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Abstract

Semantic Image Segmentation is the task of segmenting images into homogeneous

regions with semantic meaning. In Computer Vision it means assigning a class-label

from a known set of classes to every pixel in the image. The standard approach is

to take some sample data, divide it into training and testing sets, and to learn the

class distribution on the training set, followed by checking the quality of the achieved

generalization on the testing set. The generalization ability of the standard approaches

is based on the assumption that the underlying class distribution does not change in

both training and testing sets and does not evolve with time.

In this work we want to investigate in the problem of performing image segmen-

tation in particularly difficult visual conditions. We want to look specifically into the

conditions when the class distribution does change with time, which creates problems

for the standard approaches.

As all the datasets, that are currently used in the image segmentation community,

try not to break the constant class distribution assumption, we propose a new testing

set, which exhibits significant variations in visual appearance of different classes and

contains the class distribution different from the one in the training set.

We evaluate a number of standard approaches for image segmentation based on

Conditional Random Fields, employing general and more specialized features. We look

into the possible ways of performing adaptation to new conditions by means of on-

line learning methods and propose our ideas on how to improve the generalization over

previously unseen conditions without experiencing model drift.
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Chapter 1

Introduction

1.1 Motivation

Scene segmentation, as the task of separating an input image into homogeneous regions

each having a predefined meaning (class-label), is one of the core problems in Computer

Vision. Image segmentation helps to simplify an input image and analyze it, in order

to help a machine to understand what is depicted there and to allow it to use this

information in its work. This is, in particular, a crucial property for systems which are

used for navigation of robots or cars in the environment, which is in turn can be used to

help people to perform safer or completely autonomous driving or have other important

civil application.

Figure 1.1 shows, probably, one of the most important applications of image seg-

mentation in the driving assistance systems. In this case image segmentation can help

to turn complicated for understanding road scenes’ images into simpler ones, which in

turn can be processed by an on-board computer and can, for example, hint the driver

about possible dangerous situations on the road and help to avoid colliding with other

vehicles and, most important, pedestrians.

Image segmentation can also have other fields of application. For example, it can

be used as the lower layer in different object detection algorithm generating proposals

for where objects belonging to certain classes might be in the image. Most detectors are

based on the sliding-window approach, which means that if there exist a way to perform

initial localization of regions of interest, this can significantly reduce the running time

of the detection algorithm and improve their accuracy.

Being an important problem in Computer Vision, image segmentation has been

studied carefully for a long time and a number of algorithms have been proposed to

1



2 Chapter 1 Introduction

Figure 1.1: Application of image Segmentation in driving assistance. Left:
the original image from an on-board camera installed on a car. Right: handmade
segmentation of the original image. Image segmentation helps to simplify the input
image in order to improve understandability and outlines, for example, the road surface
(blue color), other vehicles (orange), and pedestrians (green), which can help make

driving safer.

deal with it. The most conventional approaches are based on learning the underlying

class distribution on some training set, and then predicting class-labels for previously

unseen instances based on the learned distribution. The main assumption, which must

hold in order for such methods to work, is that this class distribution stays the same

for the unseen instances. Is this does not hold then these methods start to experience

certain difficulties which result in degrade of the accuracy. In real-world application

there can be situations, when this assumption might not hold. For example, a car was

driving along a highway, but then turns into a country road. Though the surface the

car is going on now can still be called a road, but its appearance completely differs from

the asphalted highway. Now if we take, for example, a standard classifier which learned

the class distribution on asphalted road samples will have difficulties on the country

road as the appearance of the road and the underlying class distribution has changed

considerably.

In order to deal with possible changes of the class distribution on-line learning

techniques can be used. The main idea behind them is that they try to give algorithms

the ability to adapt themselves to such changes, improving their robustness to previously

unseen conditions, but also ensuring that the algorithm does not experience model drift,

i.e. learning a distribution which differs too much from the original one.

In this thesis we want to explore on-line learning techniques and their particular

application to the task of image segmentation. We are aiming for tracking an evolv-

ing target distribution over models. An example of such application is presented in

Figure 1.2, which shows how image segmentation of a difficult image becomes better as

algorithm performs adaptation with time. As all the datasets which are in use nowadays

do not exhibit the level of variation in visual appearance we want to test, we collected
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Figure 1.2: An example of image labeling evolution in on-line learning. First
image presents the original image from the new dataset. Next four images show the
segmentation after the first four iterations, and next four - after the last fout iterations
of our proposed Bayesian Model Update algorithm. The labeling becomes better and

gets closer to the ground truth (the last image) with time.

new road scenes’ dataset and manually labeled it. We implemented a number of mod-

ern approaches which do not account for distribution changes and tested them on the

new dataset, employing simple features as well as features specially designed for road

detection. We experimented with existing on-line learning techniques and proposed our

way of improving stability of on-line learning algorithms using Bayesian Model Update

under Structured Scene Prior.

The contributions of this work are:

• a new more challenging road scenes dataset;

• a new Bayesian Model Update under Structured Scene Prior approach, which

allows to tack an evolving distribution and therefore perform adaptation to new

conditions.

1.2 Related Work

In order to experiment with adaptive techniques we first needed to choose an appropriate

classifier and features. From the classifier we needed good accuracy, low training and

testing time and initial robustness to noise in the samples’ labels, as our approach to

performing adaptation is based on on-line learning which uses predicted label in the

process of retraining and they can be noisy. We also investigated in how Conditional

Random Fields approaches can help to improve segmentation in adverse conditions, as

well as other approaches which wotk with structured label space.

Unary Classifiers The idea of combining classifiers (boosting) in order to

improve their combined (boosted) quality is due to [34]. A few years later the first
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boosting algorithm was proposed in [15], which gave birth to very popular boosting

algorithms called AdaBoost and GentleBoost. For a long time boosting was a de facto

standard classifier for any real-time segmentation algorithm ([38, 31]). Random Forests

were introduced in [11] and further explored in [18] and showed very good accuracy

([37]) and speed of both evaluation and testing ([35]) due to easy parallelization, and

thanks to these properties they start to become a default choice for a basic classifier in

image segmentation ([12, 37, 25]). In particular, [12] used Random Forests to perform

image segmentation of videos captures on roads.

Conditional Random Fields The first application of Conditional Random

Fields in Semantic Image Segmentation can be regarded to [29], who proposed to use

CRFs to improve segmentation results. The work [28] extended the conventional CRF

formulation by adding higher order potentials on image segments to improve consistency

between them. However, the accuracy of these latter approach is restricted by the

accuracy of unsupervised image segmentation, which is used to locate the regions on

which the model operates. The most recent work of [26] proposes to use a fully-connected

CRF over the image pixels in order to use information contained in the image itself to

improve segmentation. This approach helps to preserve very fine details of objects’

borders, whereas conventional CRF approaches tend to smooth image boundaries. [26]

is currently state-of-the-art algorithm for semantic image segmentation. It is worth

mentioning that it is based on the method of [38], the main part of which are Texton

features, which we employ in this work. We also employ advanced features for road

detection from [45].

While the above mentioned approaches consider only feature space of an image in

order to improve segmentation results, [25] propose to use not the single pixel’s label, but

rather to consider a certain labeling neighborhood around the pixel. This method allows

to learn frequently occurring in the training data labeling patterns, which certainly helps

to make the segmentation more consistent. We think that this method is particularly

useful in the task of segmentation of road scenes, as there one can expect quite constant

patterns of objects.

On-line Learning The most obvious way of performing adaptation to changing

conditions and, as a result, to the underlying class probability distribution is to use the

result of the currently segmented images to improve the classifier in a smart way, in

order not to break what is working correctly currently. This can be done by adding

recently labeled samples into the classifier and retraining it. This process is called on-

line learning. The first attempts were made in [31]. Later [33] showed that on-line

learning can be done efficiently on the basis of Random Forest. They showed that

with time the on-line classifier converges to the off-line one (i.e. the one which was
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trained having access to all the samples). But in their approach they use samples

together with labels, whereas we’re aiming for the scenarios when there are no any

labels known, but only predictions of the current-state classifier are given. Domain

adaptation techniques [32, 27] can help to adapt to evolving target domain distribution,

but they also require at least some sample instances with ground truth labels from

the target domain. The most recent work [9] considers exactly this setting, by adding

new samples with the predicted labels constraining this process by the prior labeling

distribution. But in this work they perform testing on the CamVid [1] dataset, which

is quite out-of-date, and their dataset [10], which has binary labeling into “road” and

“background” and is not that challenging, to our taste. Our proposed approach of

improving stability and robustness of an on-line segmentation algorithm is based on the

Condensation algorithm from [21], which was shown to be extremely useful in robotics

application for robot localization in [13].

1.3 Outline

The rest of this work is structured as follows:

• Chapter 2 starts the thesis with a brief introduction/review of Conditional Random

Fields with an accent on their particular application to the task of Semantic Im-

age Segmentation. Section 2.1 gives the definition of Conditional Random Fields

and shows they are applied to image segmentation. We research the process of

building a classifier from the very bottom layer, so the next Section 2.2 describes

which features we employed in this work (in particular: raw color features 2.2.1,

texture-layout features from [38] for general purpose image segmentation 2.2.2,

and advanced features for road detection from [45] 2.2.3). Section 2.3 gives de-

scription of the two most popular nowadays unary classifiers Boosting 2.3.1 and

Random Forests 2.3.2 and gives the pros and cons of each classifier. In our work

we employ a number of algorithms which being put on top of the unary classifier

allow to enhance the quality of the output segmentation. Section 2.3.3 describes

the approach from [25] (Structured Class-Label Prediction) which allows the unary

classifier to work not on single pixel’s labels but on the whole label patches. Sec-

tion 2.4.1 describes the method from [26] (Fully connected CRFs) which builds

a fully-connected graph on the image pixels and using the output of the unary

classifier allows to considerably improve segmentation results.

• Chapter 3 gives a description of on-line learning and outlines the benefits it can

bring. Section 3.1 presents the most simple approach for performing on-line learn-

ing, while Section 3.2 contains our implementation of ideas from [9] on performing
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prior-constrained adding of new samples in the process of on-line learning. Sec-

tion 3.3 introduces our proposed approach for improving stability called Bayesian

Model Update under Structured Scene Prior.

• Chapter 4 gives an overview of different datasets available in the image segmen-

tation community and argues why they do not suit our research of domain adap-

tation. There we introduce a new road scenes’ dataset which we gathered and

labeled by hand giving a number of examples from it. This dataset features ex-

tremely (in comparison to all other conventional road scenes’ datasets) difficult

(adverse) visual conditions.

• Chapter 5 describes all the experiments we conducted and gives the discussion

of the achieved results together with our proposition on their improvement. Sec-

tion 5.1.2 proves that Random Forests are robust to noisy labels and Section 5.1.1

shows the influence and dependencies of different parameters of Random Forests.

Section 5.2 presents the segmentation results of our implementations of the ap-

proaches described in Chapter 2 on the MSRC dataset. Section 5.3.1 presents both

numerical and visual results of evaluation of the state-of-the-art segmentation al-

gorithm [26] on the dataset proposed in Chapter 4. The evaluation experiments

on the proposed dataset are followed by Section 5.3.2, which includes approaches

from Chapter 2 and features from Sections 2.2.1 and 2.2.2. Section 5.3.3 shows

that Random Forest with advanced features from Section 2.2.3 can successfully

compete with state-of-the-art segmentation algorithm [26]. Section 5.4 presents

results for two existing on-line learning approaches, whereas Section 5.4.3 con-

tains results of our proposed approach on getting improvement and stability of an

on-line learning method.

• Chapter 6 concludes the thesis summarizing all the results of our work and propos-

ing directions for possible improvements.

• Appendix A gives a detailed algorithm of building a Random Forest, together with

the algorithm for traversing test samples through a Random Forest.



Chapter 2

Conditional Random Fields

Approach

Conditional Random Fields (CRFs) are a class of statistical modelling method often

applied in pattern recognition and machine learning, where they are used for structured

prediction. Whereas an ordinary classifier predicts a label for a single sample without

regard to neighboring samples, a CRF can take context into account.

CRFs are a type of discriminative undirected probabilistic graphical model. It is

used to encode known relationships between observations and construct consistent inter-

pretations. CRFs are useful in Computer Vision and particularly in Image Segmentation,

because in this task observations (samples) are pixels, which represent the real world,

and the latter usually shows strong relations and interactions between neighboring par-

ticles. So, taking into account these kinds of natural relations helps to considerably

improve segmentation results.

2.1 Overview of Conditional Random Fields

2.1.1 Definition

Given X as a random variable over data sequences to be labeled and Y a random variable

over corresponding label sequence (components of Y are assumed to range over a finite

label alphabet Y), Lafferty et al . [29] define a CRF on observations X and random

variables Y as follows:

Definition 2.1. Let G = (V,E) be a graph such that Y = (Yυ)υ∈V , so that Y is

indexed by vertices of G. Then (X,Y) is a conditional random field in case, when

7
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Figure 2.1: An example of a simple pairwise connected Conditional Random Field
over a 6x4 image. Y0, . . . ,Y23 denotes unkown labels of pixels, X0, . . . ,X23 denotes
observations, grey color means that variable Xi is conditioned on. In this example

every pixel is connected to its four closest neighbors.

conditioned on X, the random variables Yυ obey the Markov property with respect to

the graph: P (Yυ|X,Yω, ω 6= υ) = P (Yυ|X,Yω, ω ∼ υ), where ω ∼ υ means that ω and

υ are neighbors in graph G.

What this means is that a CRF is an undirected graphical model (Figure 2.1) whose

nodes can be divided into exactly two disjoint sets X and Y, the observed and output

variables, respectively; the conditional distribution P (Y|X) is then modeled.

Definition 2.2. A potential φ(x) is a non-negative function of variable x. A joint

potential φ(x1, . . . , xn) is a non-negative function of a set of variables x1, . . . , xn.

Then we can write down the conditional probability distribution as a Gibbs distri-

bution:

P (Y|X; θ) =
exp−

∑
c∈CG φc(Yc|X; θ)

Z(X; θ)
, (2.1)

where θ is some parameter vector of the model, CG is the set of all cliques of the graph G,

φc(Y |X; θ) is a potential which works on clique c, Yc is a subset of Y of variables which

comprise the clique c and the normalizing constant Z(X; θ) =
∑

Y exp−
∑

c∈CG φc(Y |X; θ)

is just a summation over all possible labelings Y ∈ LN , where N = |V | is the number of

variables.

