f(u) + �

T
(Xu� y) +

X

j2J
�jhj(u) (C.2)

where � and � are vectors of Lagrange multipliers.

Definition C.13 (Lagrange Dual Problem). Let L be Lagrange function (C.2). Define the
so called Lagrange dual function as follows

g(�,µ) := minimize

u
L(u,�,�) (C.3)

Then Lagrange dual associated to problem C.1 is

maximize�,� g(�,�)

s.t. � ⌫ 0
(C.4)

where ⌫ denotes the component wise inequality �. Then problem (C.1) is called the primal
problem and problem (C.4) is called the dual problem. Moreover, every minimizer of the
primal problem is called a primal optimal, and every maximizer of the dual problem is called
a dual optimal.

Definition C.14 (KKT Conditions for Convex Problems). Consider the convex optimization
problem (C.1). Let u, � and µ be any points that satisfies the KKT conditions

hj(u)  0 j 2 J
Xu = y

� ⌫ 0
�

T
h(u) = 0

ruL(u,�,µ) = 0

where h(u) := [hj(u)]j. Then u, � and µ are primal and dual optimal.
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Definition C.15 (Equivalent Problems, Informally). Following Boyd and Vandenberghe
[2004], we call two problems equivalent if from the solution of the first problem, the solution
of the second problem can be readily found.
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Supplementary Proofs

D.1 Fourier Transform

Let recall definition of the 2-D discrete Fourier transform F

M

(Fu)

M
�,! :=

1p
n

n
x

�1

X

x=0

n
y

�1

X

y=0

u

M
y,x exp

✓

�i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

(D.1)

and its inverse

(F

H
u)

M
y,x :=

1p
n

n
x

�1

X

!=0

n
y

�1

X

�=0

u

M
�,! exp

✓

i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

(D.2)

where n := nx · ny.
In order to prove that (F

H
)

M is actually the inverse transform to F

M we have to show
that the following holds

(F (F

H
u))

M
= (F

H
(Fu))

M
= u

M

Let start from the following lemma

Lemma D.1. Let fix M 2 N� {0} and define

pk := exp

✓

i2⇡
k

M

◆

where k 2 {0, 1, . . . ,M � 1}. Then the following holds

M�1

X

m=0

pm
k =

8

<

:

M if k = 0

0 otherwise

Proof. We will consider two cases:

• If k = 0 then pk = 1 and therefore

M�1

X

m=0

pm
k =

M�1

X

m=0

1 = M

This ends the first part of the proof.

• Assume now that k 6= 0. Since pk 6= 1 we can use geometric series formula to obtain

M�1

X

m=0

pm
k =

1� pM
k

1� pk
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Because

pM
k =

✓

exp

✓

i2⇡
k

M

◆◆M

= exp

✓

i2⇡
k ·M
M

◆

= exp (i2⇡k) = 1

we have
M�1

X

m=0

pm
k =

1� pM
k

1� pk
= 0

This ends the last part of the proof.

Now we can prove the main theorem

Theorem D.1. The following equality holds

(F (F

H
u))

M
= (F

H
(Fu))

M
= u

M

Proof. We will prove this theorem in two steps:

• First we show that (F (F

H
u))

M
= u

M holds. For every � and ! we have

(F (F

H
u))

M
�,!

=

1p
n

n
x

�1

X

x=0

n
y

�1

X

y=0

(F

H
u)

M
y,x exp

✓

�i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

=

1

n

n
x

�1

X

x=0

n
y

�1

X

y=0

0

@

n
x

�1

X

⌘=0

n
y

�1

X

⇣=0

u

M
⇣,⌘ exp

✓

i2⇡

✓

x · ⌘
nx

+

y · ⇣
ny

◆◆

1

A

exp

✓

�i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

=

1

n

n
x

�1

X

⌘=0

n
y

�1

X

⇣=0

u

M
⇣,⌘

n
x

�1

X

x=0

exp

✓

i2⇡x

nx
(⌘ � !)

◆ n
y

�1

X

y=0

exp

✓

i2⇡y

ny
(⇣ � �)

◆

=

1

n

n
x

�1

X

⌘=0

n
y

�1

X

⇣=0

u

M
⇣,⌘

n
x

�1

X

x=0

✓

exp

✓

i2⇡

nx
(⌘ � !)