In the Semantic Image Segmentation task we are interested in finding the labeling

of pixels Y which has the highest probability given the observation values X:

Y = argmax
Ŷ ∈LN

P (Ŷ |X; θ) = argmax
Ŷ ∈LN

exp−
∑

c∈CG φc(Ŷc|X; θ)

Z(X; θ)
(2.2)
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One can observe that the normalization factor Z(X, θ) does not depend on y, so it can

be dropped out. Then we get a simplified formula:

Y = argmax
Ŷ ∈LN

exp−
∑
c∈CG

φc(Ŷc|X; θ) (2.3)

The definition of cliques is quite an arbitrary thing and always depends on particular

needs. The most popular definition of cliques is when there is a potential for each pixel

φ(yi|xi; θ) and there is an edge between nearby pixels in the graph G and an associated

with this edge potential φ(yi, yj |xy, xj ; θ). Then we can rewrite the exponent in (2.3) as:

∑
c∈CG

φc(Yc|X; θ) =
∑
i

φ(yi|xi; θ) +
∑

j∈N (i)

φ(yi, yj |xi, xj ; θ), (2.4)

where N (i) denotes neighbors of pixel i in the graph G. The usual choice is to take

left, right, top, and bottom neighbors. The neighborhood can be easily extended to be

larger, but at the price of increasing inference complexity. We will show later in this

work different types of this neighborhood.

2.1.2 Inference

For general graphs, the problem of exact inference in CRFs is intractable. The inference

problem for a CRF is basically the same as for an Markov Random Field (MRF) and the

same arguments hold. In MRFs one may calculate the conditional distribution of a set of

nodes V ′ = υ1, . . . , υi given values to another set of nodes W ′ = ω1, . . . , ωj by summing

over all possible assignments to u /∈ V ′,W ′; this is called exact inference. However,

exact inference is a n-P-complete problem, and thus computationally intractable in the

general case. Approximation techniques such as Markov chain Monte Carlo and loopy

belief propagation are often more feasible in practice. However for CRFs there exist

special cases for which exact inference is feasible:

• If the graph is a chain or a tree, message passing algorithms yield exact solutions.

The algorithms used in these cases are analogous to the forward-backward and

Viterbi algorithm [23] for the case of HMMs.

• If the CRF only contains pair-wise potentials and the energy is submodular, com-

binatorial min cut/max flow algorithms yield exact solutions.

If exact inference is impossible, several algorithms can be used to obtain approximate

solutions. These include:
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• Loopy belief propagation

• Alpha expansion

• Mean field inference

• Linear programming relaxations

2.2 Features

Features are a crucial part of every classifying system. They define the transformation

of the real world into a form most suitable for current classification task. Feature

engineering can be called an art, because it requires good feeling and knowledge of the

problem and sometimes it takes a lot of time to come up with good features.

Certainly, even very good features cannot do the whole job of building a “perfect”

classifier, but one shouldn’t underestimate their impact on the overall performance.

2.2.1 Raw Color Features

In Semantic image segmentation task we get as an input color images. So, the most

simple kind of features would be just taking RGB values of every single pixel. However,

it was mentioned in [37, 38] that CIELAB color space tend to generalize better. In this

work we actually need only forward transformation, because we need CIELAB values

for the classifier and do not need to convert the image in CIELAB color space back to

the usual RGB.

In order to convert RGB values to the corresponding CIELAB representation, we

first need to convert RGB to the standard XYZ color space. This can be implemented

as a simple matrix-vector multiplication:
X

Y

Z

 = A×


R

G

B


RGB of every pixel should be first per channel normalized so that every value lies in the

range [0, 1]. There exist a large number of choices for matrix A from different standards.

We used the following one:

A =


0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227

 (2.5)
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Figure 2.2: Feature patch (courtesy of [37]). This is an example of a feature patch.
Bold-framed square in the center denotes the pixel being currently processed. Two red
squares show two possible pixel locations relative to the central one which are actually

considered when computing feature response for the central pixel.

After this, with the help of the following formulas XYZ values can be converted to LAB

ones:

L = 116f(Y/Yw)− 16,

a = 500[f(X/Xw)− f(Y, Yw)],

b = 200[f(Y/Yw)− f(Z/Zw)],

where

f(t) =

t
1
3 if t >

(
6
29

)3
1
3

(
29
6

)2
t+ 4

29 otherwise.

Here (Xw, Yw, Zw) are the CIEXYZ tristimulus values of the reference white point. Ac-

cordingly with the chosen matrix (2.5) we take (Xw, Yw, Zw) = (0.950456, 1.0, 1.088854).

The main improvement one can achieve even with raw color features is by considering

information not only from a single pixel, but rather by applying some function to a

number of pixels in the neighborhood (Figure 2.2). The following functions has been

shown ([37, 25]) to be most useful:

ϕ(x|θ1, θ2) = I(u,υ,0)+θ1 − I(u,υ,0)+θ2 ,

ϕ(x|θ1, θ2) = I(u,υ,0)+θ1 + I(u,υ,0)+θ2 ,

ϕ(x|θ1, θ2) =
∣∣I(u,υ,0)+θ1 − I(u,υ,0)+θ2

∣∣ ,
where x is a patch from the image with coordinates (u, υ), θi = (δui, δυi, ci), i = 1, 2 are

the displacement parameters, with δui and δυi being a displacement relative to the patch

center and ci denoting one of the color channels. These function can capture for example

long-distance gradients, homogeneous regions, etc. The application of these functions

can be easily extended to even higher dimensional feature representations than just RGB

or CIELAB color channels. In that case ci ∈ [1, . . . , D], where D is the dimensionality
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Figure 2.3: The process of image textonization (courtesy of [38]). An input
image is convolved with a filter-bank. The filter-bank responses for all pixels in the
training images are clustered. Finally, each pixel is assigned a texton index correspond-

ing to the cluster center nearest to its filter-bank responses.

of the feature space. In case of raw color features D = 3.

2.2.2 Texture-Layout Filters

As features textons were introduces in [30] and later have been shown to be useful in

such applications as material categorization [40] and general object categorization [44].

It is worth mentioning that the term ’texton’ itself was introduced by [24] for describing

human perception of textures.

The process of textonization is illustrated in Figure 2.3 and proceeds as follows.

The training images are convolved with 17-dimensional filter-bank at scales k. We use

the same filter-bank as proposed in [44], which consists of Gaussians at scales k, 2k, 4k,

x and y derivatives of Gaussians at scales 2k and 4k, and Laplacians of Gaussians at

scales k, 2k, 4k, and 8k. The Gaussians are applied to all three color channels, while

the other filters are applied only to the luminance channel of CIELAB color space. This

filter-bank was determined to have full rank in a singular value decomposition in [22]

and therefore to contain no redundant elements. The 17-dimensional responses for all

training pixels are then whitened (to give zero mean and unit covariance) and clustered

in an unsupervised manner. We employ a freely available library by [41], which contains

an efficient implementation of k-means Lloyd’s and Elkan’s algorithms. The latter uses

triangular inequality [14] to avoid many distance calculations when assigning points to

clusters and is typically much faster than Lloyd’s algorithm. However, it uses storage

proportional to the square of the number of clusters, which makes it impractical for a

very large number of clusters. Finally, each pixel in the image is assigned to the closest

cluster center producing a texton map T .

Texture-Layout filters were proposed in [38]. Each texture-layout filter is a pair (r, t)

of an image region r and a texton t. The center of region r is defined in coordinates

relative to the pixel i being classified. For efficiency, we use only rectangular regions,

though any other shape is also possible. For simplicity, a set R of candidate regions is
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Figure 2.4: Calculating feature responses and capturing textural context
(courtesy of [38]). (a, b) An image and its corresponding texton map (colors map
uniquely to texton indices). (c) Texture-layout filters are defined relative to the point
i being classified (yellow cross). In this first example feature, rectangular region r1 is
paired with texton t1 (mapping to the blue color). (d) A second feature where region
r2 is paired with texton t2 (green). To improve readability, (c) and (d) are shown
double sized compared to (e) and (f). (e) The response υ[r1,t1](i) of the first feature is
calculated at three different positions in the texton map (magnified). In this example
υ[r1,t1](i1) ≈ 0, υ[r1,t1](i2) ≈ 1, and υ[r1,t1](i1) ≈ 1

2 . (f) For the second feature (r2, t2),
where t2 corresponding to ’grass’, the algorithm can learn such points as i4 belonging
to sheep regions tend to produce large values of υ[r2,t2](i), and hence can exploit the

contextual information that sheep pixels tend to be surrounded by grass pixels.

sampled at random, such that their top-left and bottom-right corners lie within some

fixed bounding box which covers considerable portion of an image (about a half or a

quarter of an image). As illustrated in Figure 2.4, the feature response at location i is

the proportion of pixels under the offset region i+ r that have texton index t:

υ[r,t](i) =
1

area(r)

∑
j∈(i+r)

[Tj = t] (2.6)

From here on [.] is an identity function defined as:

[condition] =

1 if condition is satisfied

0 otherwise.
(2.7)

Outside the image boundary there is zero contribution to the feature response.

The filter responses can be efficiently computed over the whole image using integral

images [43]. Figure 2.5 illustrates this process: the texton map is separated into K

channels (one for each texton) and then, for each channel, a separate integral image is

computed. The integral images can later be used to compute the texture-layout filter

response in O(1) time: if T̂ (t) is the integral image of T for texton channel t, then the
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Figure 2.5: Separating the texton map into multiple channels (courtesy
of [38]). The texton map of an image, containing K textons, is split into K channels.
An integral image [43] is built for each channel and used to compute texture-layout

filter responses in constant time.

feature response is computed as:

υ[r,t](i) = T̂ (t)
rbr

+ T̂ (t)
rtl
− T̂ (t)

rbl
− T̂ (t)

rtr (2.8)

where rbr, rtl, rbl, rtr denote the bottom right, top left, bottom left, and top right corners

of rectangle r. [38] investigated into other region shapes rather than simple rectangles. In

particular, they evaluated rectangles rotated by 45◦, and pairs of rectangles with texton

responses added (υ[r1,t](i) + υ[r2,t](i)) or subtracted (υ[r1,t](i) − υ[r2,t](i)). However, it

only increased computation time, but didn’t produce noticeably better results. So, we

also decided to stay with just rectangles.

We used the same number of textons as in [38] equal to 400. This results in very

high memory requirements, for example storing all 400 integral images for each image

from MSRC [4] training data-set (this was about 45% of all images) would require about

30GB of memory. Therefore we subsample the train images and use w. l. o. g. only every

5-th pixel in each dimension at training time, but compute feature responses for test

images at full resolution. This is possible as the responses are normalized by the area of

the rectangle.

2.2.3 Advanced Features for Road Detection

We found out features from Christian Wojek and Bernt Schiele [45] to deal very good

with the task of semantic image segmentation of road scenes.

Texture and location features The texture features are computed from the

first 16 coefficients of the Walsh-Hadamard transform. This transformation is a discrete

approximation of the cosine transform and can be computed efficiently [20, 8] even in
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real-time (for example using modern graphics hardware). The features are extracted

at multiple scales from all channels of the input image in CIELAB color space. As a

preprocessing step, a and b channels are normalized be means of gray world assumption

to cope with varying color appearance. The L channel is mean-variance normalized to

fit a Gaussian distribution with a fixed mean to cope with global lighting variations.

They also found that normalizing the transformation’s coefficients according to [39] is

beneficial. They propose to L1-normalize each filter response first and then locally

normalize the responses at each image pixel. They take the mean and variance of the

normalized responses as a feature and the grid point’s coordinates within the image as

a location cue.

As the result of this feature transform we get a 194-dimensional vector for each

pixel. This makes storing all feature-transformed images in memory very problematic,

so we perform a sub-sampling and use only every 4-th pixel in each dimension from

training images. But we still perform feature transform for test images at their full

resolution. These features were used only in the setting, when no any function was

applied to feature patches, so there is no problem of matching between train and test

images’ feature responses.

We used the implementation kindly provided to us by the authors.

2.3 Unary Potentials

The main components of any CRF-based formulation is the unary potentials. They

are responsible for making the initial prediction about sample’s label, before any other

enhancing technique is applied. It is exactly them who incorporate our knowledge about

the behavior of individual samples and give us a strong clue about what class the sample

might belong to. Any other higher-level technique expects to get a reasonably good

prediction about each sample, because otherwise, despite whatever clever the algorithm

is, it will not do much useful if already the initial guess is wrong. Therefore, it is

extremely important to devote considerable amount of designing time to build a strong

classifier which will be able to deal with the task already well enough. Here “strong” is

quite a tentative term, because certainly one would try to find a classifier which has the

lowest test error for a particular task. But on the other hand, if one aims for real-time

application the question of running time becomes also very important. As a usual matter

in life, there is a trade-off between the overall accuracy and the running time which turn

out to be reciprocals (in the meaning) of each other: if ones designs an algorithm which

has very good accuracy the running time is very probable to be very high, and vice

versa.
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Running time (both at training and testing) was a crucial matter for us. So, we tried

to find a classification algorithm, which would have both reasonably (for our particular

task; certainly, there is no “ideal” classifier in the Universe) good accuracy and as small

as possible both training and testing time. Having this in mind we finally came up with

two options: Boosting (in particular GentleBoost) and Random Forest.

2.3.1 Boosting

Boosting (the original idea is due to [16]) is a general method for improving the perfor-

mance of any learning algorithm. In theory, boosting can be used to significantly reduce

the error of any weak learning algorithm that consistently generates classifiers which

need only be a little bit better than random guessing. Despite the potential benefits

of boosting promised by the theoretical results, the true practical value of boosting can

only be assessed by testing the method on “real” learning problems.

Boosting works by repeatedly running a given weak learning algorithm (although any

learning algorithm can be used; weak learners are just faster both at training and testing,

therefore opening way to real-time application of the whole classification algorithm) on

various distributions over the training data, and then combining the classifiers produced

by the weak learner into a single composite classifier. The first provably effective boosting

algorithms were presented by R.E. Schapire [34] and Y. Freund [15].