◆◆x n
y

�1

X

y=0

✓

exp

✓

i2⇡

ny
(⇣ � �)

◆◆y

= u

M
�,!

where we used Lemma D.1 to transit from the second last row to the last row.

• Similarly, for every � and ! we have

(F

H
(Fu))

M
y,x

=

1p
n

n
x

�1

X

!=0

n
y

�1

X

�=0

(Fu)

M
�,! exp

✓

i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

=

1

n

n
x

�1

X

!=0

n
y

�1

X

�=0

 

n
x

�1

X

a=0

n
y

�1

X

b=0

u

M
b,a exp

✓

�i2⇡

✓

a · !
nx

+

b · �
ny

◆◆

!

exp

✓

i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

=

n
x

�1

X

a=0

n
y

�1

X

b=0

u

M
b,a

n
x

�1

X

!=0

✓

exp

✓

i2⇡

nx
(x� a)

◆◆! n
y

�1

X

�=0

✓

exp

✓

i2⇡

ny
(y � b)

◆◆�

= u

M
y,x

where we again used Lemma D.1 to transit from the second last row to the last row.
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Therefore we can conclude that the following holds

(F (F

H
u))

M
= (F

H
(Fu))

M
= u

M

We can also relate the discrete Fourier transform applied to the complex conjugate of
some vector with the inverse discrete Fourier transform applied to the complex conjugate of
the reverse of the vector. The lemma is as follows

Lemma D.2. Let F be the 2-D discrete Fourier transform and (·)R the reverse operation
defined by (4.15). Then the following holds

8v2Cn

F

H
v = Fv = F

H
vR

Proof. Fix v 2 Cn=n
y

·n
x . Then we have

p
n(F

H
vR)

(y,x)

=

n
y

�1

X

�=0

n
x

�1

X

!=0

(vR)

(�,!)

exp

✓

i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

= v

(0,0) +

n
x

�1

X

!=1

v

(0,n
x

�!)

exp

✓

i2⇡
x · !
nx

◆

+

n
y

�1

X

�=1

v

(n
y

��,0) exp

✓

i2⇡
y · �
ny

◆

+

n
x

�1

X

!=1

n
y

�1

X

�=1

v

(n
y

��,n
x

�!)

exp

✓

i2⇡

✓

x · !
nx

+

y · �
ny

◆◆

= v

(0,0) +

n
x

�1

X

a=1

v

(0,a)

exp

✓

�i2⇡
x · a
nx

◆

+

n
y

�1

X

b=1

v

(b,0) exp

✓

�i2⇡
y · b
ny

◆

+

n
x

�1

X

a=1

n
y

�1

X

b=1

v

(b,a)

exp

✓

�i2⇡

✓

x · a
nx

+

y · b
ny

◆◆

=

p
n(Fv)

(y,x)

=

p
n(F

H
v)

(y,x)

For additional information about the discrete Fourier transform, see the Mallat’s book
Mallat [2008].

D.2 The Reverse Operation

Recall that the reverse operation was defined as follows

v

M
R := [v

[n�k]n
]

n�(1,1)
k=(0,0) (D.3)

Now, we prove two lemmas used in Section 4.2.

Lemma D.3. Let (·)R be the reverse operation given by (D.3). Then the following holds

(vR)R = v
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Proof. Let v 2 Cn. Then we have

vR = [v
[n�k]n

]

n�(1,1)
k=(0,0)

and

(vR)R =

⇣

[v
[n�k]n

]

n�(1,1)
k=(0,0)

⌘

R

Therefore

(vR)R = [v
[n�[n�k]n]n

]

n�(1,1)
k=(0,0)

Assume now that k > (0, 0). Then we have n� k < n and

[v
[n�n+k]n

]

n�(1,1)
k=(1,1) = [vk]

n�(1,1)
k=(1,1) (D.4)

Assume now that k = (0, x) but x > 0. Then

v
[n�[n�(0,x)]n]n

= v
[(n

y

,n
x

)�[(n
y

,n
x

�x)]n]n
= v

[(n
y

,n
x

)�(0,n
x

�x)]n
= v

(0,x)

(D.5)

Proof for the case k = (y, 0) and y > 0 is similar to the previous one. Finally, assume that
k = (0, 0). Then

v
[n�[n�(0,0)]n]n

= v
(0,0) (D.6)

Putting all together yields
(vR)R = v

This ends the proof.