The general case Boosting algorithm is given as follows:

Data: a set of training points (xi, yi)
N
i=1, a Weak Learner f(x), number of iterations M

Result: final classifier F (x) = sign(
∑M

m=1 αmfm)

initialize weights: γ1
i = 1

N , i = 1, . . . , N ;

for m← 1 to M do
1. Train a classifier fm using a base method (Weak Learner) and the weighted

training data (xi, yi, γ
m
i )Ni=1;

2. Recompute the weights γm+1, where the weights of wrongly classified training

points are usually increased and the weights of correctly classified points are

decreased;

3. Compute coefficient αm for the current Weak Learner fm, which is either 1 or

depends on the error of the classifier;

end

Algorithm 1: General Boosting algorithm

The intuition about Boosting is that it tries to aggregate classifiers which in general

perform not good into a stronger classifier by paying more attention to the points which

are wrongly classified at each iteration of the algorithm. That’s why the algorithm 1
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increases weights for incorrectly classified points at step 2 to make the new Weak Learner

to try to perform well exactly on this points, as the other points, which have low weights,

were already correctly classified at previous iterations.

From the statistical point of view iterative updates of Boosting can be seen as

minimization of a convex loss function over a convex set of functions or descent in

function space:

F (x) 7→ F (x) + αmfm(x), (2.9)

where

1. fm is a descent direction based on the current F ,

2. αm is the step-size in the descent step

Particularly, the loss being optimized by the Boosting algorithm is essentially the em-

pirical exponential loss of the final classifier F :

L(F ) =
1

N

N∑
i=1

exp(−yi ∗ F (xi)) (2.10)

There is a large variety of particular implementations of the Boosting algorithm 1.

One of the most popular implementations are AdaBoost [16] (which stands for Adap-

tive Boosting) and GentleBoost. The latter one has a real-valued output (whereas in

AdaBoost all WeakLearners must be binary-valued functions), which can be seen as the

confidence of the classifier about certain classes. And besides, with further per pixel

normalization its output can be converted into a probability distribution, which in turn

can be used in some other enhancing algorithms, which are described later in this work.

The GentleBoost algorithm looks like this:

Data: a set of training points (xi, yi)
N
i=1, a real-valued Weak Learner f(x) : X 7→ R,

number of iterations M

Result: final classifier F (x) = sign(
∑M

m=1 fm(x))

initialize weights: γ1
i = 1

N , i = 1, . . . , N ;

for m← 1 to M do

1. Fit the Weak Learner fm(x) into the weighted training data (xi, yi, γ
m
i )Ni=1

(Weak Learner uses weighted squared loss L(fm) =
∑N

i=1 γi(yi − fm(xi))
2;

2. Update the weights γm+1 as

γm+1
i = γmi exp (−yifm(xi));

3. Re-normalize γ so that
∑N

i=1 γ
m+1
i = 1;

end

Algorithm 2: GentleBoost algorithm
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Then the binary classification can be performed just as sign(F (x)). In case ofK-class

classification one builds K different boosting classifiers (built using one-vs-all strategy).

Then, at test time, every sample is put into each of the K boosting classifiers resulting

in a vector c ∈ RK of confidences of each classifier in the sample belonging to a class

i, i = 1, . . . ,K. After this the final prediction can be done as:

k = argmax
i∈[1,...,K]

ci (2.11)

At the same time vector c can be converted to a probability distribution, where high

confidence means high probability of certain classes.

An interesting observation can be done for the GentleBoost algorithm:

Proposition 2.3. If the Weak Learner fm is real-valued, fm(x) : X 7→ R, then the

update step Fm+1(x) = Fm(x) + fm(x) of the GentleBoost algorithm is an approximate

Newton step in order to minimize the empirical exponential loss.

Proof. We can expand the risk up to the second term using the Taylor series of exp (x),

R(F + f) = E [L(F + f)] = E [exp (−y(F (x) + f(x))] =

= E
[
exp (−yF (x))(1− yf(x) +

1

2
f(x)2)

]
. (2.12)

At each iteration we are trying to find such f which minimizes the above risk f =

argminf̂∈F R(F + f̂), and observing that the first term in parenthesis in (2.12) does not

depend on f we can modify it without changing the minimizer,

E
[
exp (−yF (x))(1− yf(x) +

1

2
f(x)2)

]
=

= E
[
exp (−yF (x))(

1

2
− yf(x) +

1

2
f(x)2)

]
=

= E
[
exp (−yF (x))(y − f(x)2)

]
. (2.13)

We also used the fact that y ∈ {−1, 1}, so y2 = 1 always holds. One can notice,

that the expression under expectation in (2.13) is a weighted squared loss with γi =

exp (−yiF (xi)) ⇒ each Weak Learner minimizes a second order approximation of the

exponential loss.

This proposition 2.3 shows, that it’s not just a luck that Boosting happens to work

good in practice, but rather it has mathematical guarantees to converge and decrease

the overall error of the boosted classifier, provided that the updates of weights γ (and

coefficients α for some implementations) are done in a proper way.
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2.3.2 Random Forests

Random Forests have gained a lot of attention recently, particularly in the filed of

Semantic Image Segmentation. The main reasons are that Random Forests show very

good performance in terms of accuracy (at the level or even better than Boosting)

and being very fast both to train and test. Random Forests were introduced by L.

Breiman [11] and further developed by P. Geurts et al . [18].

Definition 2.4. A Random Tree is a function f(x, θm) : X → Y or shortly fm(x),

where X = Rd and Y = {1, 2, . . . , n} and θm represents a set of parameters learned

while training.

In the above definition θm denotes any stochastic parameters (like splitting functions,

splitting values, etc.) which define behavior of nodes of the tree while traversing each

sample down the tree. Then we can say:

Definition 2.5. A Random Forest is a collection ofM Random Trees F = {f1, f2, . . . , fM}.

On the other hand, Random Tree is a binary Decision tree with decision and leaf

nodes. Every decision node has an associated test of the form g(x) > θ which decides on

the left/right propagation of a sample. g(x) can be any real- or vector-valued function

which output should be meaningful in terms of comparison with parameter θ. Leaf (or

terminating) nodes hold probability distribution (or labeling). Detailed algorithms for

building Random Forests can be found in Appendix A.

Training The algorithm starts at the root node having all the train instances (or

a fraction of them in order to reduce correlation between different trees) S and then

tries to separate the given set into two L (left) and R (right) sub-sets (that is if L ⊆ S

then R = S \ L) so that to decrease the overall impurity:

L(S) =
|R|
|S|

E(R) +
|L|
|S|

E(L) (2.14)

E(S) can be any measure of uncertainty. The usual choices are the Shannon Entropy

E(S) = −
∑n

i=1 pi log pi or Gini index E(S) =
∑n

i=1 pi(1 − pi), where n is the number

of classes and pi is the probability of i-th class in the given set S. Finding the best split

is basically a combinatorial np-hard problem, because one needs to try every possible

splitting function with every possible parameter. This is unreasonable in practice, so the

general approach is to uniformly randomly sample a splitting function, its parameters

(if any) and a splitting value (that is why Decision Trees built in such way are called

Random). This is done K times and then the splitting setting (gi(x), θi) which results in

the highest impurity decrease is chosen and assigned to the decision node. P. Geurts et
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al . [18] showed that taking K = d
√
de, where d is the dimensionality of the feature space,

gives a suboptimal solution. This procedure goes on in a recursive manner until some

stopping criterion is satisfied: maximum depth D is reached, the number of samples in

the node is less than some integer value n, the impurity of the node E(S) falls below

some threshold, etc. Then a leaf node is grown and assigned a probability distribution

(or labeling) of classes from the samples that reached the leaf node.

As the training samples may be unbalanced, that is the number of instances of each

class is not the same, it is reasonable to compute weights wc =
∑N

i=1[yi = c]
−1

, where

N is the number of samples, for each class c ∈ Y and multiply the distribution in all

nodes with these weights, followed by L1-normalization to ensure that the result of this

operation is a probability distribution. This is quite a natural assumption, because some

classes (like grass, sky, road, etc.) may occupy a lot of space on an image, while others

(like pedestrian, a pet, poles, etc.) may be not that prominent, but still very important

to be classified correctly. And for a classifier interested only in total error the most

profitable strategy would be to predict rather a more frequent class than a rearer one.

We think, that all classes should be treated equally. This procedure usually slightly

increases the total error, but significantly decreases per class average error, which is a

good trade-off in general.

Due to the way Random Trees are grown, one can put new samples into the tree

even at test time, thus enabling to adapt the whole classifier to changing circumstances

without the need to retrain unlike all other classifiers. This procedure is called on-line

learning (A. Saffari et al . [33]).

Predicting Given a Random Forest and a number of samples the algorithm

traverses each of the samples through each of the Random Trees until terminating in a

leaf node and retrieving the corresponding probability distribution associated with that

leaf node. Then all the probability distributions from all the trees of the ensemble are

averaged per sample:

p(y|x) =
1

T

M∑
m=1

pM (y|x) (2.15)

Finally, the class which has the highest probability is chosen for each sample:

C(x) = argmax
c∈Y

p(c|x) (2.16)

One can notice here that each sample can be tested in each tree absolutely independently

which gives a way for efficient parallelization.

Breiman [11] gives the following definition concerning Random Forests:
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Definition 2.6. The margin function for a random forest is defined as

mr(x, y) = p(y|x)−max
k∈Y
k 6=y

p(k|x) (2.17)

and the strength of the set of classifiers F = {f1, f2, . . . , fM} is

s = E(X ,Y)mr(x, y). (2.18)

The margin function (2.17) is basically the difference of true label probability and

the highest probability of a class other than the true one. So, it defines the confidence

of the whole classifier, and, obviously, for a correct classification mr(x, y) > 0 should

hold. Using margin function (2.17) the generalization error can be defined as:

GE = E(X ,Y)(mr(x, y) < 0), (2.19)

where the expectation is measured over the entire distribution of (x, y).

Using the definition of the strength (2.18) Breiman [11] defines an upper bound on

the generalization error as:

GE ≤ ρ̄1− s2

s2
, (2.20)

where ρ̄ is the mean correlation between pairs of trees in the Random Forest (measured

on how similar their predictions are). This is useful for analysis of the overall perfor-

mance of the Random Forest as well as individual Random Trees. Ideally, in order to get

as low as possible generalization error the individual trees should be highly independent

and have good accuracy (strength). That is why each tree usually gets only a small

portion of the whole training set in order to decrease correlation among trees.

Besides being accurate and fast, Random Forests also possess a number of properties

we find very useful for our problem:

• They can handle noisy training data (wrong labels) very well. Being tolerant to

label errors without significant loss in accuracy is a nice property on its own, but

it is a crucial one for us.

• They are very fast both for training and testing. It was shown by T. Sharp [35]

that both training and testing can be easily parallelized on GPU resulting in very

little running times which open way to real time application of Random Forests

as a classifier.
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• As shown by A. Saffari et al . [33] it is possible to perform on-line learning during

right during testing.

It is worth mentioning, that due to the way the splitting algorithm works with the

train samples there is one significant drawback of Random Forests. As at the splitting

node the algorithm might access potentially any sample from the train set and there is

no way to somehow predict which samples might be used, the whole train set should

always be stored in operating memory of the computer. And when parallelizing the

building algorithm, for example by letting each of the trees to be built independently in

a separate thread/process, one must assure that any thread gets access to the whole data

it needs. For example, when separating the work between several computers without

shared memory, a copy of the whole train set should be kept in the memory of each of

the computers, thus creating additional traffic on the net and introducing some latency.

When it comes down to parallelization of the algorithm on a GPU, one should always

remember about this memory constraint, because modern graphic card have quite lim-

ited amount of available memory. It is actually an ongoing research on how to benefit

from parallelization of the Random Forest building algorithm without dealing with the

memory constraining problems.

But the main disadvantage of Random Forests is that as every tree is essentially

a binary tree, then the upper bound on the number of elements (nodes) of the Ran-

dom Forest is O(M2D+1). Which is quite a large number on its own, but also grows

exponentially in the maximum depth D. For the sake of optimization we use array rep-

resentation of each binary tree and this means that we have to allocate array of length

2D+1−1 elements before even starting to build the tree. Depending on the platform the

implementation of Random Forest aims at, one should carefully choose the maximum

depth D both in order to build a good classifier, but also not to run out of memory.

2.3.3 Structured Class-Label Prediction

In all ordinary approaches in Semantic Image Segmentation the pixel’s label is taken as

the label of the sample, thus making each sample absolutely independent in terms of

label space Y. But the natural observation says that usually label space Y shows some

topological structure, which can be used as a good clue when segmenting an unseen

image. Although this topological structures are present already in any training set as

a part of ground truth images, they are still not considered as an important part of

learning process by most of the classification approaches. As a result, most of such

approaches result in very noisy labeling, e.g . see Figure 2.9. An approach overcoming

this shortage was proposed by P. Kontschieder et al . [25]. They propose an algorithm,
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Figure 2.6: An example of a patch label (courtesy of [25]). Whereas ordinary
approaches would consider only label of a pixel (u, υ), they propose to use the local
neighborhood p and therefore learn valid labelling transitions among adjacent object

categories. Here: person, building, bicycle.

which uses label patches around each training pixel instead of just its single label. An

example can be seen in Figure 2.6.

Their Structured label space P consists of d× d label patches, i.e. P = Yd×d. With

p(i,j) the denote the (i, j)-entry of a label patch p ∈ P. Additionally, they index the

entries of every patch in a way that position (0, 0) denotes the center of the patch and

(i, j) are given relative to the central position. Using the new labels every training

sample has now form of (x, p) with x ∈ X and p ∈ P. Basically, this approach redefines

the way any learning algorithm works with the labels. For example, they use an ordinary

Random Forest with patches of simple color-based features 2.2.1. But in general with

certain adaptations any other algorithm can be changed in order to work with the new

structured label space P. As we are also using Random Forest in this work, we adopted

their approach.

Training As it was mentioned in the previous paragraph in case of Random

Forests incorporation of the new approach is very easy. As the features are dealt with

in the same way as before, all splitting procedures and growing of trees are done in the

same manner as before. The only difference at this step is that one label patch π is stored

in each leaf node instead of distribution of classes. For example, consider a number of

label patches Pt ⊆ P that reached a leaf node t during the procedure of growing a tree.

Then one patch which represents the mode of distribution of patches in Pt is selected

as the final labeling. In order to keep the cost of this step low they propose to use the

pixel independence assumption when computing the joint probability of a patch p as

P (p|Pt) =
∏
i,j

P (i,j)(p(i,j)|Pt), (2.21)



24 Chapter 2 Conditional Random Fields Approach

Figure 2.7: Fusion of structured predictions (courtesy of [25]). Each pixel collects
class hypothesis from the structures labels predicted for itself and neighboring pixels,
which have to be fused into a single class prediction. For clarity reason, only 5 out of

9 label patches are drawn.