Lemma D.4. The reverse operation is a linear operation.

Proof. Let v,u 2 Cn. Directly from the definition we can see that (↵v + �u)R = ↵(v)R +

�(u)R holds.
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Standard Vectors

Let e

(j) 2 Rn be the vector with 1 at j-th position and 0 everywhere else. Formally

(e

(j))l :=

8

<

:

1 if l = j

0 otherwise

We call the vector e

(j) the j-th standard vector. Notice that the j-th standard vector can
be used as a selector which returns j-th entry of another vector. That is

e

T
(j)v = vj (E.1)

for an arbitrary v 2 Rn. On the other hand the standard vector e

(j) can also be used to
transform a scalar into a vector in Rn. That is

e

(j)vj = v̂

(j) (E.2)

where vj 2 R and

v̂

(j)
l :=

8

<

:

vj if l = j

0 otherwise

Note that also the following holds

n
X

j=1

e

(j)e
T
(j) = I

where I 2 Rn is the identity matrix.
Our definition of the standard vector can readily be extended to Cn by embedding

e

C
(j) := e

(j) ⌦ I

2

We call the vector e

C
(j) the j-th standard vector in Cn.

Note the analogous results for e

C
(j) to (E.1) and (E.2). That is

(e

C
(j))

T
s = sj (E.3)

where s 2 Cn and sj 2 C. Also
e

C
(j)sj = ŝ

(j) (E.4)

where sj 2 C and

ŝ

(j)
l :=

8

<

:

sj if l = j

[0, 0]

T otherwise
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In this thesis, for the sake of brevity, we will skip superscript C in e

C
(j) and will use

the following notation e

(j). It should be clear from the context if this notation refers to
the standard vector in Rn or in Cn. Moreover, since we are not interested in the particular
entries of the standard vector anymore, we also skip (·) in the subscript. Finally, we use
notation ej to denote the j-th standard vector.
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Derivatives

Derivatives used in this thesis come from Minka [2001] and are based on the infinitesimal
vectors. Let consider the following equation

f(u + du) = f(u) + Adu + (higher order terms)

The matrix A is the derivative and its transpose is the gradient of f , that is A = rf(u)

T . Let
define the differential df(u) to be the linear part of f(u + du)� f(u), that is df(u) = Adu.
Therefore, in order to compute derivative of an expression, it is enough to compute the
differential and then massage the result into the canonical form. After this we can read off
the derivative as the coefficient of du. Minka [2001] considered six canonical forms but in
this thesis only the following one df(u) = adu is needed.

Now, we can compute derivative and gradient of the expression

1

2

||Xu� y||2l
2

for some real-valued matrix X, a constant vector y and variable u. We have

d ||Xu� y||2l
2

= d (Xu� y)

T
(Xu� y)

= d
⇣

u

T
X

T
Xu� 2y

T
Xu + y

T
y

⌘

= d (u

T
X

T
Xu)� 2d (y

T
Xu)

= (d u

T
)X

T
Xu + u

T
(d X

T
Xu)� 2y

T
X(d u)

= (d u)

T
X

T
Xu + u

T
X

T
X(d u)� 2y

T
X(d u)

= 2u

T
X

T
X(d u)� 2y

T
X(d u)

= 2

⇣

u

T
X

T
X � y

T
X

⌘

(d u)

where we applied the following rules (here A is a constant and X, Y are variables; see also
Minka [2001])

d A = 0 (F.1)

d AX = A(d X) (F.2)

d (X + Y ) = d X + d Y (F.3)

d (XY ) = (dX)Y + X(d Y ) (F.4)

d X

T
= (d X)

T (F.5)
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Since we massaged the result into the canonical form we can read off the gradient of
1

2

||Xu� y||2l
2

as a transpose of the expression u

T
X

T
X � y

T
X, that is

r1

2

||Xu� y||2l
2

=

⇣

X

T
Xu�X

T
y

⌘

= X

T
(Xu� y)

Another useful example is computing the gradient of the following expression

m
X

j=1

wj ||sj ||2l
2

(F.6)

where u 2 Cn, s := Bu 2 Cm and wj are some real-valued weights for every j 2 {1, 2, . . . ,m}.
Equipped with the standard vectors, expression (F.6) can be written as
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B(du)

the gradient is

r
m
X

j=1

wj ||sj ||2l
2

= 2B

T
(W ⌦ I

2

)Bu (F.7)

where I

2

2 R2⇥2 is the identity matrix and W is the diagonal matrix with the following
diagonal entries

W j,j := wj

More details about the differential calculus used in this thesis can be found in Minka
[2001].
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Line-search Methods

Good overview of the line-search methods the reader can find in Nocedal and Wright [1999].
Here we present only these methods that were used in this thesis.

Backtracking (Armijo Rule). Let f be a continuously differentiable function. Then
we can use the following rule in order to find a suitable step-size ↵

f(u + ↵d)  f(u) + �↵rf(u)

T
d (G.1)

for some ↵ > 0 and � 2 (0, 1). The following algorithm is an implementation of the Rule
(G.1)

Algorithm 22 Backtracking (Armijo Rule)
Require: ↵

1

> 0, � 2 (0, 1), � 2 (0, 1), u, d

1: for k = 1, 2, . . . do
2: if f(u + ↵kd)  f(u) + �↵krf(u)

T
d then

3: break the loop
4: else
5: ↵k+1

:= �↵k

6: end if
7: end for

Intuitively, this algorithm chooses the step-size ↵ such that the sufficient decrease occurs.
In particular, if the function f is convex and u is not a minimizer then rf(u)

T
d = �� < 0

and Rule (G.1) becomes

f(u + ↵d)� f(u)  ��↵� < 0

for some � > 0.

Backtracking for Projection. Assume that f is a function with Lipschitz continuous
gradient. Some algorithms such as Fast Gradient Projection (Algorithm 4 or Algorithm 16)
relies on an upper bound of the Lipschitz constant. If this upper bound is unknown or it is
too large to be useful in practice then the following backtracking rule can be embedded in
the algorithm
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Algorithm 23 Backtracking for Projection
Require: ↵

1

> 0, � 2 (0, 1), u

1: for k = 1, 2, . . . do
2: u

(↵
k

)

= PK(u� ↵krf(u))

3: if f(u

(↵
k

)

)  f(u) +

⌦

rf(u),u
(↵

k

)

� u

↵

+

1

2↵
k

||u
(↵

k

)

� u||2l
2

then
4: break the loop
5: else
6: ↵k+1

:= �↵k

7: end if
8: end for

This algorithm is searching for ↵k such that 1

↵
k

is the upper bound of the Lipschitz
constant.
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Figure H.1: Design size: 48. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).
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Figure H.2: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).
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Figure H.3: Design size: 96. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).
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Figure H.4: Design size: 128. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).
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Figure H.5: Design size: 48. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).
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Figure H.6: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).
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Figure H.7: Design size: 96. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).



131

5 10 15 20 25 30 35 40 45 50 55 60
2.5917

2.6835

2.7752

2.867

2.9587

3.0505

Design size: 
128

number of fft

er
ro

r a
ga

in
st

 tr
ue

 s
ol

ut
io

n

 

 
Augmented Lagrangian (Algorithm 15)
Augmented Lagrangian (Algorithm 14)

Figure H.8: Design size: 128. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects).

Design size: 48, error = 11.5958

(a) Naive reconstruction

Design size: 48, error = 8.4509

(b) Reconstruction with model (3.7)

Figure H.9: Design size: 48. The reconstruction with model (3.7) was done by Augmented
Lagrangian. The number of iterations was limited to 10 steps. Bayesian experimental design
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.
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Design size: 64, error = 10.2738

(a) Naive reconstruction

Design size: 64, error = 6.0689

(b) Reconstruction with model (3.7)

Figure H.10: Design size: 64. The reconstruction with model (3.7) was done by Augmented
Lagrangian. The number of iterations was limited to 10 steps. Bayesian experimental design
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.