Figure 2.8: Label patch selection based on joint probability (courtesy of [25]).
Example of label patches reaching a leaf during training. A label patch π is selected

based on the joint probability distribution of labels in the leaf.

where P (i,j)(p(i,j)|Pt) represents the marginal class distribution of pixel position (i, j)

over all label patches Pt. The label patch π is finally selected for the leaf node t as the

one in Pt which maximizes the the joint probability as

π = argmax
p∈Pt

P (p|Pt). (2.22)

An example of such patch selection is given in Figure 2.8. In order for the splitting

algorithm of Random Forest to work correctly, in each splitting node equation (2.14)

should be evaluated and as this function awaits some probability distribution over one

pixel instead of over patches a random patch position (i, j) is chosen and marginal

probability P (i,j)(·|Pt) is used.

Predicting At test time every sample is routed through each tree of the forest

F = {f1, . . . , fM} and a bunch of label patches PF is gathered. Then again the patch

which maximizes the joint probability is chosen

p = argmax
p̂∈PF

P (p̂|PF ), (2.23)
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Figure 2.9: Example of noisy labelings. Columns denote from left to right: orig-
inal image, ground truth image, output of a classifier (Random Forest in this case).

where P (p̂|PF ) is defined as (2.21). As opposed to the standard semantic segmentation

algorithms which assign one label to every test sample, structured class-label classifier

produces a label patch which also covers some neighboring pixels. Particularly, if a label

patch p has width d × d dimensions, then every pixel (except for the boundary ones of

course) is covered by exactly d2 label patches. So, here the question of fusion of those

patches arise. One can think of many ways of doing this but we adopt the simplest, but

still good performing, strategy as proposed by the authors, when the most voted class

per pixel is selected as the pixel label. An example of this fusion approach can be seen

in Figure 2.7.

We found this paper to be particularly interesting in our task, because this new

approach of dealing with labels was easy to incorporate into existing framework of our

Random Forest implementation and we are interested in scenarios of road scenes segmen-

tation, which always show well-structured patterns especially for road, lane markings,

cars, etc., so being able to learn this is very helpful in our task.
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2.4 Pairwise Potentials

Figure 2.9 shows that even a good classifier but which works on individual pixels produces

a labeling which is subject a lot of noise. But the real world is in general piecewise

smooth, so the intuition is that the resulting labeling of an image should be also piecewise

homogeneous in its labels. As unary potentials cannot cope with this problem on their

own an extension to the framework is necessary by adding pairwise potentials between

different pixels in order to let them influence their peers and create a more natural

looking segmentation. The most conventional approach is to connect each pixel only

to a limited number of pixels in its neighborhood [38, 42]. The main reason for this

is the restriction of the inference time which remain linear in the number of variables

complexity as long as there is some fixed (relatively small) neighborhood of each pixel.

This setting still allows (up to some fixed constant) linear inference time, but if one tries

to connect each pixel to every other pixel in the image, the inference complexity becomes

quadratic and therefore totally impractical, because it takes hours or even days [26] using

traditional approaches like Markov Chain Monte Carlo sampling or graph cut based

inference algorithms.

2.4.1 Fully connected CRFs

Basic CRF models are composed of unary potentials on individual pixels or image

patches and pairwise potentials on neighboring pixels or patches [38, 17, 19, 42]. The

resulting adjacency CRF structure is limited in its ability to model long-ranged connec-

tions within the image and generally results in excessive smoothing of object boundaries.

Instead, Philipp Krähenbühl and Vladlen Koltun [26] propose to use a fully connected

CRF that establishes pairwise potentials on all pairs of pixels in the image. An example

of a fully connected CRF can be seen in Figure 2.10 and looks much more complicated

in comparison with a usual approcah like 2.1.

The main restriction here is inference time because even a low resolution image will

have tens of thousands of nodes and billions of edges and the inference algorithm has

complexity O(n2) in the number of vertices. In their paper they propose a highly efficient

inference algorithm for fully connected CRF models in which the pairwise edge potentials

are defined by a linear combination of Gaussian kernels in an arbitrary feature space.

The algorithm is based on a mean-field approximation to the CRF distribution. This

approximation is iteratively optimized through a sequence of message passing steps, each

of which updates a single variable by aggregating information from all other variables.

Their main observation in this context was that a mean field update of all variables in

a fully connected CRF can be performed using Gaussian filtering in feature space. This
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Figure 2.10: This is an example of a fully connected Conditional Random Field
over a 4x3 image. Y0, . . . ,Y11 denotes unkown labels of pixels, X0, . . . ,X11 denotes
observations, grey color means that variable Xi is conditioned on. Here every pixel is
connected to every other pixel in the image. The number of edges grows qaudratically

in the number of pixels.

allowed to reduce the computational complexity of message passing from quadratic to

linear in the number of variables by employing efficient approximate high-dimensional

filtering [7]. The resulting approximate inference algorithm is sublinear in the number

of edges in the graph.

As it was mentioned in 2.1 probability of a certain labeling Y ∈ LN can be expressed

as:

P (Y|X; θ) =
exp−

∑
c∈CG φc(Yc|X; θ)

Z(X; θ)
, (2.24)

where the term E(Y|X; θ) =
∑

c∈CG φc(Yc|X; θ) is usually called the Gibbs energy

of the labeling Y. The maximum a posteriori (MAP) labeling of the random field is

Y = argmaxŶ ∈LN P (Ŷ |X; θ).

Then in the fully connected pairwise CRF model, where G is a complete graph on

Y and CG is the set of all unary and pairwise cliques, the Gibbs energy can be written

as

E(Y|X; θ) =
∑
i

ψu(yi|xi; θ) +
∑
j 6=i

ψp(yi, yj |xi, xj ; θ), (2.25)

where i and j range from 1 to the number of pixels in the image N . The unary potential

ψu(yi|xi; θ) is computed independently for each pixel by a classifier that produces a

probability distribution over the label assignment yi given pixel observation xi.
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The pairwise potentials in their model have the form

ψp(yi, yj |xi, xj ; θ) = µ(yi, yj)k(fi, fj) = µ(yi, yj)
K∑
m=1

ω(m)k(m)(fi, fj), (2.26)

where each k(m) is a Gaussian kernel k(m)(fi, fj)) = exp
(
−1

2 (fi − fi)
T Λ(m) (fi − fi)

)
,

the vectors fi and fj are feature vectors of pixels i and j correspondingly in an arbitrary

feature space which are the result of some feature transform applied to observations xi

and xj , ω
(m) are linear combination weights, and µ is a label compatibility function.

Each kernel k(m) is characterized by a symmetric, positive-definite matrix Λ(m), which

defines its shape. A simple label compatibility function µ is given by Potts model,

µ(yi, yj) = [yi 6= yj ].

For multi-class image segmentation and labeling they use contrast-sensitive two-

kernel potentials, defined in terms of color vectors Ii and Ij and positions pi and pj :

k(fi, fj) = ω(1) exp

(
−|pi − pj |

2

2θ2
α

− |Ii − Ij |
2

2θ2
β

)
+ ω(1) exp

(
−|pi − pj |

2

2θ2
γ

)
, (2.27)

where f = {IR, IG, IB, px, py} which contains RGB color information of a pixel at location

(x, y). The first term in this equation (appearance kernel) is inspired by the observation

that nearby pixels with similar colors are likely to have the same labels. The degrees

of nearness and similarity are controlled by parameters θα and θβ. The second term

(smoothness kernel) removes small isolated regions [38].

In general, the proposed framework of this form (2.26) is a very powerful and highly

customizable tool for expressing almost any possible combination of pixels’ interactions,

despite being constrained only to Gaussian-based potentials.

Instead of computing the exact distribution P (Y|X; θ), the mean field approxima-

tion computes a distribution Q(Y) that minimizes the KL-divergence D(Q||P ) among

all distributions Q that can be expressed as a product of individual marginals Q(Y) =∏
iQi(yi). Minimizing the KL-divergence, while constraining Q(Y) and Qi(yi) to be

valid distributions, yields the following iterative update equation:

Qi(yi = l) =
1

Zi
exp

−ψu(yi)−
∑
l′∈L

µ(l, l′)

K∑
m=1

ω(m)
∑
j 6=i

k(m)(fi, fj)Qj(l
′)

. (2.28)

This update equation leads to the following iterative algorithm:
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initialize Q;
while not converged do

Q̃
(m)
i (l)←

∑
j 6=i k

(m)(fi, fj)Qj(l) for all m;// message passing step

Q̂i(yi)←
∑

l∈L µ
(m)(yi, l)

∑K
m=1 ω

(m)Q̃
(m)
i (l);// compatibility transform

Q(yi)← exp
(
−ψu(yi)− Q̂i(yi)

)
;// local update

normalize Qi(yi);

end
Algorithm 3: Mean field approximation algorithm in fully connected CRFs

A closer look at the message passing step helps to realize that this process can be

rewritten in the form of convolution with a Gaussian kernel GΛ(m) as follows

Q̃
(m)
i (l) =

∑
j 6=i

k(m)(fi, fj)Qj(l) =
∑
j∈V

k(m)(fi, fj)Qj(l)−Qi(l) =

[GΛ(m) ∗Q(l)] (fi)−Qi(l). (2.29)

They subtract Qi(l) from the convolved function Q̄
(m)
i (l) = [GΛ(m) ∗Q(l)] (fi) because

convolution sums over all elements, while message passing does not sum over Qi.

It is well known that convolution can be performed efficiently in Fourier domain by

just multiplication of complex values of the transformed signal with the corresponding

values of the transformed convolution kernel, and the discrete Fourier transform (DFT)

can be efficiently performed in time O(n log n), e.g . using a freely available implemen-

tation FFTW [2]. But the authors went even farther and made use of a paper by A.

Adams et al . [7] who presented an algorithm which allows to perform high-dimensional

Gaussian convolution in linear in the number of elements time O(d2N), thus allowing

to perform message passing step of the inference algorithm in linear time and making

the complexity of the whole inference algorithm linear in the number of variables. This

is the main reason why the proposed inference algorithm is so highly efficient. And also

the reason why all potentials in their framework can be only Gaussians.

In this work we used the implementation provided by the authors which can be

found at http://graphics.stanford.edu/projects/densecrf/.

http://graphics.stanford.edu/projects/densecrf/
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On-line Learning

The most obvious way of performing adaptation to changing conditions and, as a result,

to the underlying class probability distribution is to use the result of the recently seg-

mented images to improve the classifier in a smart way, in order not to break what is

working correctly currently. One possible way, which we study in details in this work,

is on-line learning.

On-line learning is a method of incorporating arriving information at the time of

testing. This method is designed to help any classification algorithm to perform adapta-

tion to new conditions on-the-fly. It is based on the fact that we put new samples, which

have just been classified by the algorithm, together with the predicted label straight into

the classifier and re-train it. Obviously, the main challenge here is how to choose the

new samples which we can trust and reject the false positives, because, unlike in off-line

learning, algorithms which try to learn at testing time do not have access to ground

truth labels. Correspondingly, if too many incorrectly labeled samples are added into

the classifier, then it might happen in some time that the algorithm will start working

incorrectly in terms the initially specified aim, e.g . it may start performing incorrect clas-

sification or outputting just noise due to getting confused by the lately added samples.

This affect is usually called model drift.

As on-line methods look attractive for real-life applications, where conditions might

change from those present in the training data, there has been made several researches in

this direction. One of the earliest is [31], who experimented with boosting, but the best

results were obtained in [33], who showed that on-line learning can be easily performed

with Random Forests. They also show that on-line Random Forests converge to off-line

ones with time, so we in our experiments perform not on-line but rather batched learning,

as this is just a lower bound on accuracy one can achieve with pure on-line learning. And

31



32 Chapter 3 On-line Learning

on-line learning can be seen as just a technique of speeding up the re-training process.

We rather concentrate on the problem of adding faithful samples.

By batched learning we mean, that we take a number of consequent images (in all

experiments we took 10 images), perform segmentation with the current classifier and

then process these images trying to find faithful samples and add them to the training

set of the classifier together with the predicted labels for these samples. We want to

stress that we do not use the ground truth images in any possible way other than for

computing test error rates.

We also combine off-line learning together with on-line learning by first training a

classifier on the old training set (off-line part) and then refine it by adding new samples

at the testing time (on-line part). Correspondingly, we call the old training set, which

is used for training in off-line manner, as off-line set, and the new testing set, which is

used for on-line learning, as on-line set.

3.1 Naive Approach

As the name of this method suggests, the idea behind this method is extremely simple:

perform segmentation of a new batch of images, then select a number of pixels of each

class and add them into the classifier, which is later re-trained on the old and new new

samples.

At testing time we get an output probability distribution P (x(i,j)) from our classifier

for each pixel (i, j) and the predicted class-label for it

c∗ = argmax
c∈Y

P (x(i,j) = c). (3.1)

Then, as in such setting there is now way of checking whether the given segmentation

is correct or not, we take features of only those pixels, for which the following holds

P (x(i,j) = c∗) > λ, (3.2)

where λ is some threshold parameter. We found λ = 0.8 to perform best in our exper-

iments. High probability P (x(i,j) = c∗) should indicate high confidence of the classifier

in the predicted label. As there are no any ways of somehow checking the correctness of

the predicted label, we can only rely on the confidence of the classifier.

The new samples may be unbalanced, i.e. have different number of representatives of

each class, so we sort the samples of each class c ∈ Y in decreasing order of corresponding
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Figure 3.1: Prior labeling computed on the old set.

probabilities P (x(i,j) = c), then find the minimum number of samples Nmin among all

classes and take only 0.8Nmin new samples of each class c ∈ Y. This helps to keep

balance between classes and does not allow one class to prevail on the others. We

employ this strategy in all subsequent approaches.

This approach depends very much on the quality of the off-line classifier trained on

the off-line data, because if it does not perform reasonably good segmentation initially,

there no way to correct it in the future. Basically, this is rather an empirical approach

as it does not have any mathematical guarantees to eventually converge regardless of

the initialization.

3.2 Adding Constraint in the Form Prior Labeling

It was mentioned in the Section 3.1, taking new samples with the predicted labels which

have high confidence is not a reliable and optimal way of performing on-line learning.

As we also use off-line trained classifier, then a natural extension to the naive approach

would be to somehow employ the information contained in the off-line data. We adopt

method from J. Alvarez et al . [9] who proposed to compute the class-histogram on the

off-line data, then normalize it per-pixel and use it as a prior distribution to weigh the

output probability distribution of the classifier at testing time.

We believe that adding the constraint in form of the prior labeling is reasonable,

because the classifier is designed to be used for classification tasks which must have

something in common with the off-line data. For example, Figure 3.1 shows the prior
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labeling computed for the old training data. Although our classifier will work with

on-line data, which differ very much in appearance from the off-line data, it is still

reasonable to assume that in any circumstances the “road” tends (in other words is

more likely to be found here than anywhere else in the image) to be in front of the

camera, around the middle of the lower part of the image, “sky” tends to be above the

“road”, and “background” is likely to surround the “road”.

Computing per-pixel histogram by considering only labelings from the off-line dataset

may leave certain bins empty due to not fully representative off-line data. So, we ini-

tialize all bins with the default value equal 1 in order to account for very low-probable

situations but which still may occur in real-life. Otherwise, the corresponding prior

probabilities will be 0 and this is extremely bad, because this won’t be changed in the

future, as probabilities are multiplied, and multiplication of arbitrarily large number

with 0 will always result again in 0.

The images in the off-line dataset have dimensions 752x480. So, we compute his-

togram (initialized to all 1’s) for each pixel and after per-pixel L1-normalization we get

a prior P
(i,j)
pr for each pixel (i, j), i = 1, . . . , 752, j = 1, . . . , 480. Images in the on-line

dataset all have various dimensions, so we perform nearest-neighbor sampling from the

prior distribution P
(i,j)
pr . Then at testing time output probability distribution P (x(i,j))

from our classifier for an image with dimensions W ×H is element-wised multiplied with

the corresponding prior:

P̃ (x(i,j)) ∝ P (x(i,j))P
(bi 480

H
c,bj 752

W
c)

pr , for all pixels (i, j). (3.3)

We also have the initial predicted class-label

c∗ = argmax
c∈Y

P (x(i,j) = c). (3.4)

Then we can check, that if

P̃ (x(i,j) = c∗) > λ, (3.5)

where λ is some predefined threshold parameter, then we take the corresponding pixel’s

features together with the predicted label c∗ as a new sample.
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3.3 Bayesian Model Update for Scene Segmentation under

Structured Scene Prior

We propose a new model to incorporate unlabeled data for scene labeling. Our approach

is motivated by Bayesian tracking formulations like Condensation [21] and particle filters,

as they are widely used in vision and robotics [13]. In contrast to previous work, we

track an evolving model over time and use a scene segmentation prior in order to avoid

drift.

Bayesian tracking models consist of two steps: first, the propagation of a state

distribution over states xt−1 given the observations Zt−1 to the next time step, and,

second, update by an observation at the new time step zt. In robotics application there

is frequently a control input ct−1 added. The propagation is performed in a Bayesian

manner by integrating out the unobserved states xt−1:

p(xt|Zt−1) =

∫
p(xt|xt1 , ct−1)p(xt−1|Zt−1) dxt−1, (3.6)

where p(xt|xt1 , ct−1) is a state transition model. In robotics applications it is common

to condition it on a potential control input ct−1.

The second step takes a measurement p(zt|xt) into account and arrives at a new

distribution over states xt via application of the Bayes’ rule:

p(xt|Zt) =
p(zt|xt)p(xk|Zt−1)

p(zt|Zt−1)
. (3.7)

In our application we are interested in tracking an evolving target distribution over

models. Our aim is to add unlabeled data at each time step, but avoid model drift as

it occurs in ordinary “self-training” scenarios. Rather than sticking to a single model

hypothesis, we seek to model a distribution over model hypothesis. Therefore, we aim at

updating a distribution over model hypothesis given labels p(ht|Lt). At each time step

we are given a set of unlabeled images ut that we use to update our model hypothesis

ht. The unobserved variables, that we are interested in, are the unknown scene labelings

lt and current distribution of model hypotheses ht. There is also the unlabeled data ut

at time step t that we’d like to use in order to update our model. Figure 3.2 depicts the

Bayesian network for our approach.

We describe the incorporation of the unlabeled examples in a Bayesian framework

by integrating over all model hypothesis:
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Figure 3.2: Proposed Bayesian Network. Gray color denotes observed variables
which are images ut to be labeled. Aqua color denotes hidden variables, which are
unknown labelings lt and current set of model hypotheses ht. Parameter S is the scene

labeling prior

p(ht|Lt−1) =

∫
p(ht|ht−1, ut)p(ht−1|Lt−1) dht−1. (3.8)

In the measurement step, we apply the Bayes rule in order to get the updated

distribution over model hypothesis:

p(ht|Lt) =
p(lt|ht−1, S)p(ht|Lt−1)

p(lt|Lt−1)
, (3.9)

with

p(lt|ht−1, S) = p(lt|ht−1)p(lt|S), (3.10)

where p(lt|ht−1) is the probability of a certain scene labeling prediction given a model

hypothesis ht−1 and p(lt|S) is a scene labeling prior.

Consequently, scene labeling will also be performed by marginalization over the

model distribution:

p(l|Lt) =

∫
p(l|ht)p(ht|Lt) dht, (3.11)

where l is the labeling of a test image, for which we want to do the prediction.

Inference We solve the above inference problem by a Particle Filter approach.

At each time step the model distribution p(ht|Lt) is represented by a set of particles

s
(n)
t (random forests in our case) with weights π

(n)
t . Next the models are propagated to
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the next time step via p(ht|ht−1, ut). In traditional tracking application this transition

is modeled with a deterministic part and a stochastic component. We propose a similar

scheme that applies to the propagation of models. For the number n of desired particles,

repeat:

1. Perform sampling (pick a particle sit−1 from s
(n)
t−1) from p(ht−1|Lt−1) according to

the weights π
(n)
t−1;

2. Sub-sample set of unlabeled images ut to ût;

3. Predict labels l̂t = argmaxl p(l|ht−1) for subset ût;

4. Retrain model using l̂t and Lt−1.

Traditional tracking approaches would now follow up with a measurement in order

to update the weights π
(n)
t . Similarily, we update the weight πit of each sample sit−1

(model hypothesis) according to Equation (3.9) on the next batch of images. p(ht|Lt−1)

is the distribution represented by our particles after the propagation step from above

and p(lt|ht−1, S) is the product of the likelihood of the labeling times the likelihood of

the labeling given the scene labeling prior. We don’t compute the denominator - but

rather directly normalize the weights of the particles π
(n)
t to sum up to 1.





Chapter 4

A New More Challenging Road

Scenes Dataset

In order to study the problem of adaptation we needed to find a dataset, which would

exhibit considerable amount of appearance variation still representing the same scenario.

Image segmentation is a very old and very well studied field of Computer Vision, but

we were not able to find a dataset which would suit the above mentioned conditions.

Conventional datasets are either just a collection of different images depicting different

objects which have very little in common and such images cannot by put into one sce-

nario, or the images in a dataset do not exhibit sufficient variations of visual conditions.

Eventually, we decided to collect our own dataset of road scenes’ images, which would

feature the visual conditions we were looking for and represent one coherent scenario.

We decided to take images of roads in different conditions, because this can allow direct

application of our research in real-life.

4.1 Existing Datasets

There exist a large number of various datasets compiled on purpose for testing different

segmentation approaches representing different conditions. The most popular datasets

for testing general purpose segmentation algorithms are the MSRC [4] and VOC [6]

datasets. In our work we made use of the MSRC dataset, as it was also used as the test

set in all the original papers of the methods we implemented, to check the quality of our

implementations.

We think that the most suitable setting for investigating into adaptive techniques

is road scenes datasets. First of all, such datasets represent the field of application of

39
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our research which benefits most of all from the ability to adapt to changing visual

conditions, which can help make, for example, driving safer. Besides, such datasets

exhibit the inherent process of evolution of visual conditions through time which is the

ideal setting for any adaptive algorithm, as the adaptation cannot be done instantly.

4.1.1 The Microsoft Research Cambridge (MSRC) dataset

The MSRC [4] dataset is a publicly available collection of photographs taken at different

parts of the world and capturing a large number of objects classes. It contains 591

images and 23 classes, but all researchers leave out horse and mountain classes, as there

are too few samples of them for training, so it is difficult for any classifier to faithfully

learn them. But even the resulting 21 classes represents a wide variety of objects of

different nature: building, grass, tree, cow, sheep, sky, airplane, water, face, car, bicycle,

flower, sign, bird, book, chair, road, cat, dog, body, boat. The main disadvantage of

this dataset is the fact that the provided ground truth images show very rough labeling

of the objects. Besides, not all pixels are labeled and one has to account for background

(“void”) class both while training and testing. For certain methods (like [25]) this may

require particular handling of such “void” pixels. When testing, the pixels, marked as

background in the ground truth images, are not considered when computing error rates.

We use this dataset to show that our implementations of the methods described in

Chapter 2 work exactly (up to the used features and certain parameters of the classifiers)

as stated in the original articles. We use the standard for this dataset splitting into

train and test images from [26] which can be found here http://graphics.stanford.

edu/projects/densecrf/textonboost/split.zip, with the only difference that we

combine Train and Validation set together.

4.1.2 Road scenes dataset

As our main interest lies in the field of image segmentation of road scenes we used

the following dataset from [45] to evaluate implemented classification algorithms and

features. This dataset was taken by the authors using an auto-mounted camera and

driving along some German highways and roads, capturing real-time road scenarios. The

dataset is available at http://www.d2.mpi-inf.mpg.de/tudds. This dataset contains

88 training labeled images and 88 testing labeled images. It also has a number of

possible object class to color mappings, but we considered only the mapping which

contains 3 classes: road, sky and all other category classes were merged into one class

called background. We believe that this is a reasonable assumption, because we are

mainly interested in correct detection of the “road” (blue) and all other classes in this

http://graphics.stanford.edu/projects/densecrf/textonboost/split.zip
http://graphics.stanford.edu/projects/densecrf/textonboost/split.zip
http://www.d2.mpi-inf.mpg.de/tudds
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Figure 4.1: Some example images with the corresponding ground truth images from
the MSRC [4] dataset

case may be considered as just “background” (green), and we also add “sky” (red) class

as it occupies a lot of space in the provided images and helps not to turn our task into

a binary problem.

We decided to take this dataset as an initial point in our research, because it was cap-

tured in real-life situations and we are particularly interested in real-life road scenarios.

Besides, already this dataset exhibits some visually difficult situations like changes in

object appearances due to motion blur effect, deep shadows which appear and disappear

suddenly, changes in lightning conditions like over- or under-saturated regions.

There also exists a dataset from [10], but it has very limited labeling, which consists

of just two classes (“road” and “background”), which we found to be not corresponding

to our aims. And besides that dataset does not show any really difficult visual conditions.

4.2 The New Dataset

As we mentioned before, MSRC [4] dataset is just a collection of pictures of a variety

of object classes and it does not suit our aim at all. We use it only for evaluation of

the implemented methods, as all of them were evaluated on the original papers on this

dataset. The dataset from [45] represents real-world road scenarios and exhibits visual

conditions we are looking for, but still it was too little for us. As this dataset has only

pictures of asphalted relatively clean highways going through forests or fields and we

would like to look into even more challenging conditions.
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Figure 4.2: Some example images with the corresponding ground truth images from
the [45] dataset

For this purpose we searched over the Internet, and particularly considered Flickr R©

(http://www.flickr.com/), looking for images depicting roads mostly in conditions

which we called “autumn” and “winter”, as ordinary datasets try to avoid such sit-

uations. We used the search engine of Flickr R© and used such tags as “dirty roads”,

“autumn roads”, “roads with mud”, “winter roads”. The result of our searching is 220

images about half of which represent roads in autumn conditions and another half roads

in winter conditions. Figures 4.3 and 4.4 show a bunch of examples from each of the

“seasons”. We performed hand labeling of the gathered images using the GNU Image

Manipulation Program and a tablet into three classes: road (blue), sky (red), and back-

ground (green). Unlike in the MSRC [4] dataset, we treat background as a meaningful

class and both learn and predict it.

We believe that the introduced dataset introduces new challenges into the segmen-

tation community, the ones which previously were omitted. Fore example, our autumn

images may have leaves on the road (which are on their own of yellow or red color,

which is different from the green color seen in the training set), different road cover (like

asphalt of different colors or simply no any asphalt at all, just ground), sometimes there

dirt or snow (or even no any road visible, but rather just path in the snow). If autumn

images have at least something in common with the train set (and in all our experiments

we use train set from [45]), then winter images have totally different visual appearance,

which must create problems for most ordinary off-line methods.

For notational convenience, from here on we use the word old when we refer to the

training and testing datasets from [45], and new when we mean the introduced more

challenging dataset. And in all the following experiments (apart from the ones on the

MSRC [4] dataset) we always use the old training set for training.

http://www.flickr.com/
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Figure 4.3: Some example images with the corresponding ground truth images from
“autumn” part of the proposed dataset.
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Figure 4.4: Some example images with the corresponding ground truth images from
“winter” part of the proposed dataset.



Chapter 5

Experimental Results

We conducted a number of experiments to show that adaptation to new conditions is an

important and required technique for situations when the underlying class-distribution

changes over time. First, we start by experiments on the Random Forests to figure out

the effect of different parameters and to show that Random Forests are inherently robust

to noisy labels.

Then we continue by comparing our implementations of methods described in Chap-

ter 2 on the MSRC dataset. We do it to investigate how different approaches perform

relative each other and the state-of-the-art for general purpose image segmentation. Our

main aim here was to find an approach which would have good accuracy, but also low

training and testing time, because we needed this classifier to be used in on-line learning,

which we chose to be our way of performing adaptation.

We conduct several experiments on the new dataset proposed in Chapter 4. We

compare the performance of the state-of-the-art method for general purpose segmenta-

tion on this new dataset and the old one from [45]. We show that existing datasets

try to avoid difficult visual conditions and that some standard approaches which do not

perform adaptation to changing distribution tend to fail there.

In the end, we carried out a number of experiments with on-line learning methods

described in Chapter 3. We show that even a naive on-line learning approach can improve

segmentation results compared to standard approaches. We also show that our proposed

Bayesian Model Update under Structured Scene Prior allows to adapt to changing visual

conditions and as a result to improve segmentation results.

45
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Figure 5.1: Dependency of Test Error of Random Forest on parameters.

5.1 Experiments with Random Forests

Random Forests have become very popular recently in image segmentation [12, 37, 25]

for having good accuracy and low training and testing time, being robust to noise. To

check these properties we conducted the following experiments.

5.1.1 Effect of Different Parameters

Usually in practice the minimum number of samples in a leaf node is set to quite a small

number 3-5 and the parameter K is set to d
√
de. So, the only parameters which are

adjusted in a particular application task are the number of trees M in a Random Forest

and the maximum depth of each tree D.