Design size: 96, error = 8.4738

(a) Naive reconstruction

Design size: 96, error = 3.9816

(b) Reconstruction with model (3.7)

Figure H.11: Design size: 96. The reconstruction with model (3.7) was done by Augmented
Lagrangian. The number of iterations was limited to 10 steps. Bayesian experimental design
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.
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Design size: 128, error = 6.0056

(a) Naive reconstruction

Design size: 128, error = 2.6841

(b) Reconstruction with model (3.7)

Figure H.12: Design size: 128. The reconstruction with model (3.7) was done by Augmented
Lagrangian. The number of iterations was limited to 10 steps. Bayesian experimental design
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.
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Figure H.13: Design size: 48. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices, plots with error bars).



135

5 10 15 20 25 30 35 40 45 50 55 60
5.146

7.0595

8.9729

10.8864

12.7999

14.7133
Non−linear CG, Design size: 64

number of fft

er
ro

r a
ga

in
st

 tr
ue

 s
ol

ut
io

n

5 10 15 20 25 30 35 40 45 50 55 60
5.146

7.0595

8.9729

10.8864

12.7999

14.7133
FISTA, Design size: 64

number of fft

er
ro

r a
ga

in
st

 tr
ue

 s
ol

ut
io

n

5 10 15 20 25 30 35 40 45 50 55 60
5.146

7.0595

8.9729

10.8864

12.7999

14.7133
Augmented Lagrangian, Design size: 64

number of fft

er
ro

r a
ga

in
st

 tr
ue

 s
ol

ut
io

n

Figure H.14: Design size: 64. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices, plots with error bars).
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Figure H.15: Design size: 96. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices, plots with error bars).
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Figure H.16: Design size: 128. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices, plots with error bars).



138 Appendix H. Supplementary Figures

5 10 15 20 25 30 35 40 45 50 55 60
10.7098

11.181

11.6523

12.1236

12.5949

13.0662
Design size: 48

number of fft

er
ro

r a
ga

in
st

 tr
ue

 s
ol

ut
io

n

 

 
Non−linear CG
Augmented Lagrangian
FISTA

Figure H.17: Design size: 48. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices).
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Figure H.18: Design size: 64. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices).
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Figure H.19: Design size: 96. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices).
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Figure H.20: Design size: 128. The Variable density phase encoding was used. Shown are l
2

distances to utrue (averaged over two slices, four different subjects and ten measurement
matrices).
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Design size: 48, error = 11.4004

(a) Variable Density Phase Encoding

Design size: 48, error = 8.4509

(b) Bayesian Experimental Design

Figure H.21: Design size: 48. The median image for the Variable density phase encoding is
shown in Figure H.21a and the reconstructed image for the Bayesian experimental design is
shown in Figure H.21b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.

Design size: 48

(a) Variable Density Phase Encoding

Design size: 48

(b) Bayesian Experimental Design

Figure H.22: Design size: 48. Figure H.22a shows the absolute difference between the median
image obtained by the Variable density phase encoding and true image. Figure H.22b
shows the absolute difference between the reconstructed image obtained by the Bayesian
experimental design and true image. Image description: TE=92ms, subject 2, slice 8, sagittal
image.
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Design size: 64, error = 8.7679

(a) Variable Density Phase Encoding

Design size: 64, error = 6.0689

(b) Bayesian Experimental Design

Figure H.23: Design size: 64. The median image for the Variable density phase encoding is
shown in Figure H.23a and the reconstructed image for the Bayesian experimental design is
shown in Figure H.23b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.

Design size: 64

(a) Variable Density Phase Encoding

Design size: 64

(b) Bayesian Experimental Design

Figure H.24: Design size: 64. Figure H.24a shows the absolute difference between the median
image obtained by the Variable density phase encoding and true image. Figure H.24b
shows the absolute difference between the reconstructed image obtained by the Bayesian
experimental design and true image. Image description: TE=92ms, subject 2, slice 8, sagittal
image.
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Design size: 96, error = 5.2733

(a) Variable Density Phase Encoding

Design size: 96, error = 3.9816

(b) Bayesian Experimental Design

Figure H.25: Design size: 96. The median image for the Variable density phase encoding is
shown in Figure H.25a and the reconstructed image for the Bayesian experimental design is
shown in Figure H.25b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.