We studied the behavior of Random Forest by conducting the following experiment

on the MSRC [4] dataset. We used the same splitting of the dataset as in [26] with the

only difference that we added Validation set to the Training one. Then we trained and

tested Random Forest the following combinations of parameters:

Sp = D ×M, (5.1)

where D = {10, 12, 14, 16, 18},M = {5, 10, 15, 20, 25, 30}.
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Figure 5.2: Dependency of Training time of Random Forest on parameters.

Figure 5.1 shows how Test Error changes with the change of parameters. The main

observation here is that by increasing both the maximum depth D and the number

of trees in the ensemble M the Test Error goes down. But parameter D tends to have

greater contribution in the decrease of the error. This is due to the fact that by increasing

D we allow exponentially more splits to be done which allows for the trees to perform

better separation of the samples. But this also exponentially increases the size the

Random Forest occupies in memory. But, in general, large parameters D or M are not

required as Random Forest converge pretty quickly and further increase in parameters

does not necessarily results in corresponding increase in accuracy, but definitely increases

required memory. For example, [36] use only 3 trees but each of depth 20 and [37] use

5 trees each of depth 10.

Figure 5.2 shows the dependency of training time on the parameters. This are

times for multi-threaded implementation with the help of Intel TBB [3]. Training time

depends almost linearly on either of the parameters.

Figure 5.3 shows how test time depends on different parameters. Again, the depen-

dency is almost linear in either of the parameters. The number of test images here was

256, so there is a whole bunch of parameters which allow for the test time to be less

than a second, which can be called real-time performance, yet showing almost optimal

accuracy.

Figure 5.4 shows the overall Running time for a Random Forest classifier vs. the Test

Error. Here Running time is a sum of Training and Testing time for the corresponding
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Figure 5.3: Dependency of Testing time of Random Forest on parameters.
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Figure 5.4: Running time vs. Test Error for Random Forests.

pair of parameters. Obviously, making Random Forests larger and deeper allows to de-

crease generalization error, but results in corresponding increase of the Running time. It

is remarkable that Random Forests tend to converge rather quickly and further increase

of parameters does not bring noticeable decrease of Test Error, while considerably (af-

ter some point already exponentially in dependency of Test Error) increase the overall

Running time.
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Figure 5.5: Some example images for each class from the USPS [5] dataset.

5.1.2 Robustness to Noise

In has been noticed [11, 18] that Random Forests are particularly robust to errors in

the provided labels. The main reason for this behavior is that Random Forest does

not try to find exact dependency between features and labels. When trying to find

an optimal split at each splitting node, it basically works only with features and only

then computes distribution of labels in the resulting splits. So, a moderate number of

incorrectly provided labels will (hopefully) not distract the distribution so much, that

the decision about the best split will be done incorrectly.

To test this property we conducted the following experiment. We took a subset

(around 2000 images with each class having around the same number of images) of

USPS [5] dataset which consists of images of handwritten number from 0 to 9 (some

examples can be seen in Figure 5.5).

Then we randomly permuted labels for a portion of the training data, train several

classifiers and tested on a non-permuted test-set. The results can be seen in Figure 5.6.

On the X-axis you can see how many samples from the training data-set were changed

their labels and on the Y-axis test error (averaged over 5 independent runs) of each

of the classifiers trained on the whole train data set with the corresponding number
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Figure 5.6: Random Forest vs. GentleBoost on noisy train data.

of changed labels. We compared here GentleBoost classifier with 100 and 1000 weak

learners and a Random Forest with 100 trees each of depth 15. L. Breiman [11] agues

that for example “AdaBoost is essentially Random Forest”. He states that the number

of iterations of Boosting roughly corresponds to the number of trees in a Random Forest.

That is why we chose one GentleBoost with 100 weak learners as a direct competitor of

our implementation of Random Forest with 100 Random Trees and also one GentleBoost

with 1000 weak learners as even a higher challenge for the Random Forest classifier.

As it follows from the Figure 5.6, Random Forest is indeed very robust to noise.

Even when around half of all the training samples are basically noise, it still shows

reasonably good performance being more than 4 time better than GentleBoost.

Good robustness to noise of Random Forest was one of the main reasons why we

eventually decided to use exactly Random Forests as the basis classifier in this work.

5.1.3 Discussion

Random Forests show good convergence rates and allow to get good performance for

already small number of trees, which allows to perform fast training and testing using

them. And this is particularly important for our application, because we need to perform

re-training of the classifier preferably in real-time in our on-line learning approaches.

And low test-time is a crucial property for real-world application, because there the

segmentation of new images must be carried out in as little time as possible to ensure
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the least latency, because this will allow to use such classifier in systems which should

be able to analyze and react in real-time. In these and the following experiments we

made an observation that if the parameter setting of M = 10, D = 15 does not result in

the expected accuracy then it is worth to rather consider further engineering in features

or some other aspects, than trying to tune parameters of the Random Forest.

Robustness to noise is a very useful property in our application, because in on-line

learning approaches we use samples with predicted labels which might exhibit a certain

level of label noise. The on-line learning algorithms on their own try to minimize the

number of wrong labels, but it is good that already the classifier is robust to noise, thus

making the overall system even more stable.

5.2 Experiments on the MSRC dataset

In the next step of our research we implemented a number of image segmentation algo-

rithms showing good performance in the original papers and which we think are suitable

for our purposes. We needed to check several possibilities for the classifier and choose

the best one from the point of view of the trade-off between accuracy and speed. We

would like to stress that we would prefer a faster working classifier, because we need

as low as possible running time in order to use this classifier later for on-line learning

and we are also aiming for the real-world application, which requires the whole system

to be able to perform in real-time. We carried out all experiments on the MSRC [4]

dataset, because this is the dataset used in all the original papers, which describe the

segmentation algorithms we employ in this work. And this dataset is just a de facto

standard for comparing general purpose image segmentation algorithms.

We used Random Forest as a classifier in all our implementations. We started

with just Random Forest which was working on individual pixels and CIE color val-

ues (Section 5.2.1). In Section 5.2.1 we expanded the classifier to be able to work on

feature patches around a pixel (Figure 2.2). After that we added method of [25] to

improve output labeling and make it looking more consisting, as this method allows

to significantly decrease the level of noisy labels (Section 5.2.3). We also implemented

algorithm of [38] (Section 5.2.4), because their textons are used in [26] and the lat-

ter is currently state-of-the-art algorithm showing the best result on the MSRC [4]

dataset. Finally, we apply Fully-Connected CRF approach from [26] (Section 5.2.5),

which improves not only visual segmentation results, but also considerably decreases

the Test error (we use the code, kindly provided by the authors). We use the stan-

dard for this dataset splitting into train and test images from [26] which can be found
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Method
Total

error, %
Average
error, %

Training time Testing time

Random Forest 56.3 77.5 19.65s 1m 5.1s

RF on feature patches 47 69.4 51.64s 1m 24.1s

SCL 45.7 69.3 1m 10.1s 2m 40.35s

RF with Texton features 37.1 44.6 13m 44.3s 36.83s

Above + FC-CRF 26.9 36.6 13m 44.3s 4m 4.86s

Krähenbühl et al . [26] 14.2 21.6 around 1 day overall

Table 5.1: Comparison of our implementations of methods described in Chapter 2 on
the MSRC [4] dataset. Detailed description of the experimental settings can be found

in 5.2.

here http://graphics.stanford.edu/projects/densecrf/textonboost/split.zip,

with the only difference that we combine Train and Validation sets together.

All our implementations were using Random Forest as the basis classifier. The

parameters were set to: number of trees in the ensemble M = 10, the maximum depth

of each tree D = 15, number of random samples given to each tree was around 1
4 of

all the samples in the training set, unless stated otherwise the number of random split

tries per splitting node was set to the default value of d
√
de. As it is common for all

experiments on the MSRC [4] dataset, we used the stride of 5 pixels in each dimension.

We used simplest CIE color values as features, as we were mostly interested to see how

different algorithms perform in the same conditions. Numerical comparison of different

experimental settings can be seen in Table 5.1.

It is worth mentioning that the performance numbers of all the methods can be

increased by simply training more trees, or making them deeper, or by changing other

parameters of the classifier. But we were interested in performance numbers relative to

each of the settings, but not the absolute performance numbers.

5.2.1 Setting 1: Pure Random Forest

In this experiment we trained a Random Forest which considered only local information

of each pixel independently of the others. This is the most naive among all possible

approaches, but even such a simple method shows results which are significantly better

than random guessing. Images, which show more or less correct labelings, still suffer

from high labeling noise, mainly because in this case the classifier works on individual

pixels and does not consider any interactions between pixels.

Figure 5.7 shows some example outputs of this approach. An interesting observation

is that even the most simple Random Forest is able to locate objects in the scene and

very accurately follow their borders. But unfortunately it makes a lot of mistakes when

http://graphics.stanford.edu/projects/densecrf/textonboost/split.zip
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Figure 5.7: Columns denote from left to right: original image, ground truth image,
output labeling of Random Forest 5.2.1.

trying to predict class-labels for segmented objects. So, just Random Forest can be used

to successfully perform image segmentation, but not the semantic one.

5.2.2 Setting 2: Random Forest with Feature Patches

Allowing the Random Forest classifier to work on some neighborhood (Figure 2.2) in the

feature space around each pixel allows to considerably improve segmentation accuracy,

even without modifying the features themselves. Apart from taking raw feature value

from one of the neighboring pixels we also made use of functions described in 2.2.1.

Though feature patches do not modify the features themselves, but the change the way

the classifier works with pixels and allows for it to capture, for example, long-distance

gradients which are more distinctive than just pixel’s color values.
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Figure 5.8: Columns denote from left to right: original image, ground truth im-
age, output labeling of Random Forest with feature patches 5.2.2, output labeling of

Structured Class-Labels 5.2.3.

Third column of Figure 5.8 shows some results of this approach. This approach can

nicely segment large objects in the images, but it still produces a lot of noise in the

output labelings.

In this experiment the number of random splits per split node was set to K =

d
√
dw2e, where d = 3 is the dimensionality of he original feature space and w = 25 is the

dimensions of a square feature patch around each pixel, to reflect the increased feature

space dimensionality.

[37] report Total Error of 50.3%. Our result is a bit better, because in [37] they

trained 5 trees each of maximum depth 10.
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5.2.3 Setting 3: Random Forest with Feature Patches and Structured

Class-Labels

In this experiment we took the Setting 2 5.2.2 and added approach from [25] (description

of the method can be found in 2.3.3) which helps to improve the output segmentations

results by removing a lot of noise and making the labeling more consistent. Though the

improve in terms of numbers is not that much significant (∼1%), but the improve in

visual segmentation quality is evident. Because this method works only in the label space

and does not consider features or original image, or even the probability distribution for

each pixel, it is not able to correct wrong guesses, which can be the output of the

classification process.

In this experiment the feature settings were the same as in 5.2.2. The width of a

square label patch was chosen to be 7 pixels.

Figure 5.8 (forth column) shows some results of this approach. If compared to just

Random Forest from the previous section which does not consider labels’ consistency

among neighboring pixels, we observe significant reduction of label-noise.

[25] report total error of 39.2%, which is better than we get, but this difference

might be due to the fact that they used more complicated features (CIE raw channel

intensities, first and second order derivatives as well as HOG-like features, computed

on L-channel). The main observation here is that even with the simplest features this

approach allows to improve the results.

5.2.4 Setting 4: Random Forest with Texton Features

Method proposed in [38] is used in [26] and together they compile the current state-of-

the-art method for general purpose image segmentation. We implemented this method

as described in the original article [38] with the main difference, that we used Random

Forest instead of Boosting as the basic classifier. We augmented our implementation of

Random Forests to be able to work with the new features (detailed description can be

found in 2.2.2)

In this experiment we precomputed textons for both train and test images, so the

measured running times do not reflect the duration of this process. As proposed by the

authors we also used subsampling of the texton maps in order to decrease memory re-

quirements. This does not effect the accuracy, because while computing Integral images

we aggregate information of the whole patch that is being subsampled, so there is no

loss of texton information, we just correspondingly decrease the spatial resolution of the
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output classifier. Due to the specifics of random nature of Random Forests, in each spit

node we sampled 10 random rectangles for each of 400 textons in order to be sure not to

miss important information. Obviously, this results in increased training time because

of the increased search space. But the testing time still stays very low.

Figure 5.9 (third column) shows some example segmentations for this approach. One

can notice, that the resulting segmentation is quite noisy and does not preserve object

boundaries. So, this approach is good for quickly locating object in the scene, but it

is not that faithful for determining exact object boundaries, so some additional post-

processing step (at least a simple CRF as in the original paper) is absolutely necessary.

[38] report total error of ∼30%. But it is not clear from the article with which

parameters they got this result. We downloaded the code the authors provide with this

article, ran it and the result was 37.3%, which is almost exactly the same, as what we

achieved.

5.2.5 Setting 5: Random Forest with Texton Features and Fully-Connected

CRF (FC-CRF)

This approach was proposed in [26] and, same as Structured Class-Labels method, can

be seen as a method of enhancing resulting labeling of images by introducing a fully-

connected CRF over the image pixels and, which is most important, allowing to perform

inference into such complicated graph in linear time. Unlike the Structured Class-Labels

method, this approach considers both the feature-transformed image and the probability

distributions of each pixel which is the output of the unary classifier. Basically, this

means that this approach can be applied on top of any classification algorithm, which is

able to produce probability distributions. In our experiments we used the code provided

by the authors and applied it to the output of Random Forest with Texton Features from

the previous section. As this approach does not change anything in the training process

and is only applied while testing, the training time does not change at all. As a result

we observe a significant boost (almost -10% for total error) in the overall classification

accuracy.

Figure 5.9 shows some example labelings of this approach. One can notice, that the

segmentation has very fine details in terms of object boundaries, unlike over-smoothed

object boundaries for ordinary CRF approaches in which each pixel is connected only

to a small number of neighboring pixels.
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Figure 5.9: Random Forests with Textons and FC-CRF. Columns denote from
left to right: original image, ground truth image, output labeling of Random Forest
with Texton features, ouput labeling of fully-connected CRF method applied on top of

the result of Random Forest with Texton features.

5.2.6 Discussion

The conducted experiments show that the more advanced classification approach always

performs better in terms of accuracy. But on the other hand this comes at the cost of

proportionally increasing the running time of the algorithm. For example, as it follows

from Table 5.1 the method of Krähenbühl et al . [26] performs almost twice as better as

the best accuracy results achieved by our implementation of Random Forest with Texton

features and fully-connected CRF. But on the other hand the former method requires

almost a day for training and testing of running on a very powerful machine, while for

the latter it takes just a bit more than 10 minutes for training and less than 5 minutes

for testing. And the main reason for better performance of Krähenbühl et al . [26] is
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that they use a much richer set of features. But we overcome this difference by using

advanced features for road detection in the following experiments, while retaining low

running time. We also choose our implementations, because they are based on Random

Forests, which are better suitable for on-line learning than boosting, which is used in

Krähenbühl et al . [26]

5.3 Experiments on the New Test Set

For notational convenience, from here on we use the word old when we refer to the

training and testing datasets from [45], and new when we mean the introduced more

challenging dataset. In all the following experiments we performed training on the old

training set.

We performed a number of experiments on the dataset proposed in Chapter 4.

First of all, we show that the new dataset is indeed more challenging not only from

our personal point of view, but also for the state-of-the-art method for general purpose

image segmentation of Krähenbühl et al . [26]. This shows that standard approaches

which learn the class distribution from the training data can perform well on the data

which shares the same distribution, but degrade in accuracy if the distribution changes

in the testing data. Then we show that some of the standard approaches totally fail

when the distribution changes. And also that features are very important to be chosen

carefully for a particular application.

5.3.1 State-of-the-art Segmentation Algorithm

In order to show that the introduced data-set is indeed a more difficult challenge that

the old one, we applied the current state-of-the-art segmentation algorithm [26] pipeline

to both sets. The pipeline consists of two main steps: the initial segmentation is done us-

ing some unary classifier, then the fully-connected CRF algorithm as applied to it. The

authors used their own implementation of TextonBoost [38] (the corresponding code

can be found at the following location http://graphics.stanford.edu/projects/

densecrf/textonboost/). We also used this code, and thanks to the fact, that the

code is well-written and, though contains almost no comments, is easy to understand,

we slightly changed the code to make it being able to work with our train and test

datasets and, correspondingly, with our class-to-color mappings. After getting the unar-

ies from TextonBoost classifier, we applied the code (2.4.1) for performing inference into

fully-connected CRFs, which enhances the resulting segmentation results.

http://graphics.stanford.edu/projects/densecrf/textonboost/
http://graphics.stanford.edu/projects/densecrf/textonboost/
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Test set
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Old 1.9 2.5 0.9 2.3 4.3 1.6 1.9 0.7 2.2 2.7

New 21.5 33 53.1 7.6 38.2 20.2 31.4 52.7 6.5 35

Table 5.2: Comparison of Krähenbühl et al . [26] semantic image segmentation al-
gorithm on the old and the new test test. Training was performed on the old train

set.

Figure 5.10: State-of-the-art on the old test set. Columns denote from left
to right: original image, ground truth image, output of the unary classifier, enhanced

segmentation after applying the FC-CRF algorithm.

Figure 5.10 shows several, so to say, “worst” examples for the setting when the

training and testing was performed on the old dataset. Even these “worst” images

prove the numbers given in Table 5.2. The segmentation results are almost ideal. Even

shadows or a bit of dirt on the road does not create noticeable difficulties for the state-

of-the-art classifier, even though this is a general purpose segmentation algorithm and is

not tuned for dealing with road scenes. But this accuracy comes at the cost of running

time which comprises almost a day on a very powerful machine. But all-in-all this

experiment shows that the old test set is really not a problem for the state-of-the-art

segmentation algorithms.

The second row of Table 5.2 shows the numerical results for the state-of-the-art

when trained on the old and tested on the new dataset. Total and average errors prove
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that the new test set is around 10 times harder than the old one. Per class errors show

that the main difficulty for the classifier is the “road” class: less than every second pixel

belonging to this class gets labeled correctly. And this is quite expected, because the

“road” in the new test set barely resemble the “road” samples which can be seen in the

training data. And as the state-of-the-art method relies more on the appearance features

it evidently has problems with correctly classifying “road” pixels. But, certainly, correct

segmentation of the “road” is the prime aim for any classifier, so the new test set in

fact introduces new challenges. “background” gets classified very well, but this can be

explained by the fact that it is the most representative class in both train and test

datasets so for any classifier it is always safer to predict “background”, because even

such random choice has the highest probability of being correct just by chance compared

to the other classes. It is interesting to notice that the sky also has quite a large test

error, though its appearance shouldn’t be changing much when going from one dataset

to another. So, putting “sky” into a separate class rather than into the “background”

class, as it is done in other approaches (like [10]), makes the whole task of classification

even more difficult.

In the following pages we show some particular examples of the segmentation results

we get with the state-of-the-art trained on the old training set and tested on the new

testing set. We used exactly the same parameters as those when we did the experiment

on the old training and testing sets. The testing was carried out on the whole new test

set, but just for the sake of increasing convenience we show good and fail cases for two

parts of our new test set separately.

Figure 5.11 shows some results of the state-of-the-art segmentation algorithm ap-

plied to the “autumn” part of the new dataset. Despite the fact, that these images

clearly differ very much from the training ones, the state-of-the-art manages to detect

the road completely covered with yellow leaves, or the road which is not even covered

with asphalt, or even some way (which cannot be even called a road) through forest. We

think, that this successful cases are due the fact that the algorithm uses a reacher set

of features (unlike in the original TextonBoost paper [38]), which also include location

and HOG features, which must considerably help here.

On the contrary Figure 5.12 shows some particular examples from the “autumn”

series (certainly, there are more fails, than shown here). While “sky” gets labeled more

or less correctly in these images, but the algorithm totally fails in finding the road. But

this is not a surprise, because the given visual conditions are totally different from the

training ones.

The following Figure 5.13 shows some examples of relatively good segmentation

results from the “winter” part. Surprisingly the state-of-the-art succeeds in finding the
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road fully covered with snow, which are for sure totally different from roads seen in

the training set from the point of view of their appearance. Again, we think that this

happens due to extended feature set, which includes not only appearance information.

Figure 5.14 shows some failure cases of the state-of-the-art applied to the “winter” part

of the new dataset. Same as with “autumn” failure cases, here “sky” also gets labeled

somewhat correctly, but the road is not detected at all.
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Figure 5.11: State-of-the-art on the new test set: Relatively good cases of
“autumn” part. Columns denote from left to right: original image, ground truth
image, output of the unary classifier, enhanced segmentation after applying the FC-

CRF algorithm.
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Figure 5.12: State-of-the-art on the new test set: Fail cases on “autumn”
part. Columns denote from left to right: original image, ground truth image, output
of the unary classifier, enhanced segmentation after applying the FC-CRF algorithm.
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Figure 5.13: State-of-the-art on the new test set: Relatively good cases
on “winter” part. Columns denote from left to right: original image, ground truth
image, output of the unary classifier, enhanced segmentation after applying the FC-

CRF algorithm.
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Figure 5.14: State-of-the-art on the new test set: Fail cases on “winter”
part. Columns denote from left to right: original image, ground truth image, output
of the unary classifier, enhanced segmentation after applying the FC-CRF algorithm.
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Method
Unary error, % FC-CRF error, %
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Random Forest 35.9 61.5 90.1 6.9 87 34.7 63.7 95.2 2.2 93.8
RF/patches 30.6 49.5 91 6.8 50.6 30.7 50.7 92.1 5.8 54.1
RF+SCL 29.9 48.5 91.4 6.2 47.9 - - - - -
RF/Textons 69.2 61.3 96.7 72.7 14.4 69.7 61.4 97.4 73.3 13.6

Krähenbühl [26] 21.5 33 53.1 7.6 38.2 20.2 31.4 52.7 6.5 35

Table 5.3: Comparison of approaches described in Section 5.2. For a comparison re-
sults of Krähenbühl et al . [26] are also provided. Bold font highlights the best numbers.

5.3.2 Simple Features

We started our experiments on the new test set by first applying segmentation algorithms

from part 5.2 using the same features and all the parameters for the corresponding ap-

proaches as there. The results can be seen in Table 5.3. There is not so much can

be said about it. Obviously, the first three approaches cannot even slightly compete

with the state-of-the-art, because they use simple CIELab values as features, and, as ex-

pected, appearance-based models cannot faithfully generalize over the visual conditions

not present in the training set. Basically, the road test error numbers for this approach

prove this argument, because it always stays extremely huge. “sky” gets labeled a bit

better by Random Forest on feature patches and Structured Class-Labels approaches,

but again all the three methods just assign “background” label when they don’t know

what to do.

An interesting observation can be made regarding the approach based on Random

Forest and Texton 2.2.2 features. This approach showed very good results on the MSRC

dataset 5.1 and, in fact, performs extremely well (Figure 5.16) on the old testing set,

showing total error numbers ∼6% for the unaries and ∼4% after applying the fully-

connected CRF approach, but here it simply fails everything. Figure 5.15 shows some

results for this approach applied to the new testing set. It is interesting that the algo-

rithm performs quite good segmentation, but assigns totally wrong labels.

We think that this is due to the fact how Texton features work. Both Figures 5.15

and 5.16 show texton maps for each input image, where colors denote different textons

and are the same for both figures. If we compare them, then texton maps of old test

images show the expected uniform assignment of “road” and “sky” pixels, whereas texton

maps for the new test images contain almost only noise. And also due to the fact that

appearance of “road” changes dramatically when going from old train to new test data
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Figure 5.15: Random Forest with Texton features and the new test set.
Though the algorithm segments out the “road” and “sky” classes quite well, it assigns
wrong labels. Texton maps show particular problems of clusterization, because such as-
signments for road are totally different from the ones seen in the training data. Columns
denote from left to right: original image, texton map for it, ground truth image, output
of the unary classifier, enhanced segmentation after applying the FC-CRF algorithm.

For texton maps colors denote different textons (cluster centers).

and, probably, whitening parameters and cluster centers computed on the old train set

do not suit the test data, and pixels from the new test images are simply assigned to

completely wrong cluster centers even after whitening. These textons were designed

by the authors for the MSRC dataset, in which train and test sets share the same

appearance and such clusterization works well for it, but does not work in our case.
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Figure 5.16: Random Forest with Texton features and the new test set.
The segmentation results on the old testing set are almost perfect. Texton maps show
almost uniform assignment. Columns denote from left to right: original image, texton
map for it, ground truth image, output of the unary classifier, enhanced segmentation
after applying the FC-CRF algorithm. For texton maps colors denote different textons

(cluster centers).
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5.3.3 Advanced Features for Road Detection

Then we conducted a number of experiments on the new testing set using the above

described classifiers but this time with the advanced features for road detection from

original paper by Christian Wojek and Bernt Schiele [45] (described in 2.2.3). Then

numerical results are given in Table 5.4. As it follows from the table, even a simple

ordinary Random Forest (with the help of fully-connected CRFs), but which uses ad-

vance features, can successfully compete with very sophisticated algorithms, and the

original method of Wojek et al . [45]. This experiment shows that feature engineering is

an essential part of the designing process of a good classifier.

Method
Error, %

Total Average Road Background Sky

RF 20.1 27.7 43.8 10.5 29.1
SCL 19.9 27.6 38.6 11.1 33.1
RF+FC-CRF 18.8 24.7 40.8 11.0 22.2

Krähenbühl et al . [26] 20.2 31.4 52.7 6.5 35
Wojek et al . [45] 19.2 23.9 34.2 13.2 24.5

Table 5.4: Comparison of different approaches based on Random Forest with advanced
features for road detection, and Krähenbühl et al . [26] approach. Bold font highlights

the best numbers.

5.3.4 Discussion

The results presented in Table 5.2 show that our proposed dataset is almost 10 times

harder than the older one from [45]. This introduces new challenges into the segmenta-

tion community.

In Section 5.3.2 we showed that the Random Forest classifier with Texton features,

which showed one of the best results on the MSRC dataset (Table 5.1), totally fails when

the underlying class distribution changes with time or with datasets. This is a particular

example of the fact that adaptation is an essential technique for handling such changes.

Section 5.3.3 shows the importance of careful feature selection for a particular task.

Based on the obtained results in Table 5.4 we decided to take pure Random Forest

together with the advanced features, because this setting shows accuracy comparable

(and even better for some classes) with Krähenbühl et al . [26]. But Random Forest has

extremely little training and testing time. And using pure Random Forest allows to

perform adding of new samples in on-line learning much easier and faster.
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5.4 On-line Learning

On-line learning is a method of incorporating arriving information at the time of testing.

It is based on the fact that we put new samples, which have just been classified by the

algorithm, together with the predicted label straight into the classifier and re-train it. It

was shown in [33] that on-line learning converges to off-line one, so pure on-line method

can be seen as just a speeding up technique. Instead we use, as we call it, batched

learning, where we take a number of consequent images (in all experiments we fixed the

size of a batch to 10 images) and use process them by the algorithm.

We also combine off-line learning together with on-line learning by first training a

classifier on the old training set (off-line part) and then refine it by adding new samples

at the testing time (on-line part). Correspondingly, we call the old training set, which

is used for training in off-line manner, as off-line set, and the new testing set, which is

used for on-line learning, as on-line set. And the classifiers, which was trained only on

the off-line set or on both sets as off-line and, correspondingly, on-line classifier.

For all the following experiments we randomly permuted the on-line set and saved

the permuted indexes, in order to imitate a random input to all the methods and to be

sure that they all get the same input in order to be fully comparable.

5.4.1 Naive Approach

The naive approach (Section 3.1) is based on performing segmentation of a new batch

of images, then selecting a number of pixels of each class and adding them into the

classifier, which is later re-trained on the old and new new samples.

Figure 5.17 shows the behavior of test errors for each class, as well as total and

average, depending on how many of the on-line images the algorithm has seen so far. In

this experiment we carried out accuracy evaluation on the whole on-line dataset after

every other lately processed batch of on-line files. The very first values correspond to

error rates of an off-line classifier (i.e. the one, which was trained solely on the off-line

data). As it follows from the chart even the most simple on-line learning approach helps

to considerably decrease test error for the “road” class, as well as “sky”. “background”

error increases slightly, but the Average and Total error decrease in general.