Design size: 96

(a) Variable Density Phase Encoding

Design size: 96

(b) Bayesian Experimental Design

Figure H.26: Design size: 96. Figure H.26a shows the absolute difference between the median
image obtained by the Variable density phase encoding and true image. Figure H.26b
shows the absolute difference between the reconstructed image obtained by the Bayesian
experimental design and true image. Image description: TE=92ms, subject 2, slice 8, sagittal
image.
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Design size: 128, error = 3.3389

(a) Variable Density Phase Encoding

Design size: 128, error = 2.6841

(b) Bayesian Experimental Design

Figure H.27: Design size: 128. The median image for the Variable density phase encoding is
shown in Figure H.27a and the reconstructed image for the Bayesian experimental design is
shown in Figure H.27b. The number of iterations was limited to 10 steps when the Bayesian
experimental design was used, and to 30 steps when the Variable density phase encoding
was used. Image description: TE=92ms, subject 2, slice 8, sagittal image.

Design size: 128

(a) Variable Density Phase Encoding

Design size: 128

(b) Bayesian Experimental Design

Figure H.28: Design size: 128. Figure H.28a shows the absolute difference between the
median image obtained by the Variable density phase encoding and true image. Figure H.28b
shows the absolute difference between the reconstructed image obtained by the Bayesian
experimental design and true image. Image description: TE=92ms, subject 2, slice 8, sagittal
image.
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Figure H.29: Design size: 48. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects). The elastic model
(7.2) was used.
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Figure H.30: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects). The elastic model
(7.2) was used.
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Figure H.31: Design size: 96. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects). The elastic model
(7.2) was used.
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Figure H.32: Design size: 128. The Bayesian experimental design was used. Shown are l
2

distances to utrue (averaged over two slices and four different subjects). The elastic model
(7.2) was used.
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Figure H.33: Design size: 48. The Bayesian experimental design was used. Shown are l
2

distances to utrue. Augmented Lagrangian was used to solve problem (3.7). Quadratic FGP
was used to solve problem (7.2).
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Figure H.34: Design size: 64. The Bayesian experimental design was used. Shown are l
2

distances to utrue. Augmented Lagrangian was used to solve problem (3.7). Quadratic FGP
was used to solve problem (7.2).
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Figure H.35: Design size: 96. The Bayesian experimental design was used. Shown are l
2

distances to utrue. Augmented Lagrangian was used to solve problem (3.7). Quadratic FGP
was used to solve problem (7.2).
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Figure H.36: Design size: 128. The Bayesian experimental design was used. Shown are l
2

distances to utrue. Augmented Lagrangian was used to solve problem (3.7). Quadratic FGP
was used to solve problem (7.2).
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Design size: 48, error = 8.4736

(a) Elastic extension

Design size: 48, error = 8.4509

(b) Original model

Figure H.37: Design size: 48. The Bayesian experimental design was used. Figure H.37a
shows the reconstruction made by Quadratic FGP with model (7.2). Figure H.37b shows
the reconstruction made by Augmented Lagrangian with model (3.7). Image description:
TE=92ms, subject 2, slice 8, sagittal image.

Design size: 64, error = 6.1141

(a) Elastic extension

Design size: 64, error = 6.0689

(b) Original model

Figure H.38: Design size: 64. The Bayesian experimental design was used. Figure H.38a
shows the reconstruction made by Quadratic FGP with model (7.2). Figure H.38b shows
the reconstruction made by Augmented Lagrangian with model (3.7). Image description:
TE=92ms, subject 2, slice 8, sagittal image.
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Design size: 96, error = 4.0508

(a) Elastic extension

Design size: 96, error = 3.9816

(b) Original model

Figure H.39: Design size: 96. The Bayesian experimental design was used. Figure H.39a
shows the reconstruction made by Quadratic FGP with model (7.2). Figure H.39b shows
the reconstruction made by Augmented Lagrangian with model (3.7). Image description:
TE=92ms, subject 2, slice 8, sagittal image.

Design size: 128, error = 2.7421

(a) Elastic extension

Design size: 128, error = 2.6841

(b) Original model

Figure H.40: Design size: 128. The Bayesian experimental design was used. Figure H.40a
shows the reconstruction made by Quadratic FGP with model (7.2). Figure H.40b shows
the reconstruction made by Augmented Lagrangian with model (3.7). Image description:
TE=92ms, subject 2, slice 8, sagittal image.
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