In order to evaluate the real on-line accuracy of an on-line classifier we propose to

conduct an experiment, which simulates the real on-line scenario of new data arrival

and testing. This method implies computing error rates not on the whole on-line set,

but exactly on the part of it, which has just arrived. It exactly corresponds to the
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Figure 5.17: Naive approach for on-line learning. X-axis is the number of new
images that has been seen up to the current moment, Y-axis is the error rates (averaged
over 3 runs) computed on the whole new testing set after processing the corresponding

number of new images.
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Figure 5.18: Real on-line evaluation of the naive approach. Solid lines denote
on-line classifier and dashed lines its off-line counterpart.

real-world application, when a new image arrives and we want to be sure to carry out

accurate segmentation particularly on this image, rather than improving segmentation

of the images which are already “the past” regarding current moment. Figure 5.18 shows

results for such evaluation. As it follows from the plot, on-line classifier indeed performs

better, than its off-line counterpart, especially for the “road” class: the “road” on-line

curve is always (and sometimes considerably) lower than the off-line one.
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5.4.2 Adding Constraint in the Form Prior Labeling

An extension of the naive approach would be to use some prior information, which can

be computed on the off-line set. [9] propose to compute class-histogram on the off-line

data, then normalize it per-pixel and use it as a prior distribution to weigh the output

probability distribution of the classifier at testing time, which should help to decrease

the number of false positives being accepted.
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Figure 5.19: On-line learning with the prior labeling constraint. X-axis is the
number of new images that has been seen up to the current moment, Y-axis is the error
rates (averaged over 3 runs) computed on the whole new testing set after processing

the corresponding number of new images.
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Figure 5.20: Real on-line evaluation of the prior-constrained approach. Solid
lines denote on-line classifier and dashed lines its off-line counterpart.

Figure 5.19 shows error rates depending on how many of the on-line images the

algorithm has seen so far. This approach considerably decreases “road” error making it



Chapter 5 Experimental Results 73

almost 2 times less. But on the other hand, “background” error in this case considerably

increases, although the overall Total and Average errors go down, as well as “sky” error.

The reason for such behavior can be that this algorithm tries to make any segmentation

look close to the prior labeling (Figure 3.1) with some deviation, but this deviation may

not be enough for some particularly difficult cases, which we have a lot in our on-line

dataset. For a real-life application the segmentation algorithm should not only correctly

find the “road”, but also its boundaries which is the “background” class. Otherwise, it

would be easy just to mark all pixels in the lower part of an image as “road”, resulting

in low error rate for this class, but making such systems useless in practice.

As in the previous section, Figure 5.20 shows results for the real on-line evaluation

of the approach. The accuracy of “road” classification improves great, but it comes at

the cost of considerable increase in the “background” error.

5.4.3 Bayesian Model Update for Scene Segmentation under Struc-

tured Scene Prior

In Section 3.3 we proposed a new way of incorporating unlabeled data, based on Bayesian

tracking formulations ([21]). But in contrast to previous work, we track an evolving

model over time and use a scene segmentation prior in order to avoid model drift.

In this, experiment we used 5 particles each of which being a Random Forest classifier

with advanced features for road detection, but, in general, any other classifier can be

used as a particle. Bayesian formulation of the approach gives mathematical ensures that

increasing the number of particles to infinity will guarantee that the tracking algorithm

will not miss the target distribution. But increasing the number of particles makes the

whole system very computationally demanding.

Figure 5.21 shows error rates in dependence on how many of the on-line images

the algorithm has seen so far. As it follows from the plot, the tracking converges quite

quickly and stays at the same level almost without any variation. Only “sky” error is

constantly going down during the whole observation period.

Figure 5.22 shows results for the real on-line evaluation of the approach. It is

remarkable, that the error rate of the “road” class stays always considerably below the

off-line reference. Unlike for the naive on-line approach (Figure 5.18) the error of the

“sky” class stays always below the off-line reference. The “background” curves almost

coincide for the on-line and off-line approaches. And this totally corresponds to the

original designing aim: to improve the detection of the road without sacrificing other

classes.
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Figure 5.21: Bayesian Model Update with Structured Scene Prior. X-axis
is the number of new images that has been seen up to the current moment, Y-axis
is the error rates (averaged over 3 runs) computed on the whole new testing set after

processing the corresponding number of new images.
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Figure 5.22: Real on-line evaluation of the Bayesian Model Update with
Structured Scene Prior approach. Solid lines denote on-line classifier and dashed

lines its off-line counterpart.

Figure 5.23 presents some examples of image labelings’ evolution in the process of

adaptation. The labeling gets more consistent with time: segmentation “holes” in the

“road” are getting smaller or eliminated at all, while the shape of the “road” is getting

closer to the ground truth image. And this happens without using ground truth images

in the process of adaptation, but only by tracking the evolving class distribution which

allows to adapt to new severe conditions on-the-fly.
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Figure 5.23: An example of image labeling evolution in on-line learning. First
image presents the original image from the new dataset. Next four images show the
segmentation after the first four iterations, and next four - after the last fout iterations
of our proposed Bayesian Model Update algorithm. The labeling becomes better and

gets closer to the ground truth (the last image) with time.

5.4.4 Discussion

Our experiments with on-line learning showed that adaptation to new conditions is a very

helpful tool, which allows to improve stability in situations when the underlying class

distribution changes with time. Table 5.5 summarizes the error rates for the converged

on-line methods and an off-line one, which was just a Random Forest with advanced

features for road detection trained only on the off-line set.
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Method
Error, %

Total Average Road Background Sky

Naive 18.8 24.4 35.6 11.9 25.7
Prior-constrained 18.8 20.1 21.3 17.4 21.5
Bayesian 17.1 21.0 32.9 11.7 18.5

Off-line (RF) 20.1 27.7 43.8 10.5 29.1

Table 5.5: Comparison of different approaches of on-line methods evaluated on the
whole testing set after converging. For comparison results for the employed off-line

method is provided. Bold font highlights the best numbers.

The numbers show, that even a naive approach brings more than 1% decrease in

total error. For comparison: getting the same effect requires application of the fully-

connected CRF method (Table 5.4). Prior-constrained on-line method results also in

around 1% decrease of total error, but it just sacrifices the error rate of “background”

in favor of “road”, which is very very debatable whether it is useful in practice.

The proposed Bayesian Model Update method shows the best improve -3% for total

error, and results in more than 10% decrease of “road” and “sky” errors, while increasing

the “background” error in just 1%. Considering the difficultiness of the on-line testing

set, we consider the obtained numbers to be a considerable improvement over other

approaches.
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Conclusions and Future Work

Summary: Image segmentation is a very old field of Computer Vision and has been

studied for many years already. But despite of all the achieved progress, there are still

some particular fields which require further researching. One such fields can be Image

segmentation in changing visual conditions. We introduced a new road scenes dataset

in this work, which shows that in situations when the testing sets exhibits high extent

of visual appearance variation, which considerably differs from the conditions contained

in the training set, standard approaches, which rely on the assumption of the constant

class distribution over sets, show considerable degrade in accuracy or simply fail. For

example, the evaluation of the current state-of-the-art method for general purpose scene

segmentation by Krähenbühl et al . [26] on the proposed dataset and the old dataset

from [45] shows at least ten times worse accuracy on the proposed set. And the method

based on Random Forest with Texton features from [38] fails on the proposed dataset

showing totally unacceptable results. But using advanced features for road detection

allows even a simple Random Forest classifier to show good accuracy on the new testing

set.

We showed in this work that on-line learning can be used as a powerful tool for

performing adaptation to changing visual conditions giving the possibility for tracking

the correspondingly changing underlying class distribution. Even the naive approach,

when new samples are added just based on their confidence scores, already shows im-

provement of more than 1% in comparison with the off-line classifier, the one which

didn’t use test set for refining its predicting abilities. We experimented with the Prior-

constrained method from [9], which considerably decreases error for one class (“road”),

but at the same time increases error for other (like “background”). As a result the total

error improve is not better than for the naive on-line approach.
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78 Chapter 6 Conclusions and Future Work

To get better results for on-line learning based approaches and get better adaptation

to changing conditions, we proposed Bayesian Model Update under Structured Scene

Prior for tracking the evolving class distribution. This method allowed to get a consid-

erable improvement of 3% for the total error in comparison with the off-line classifier,

and more than 10% improvement for the error rates of “road” and “sky”.

Future work: Based on our experiments several directions for the future work

can be outlined. First direction is further improvement of the new dataset. Current

dataset exhibits considerable amount of visual variations, but its main disadvantage is

that the images it contains are not captured by a car-mounted camera, and therefore

show no temporal consistency between frames. Though such conditions suit the pur-

poses of evaluation and comparisons of different methods (same as conventional MSRC

or VOC datasets), but it will be interesting to have a dataset captured in real-life con-

ditions and which will have temporal coherency between adjacent frames. This will also

allow to ensure following application of adaptive algorithms into real-world and industry,

because we think that it is exactly automobile industry that will benefit most of all from

application of such systems.

Additional research is necessary for improving Bayesian Model Update approach.

First of all, batched learning should be substituted by a real on-line learning with should

considerably improve the overall running time of the system. This will also allow to

increase the number of particles, which represent the distribution over models being

tracked in our proposed Bayesian Model Update approach, which in turn can ensure

that the tracking algorithm will not miss the target distribution due to lack of particles’

representation. Another important concern is the problem of numerics, because com-

puting likelihoods at the weights update stage of the Bayesian Model Update algorithm

requires multiplication of a lot of probabilities which may result in underflow errors.

We used only a pure Random Forest as a particle in our proposed Bayesian Model

Update approach, but this is a general framework which allows to incorporate any other

classifier. It can be Boosting, Support Vector Machine, or anything else. If the number

of particles is set to a sufficiently large number, all this classifiers can be made work

together in a unified framework, which will ensure accurate tracking of the evolving

target distribution.
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[9] José Manuel Álvarez, Theo Gevers, Yann LeCun, and Antonio M. López:. Road scene
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Appendix A

Detailed Random Forest

Algorithm

Here is the full algorithm for building Random Forests. TrainRandomForest (Algo-

rithm 4) function gets the whole bunch of training samples (xi, yi)
N
i=1 and builds M trees

each of depth D. The main problem here is that the whole sample should be allocated in

the memory at once which may require sometimes considerable amount of memory. But

on the other hand each tree can be build independently in a separate thread allowing

for easy parallelization.

BuildTree (Algorithm 6) is a function which builds each Random tree indepen-

dently in a recursive manner. This algorithm can be altered easily to better reflect the

specific needs of the particular application of the Random Forest. This is a general

algorithm.

GetDistribution (Algorithm 5) is a function which takes a particular sample and

traverses it through a tree until terminating in a leaf node, then it returns the distribution

stored in the leaf node. Again, this is a general algorithm which can be altered to store

anything apart from distribution, e.g . label patches or just a single label.

Data: a set of training points (xi, yi)
N
i=1, maximum depth D, number of trees M ,

number of random tests per node K,
Result: final classifier F = {f1, f2, . . . , fM}
for m← 1 to M do

1. compute per class weights w
2. Subsample the set of training points to S = (xi, yi)

N ′

i=1, so that N ′ < N
3. fm ← BuildTree(S,D,K,w)

end
Algorithm 4: TrainRandomForest function
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84 Appendix A Detailed Random Forest Algorithm

Data: test sample x
Result: distribution p(c|x), c ∈ Y
while node.is leaf 6= true do

perform feature test g(x);
if g(x) < θ then proceed to the left subtree;
else proceed to the right subtree;

end
Algorithm 5: GetDistribution function

Data: a set of training points S = (xi, yi)
N ′

i=1, current depth level level, number of
random tests per node K, per class weights w

Result: random tree f(x)
distribution← ComputeDistribution(S,w);
node impurity ← E(S,w);
if node impurity < threshold or |S| < minN or level = 0 then

node.distribution← distribution;
terminate;

end
level← level − 1;
score′ ← + inf;
for k ← 1 to K do

generate random parameters for the split;
choose random feature d;
get responses as S′ ← {xd|(x, y) ∈ S};
find a = minS′ and b = maxS′ values;
randomly uniformly sample c from [a, b];
separate S into L = {(x, y)|xd ≤ c, (x, y) ∈ S} and R = {(x, y)|xd > c, (x, y) ∈ S};
compute score as score← |R|

|S|E(R,w) + |L|
|S|E(L,w);

if score < score′ then
score′ ← score;
save the splitting parameters into node;
remember best split as L′ ← L and R′ ← R;

end

end
if |L′| > 0 then

BuildTree(L′, level,K,w);
end
if |R′| > 0 then

BuildTree(R′, level,K,w);
end

Algorithm 6: BuildTree function


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 Conditional Random Fields Approach
	2.1 Overview of Conditional Random Fields
	2.1.1 Definition
	2.1.2 Inference

	2.2 Features
	2.2.1 Raw Color Features
	2.2.2 Texture-Layout Filters
	2.2.3 Advanced Features for Road Detection

	2.3 Unary Potentials
	2.3.1 Boosting
	2.3.2 Random Forests
	2.3.3 Structured Class-Label Prediction

	2.4 Pairwise Potentials
	2.4.1 Fully connected CRFs


	3 On-line Learning
	3.1 Naive Approach
	3.2 Adding Constraint in the Form Prior Labeling
	3.3 Bayesian Model Update for Scene Segmentation under Structured Scene Prior

	4 A New More Challenging Road Scenes Dataset
	4.1 Existing Datasets
	4.1.1 The Microsoft Research Cambridge (MSRC) dataset
	4.1.2 Road scenes dataset

	4.2 The New Dataset

	5 Experimental Results
	5.1 Experiments with Random Forests
	5.1.1 Effect of Different Parameters
	5.1.2 Robustness to Noise
	5.1.3 Discussion

	5.2 Experiments on the MSRC dataset
	5.2.1 Setting 1: Pure Random Forest
	5.2.2 Setting 2: Random Forest with Feature Patches
	5.2.3 Setting 3: Random Forest with Feature Patches and Structured Class-Labels
	5.2.4 Setting 4: Random Forest with Texton Features
	5.2.5 Setting 5: Random Forest with Texton Features and Fully-Connected CRF (FC-CRF)
	5.2.6 Discussion

	5.3 Experiments on the New Test Set
	5.3.1 State-of-the-art Segmentation Algorithm
	5.3.2 Simple Features
	5.3.3 Advanced Features for Road Detection
	5.3.4 Discussion

	5.4 On-line Learning
	5.4.1 Naive Approach
	5.4.2 Adding Constraint in the Form Prior Labeling
	5.4.3 Bayesian Model Update for Scene Segmentation under Structured Scene Prior
	5.4.4 Discussion


	6 Conclusions and Future Work
	Bibliography
	A Detailed Random Forest Algorithm

