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Abstract

With the introduction of the Kinect as a gaming inter-
faces, its broad commercial accessibility and high quality
depth sensor has attracted the attention not only from con-
sumers but also from researchers in the robotics commu-
nity. The active sensing technique of the Kinect produces
robust depth maps for reliable human pose estimation. But
for a broader range of applications in robotic perception, its
active sensing approach fails under many operating condi-
tions such like objects with specular and transparent sur-
faces.

Recently, an initial study has shown that part of the aris-
ing problems can be alleviated by complimenting the active
sensing scheme with passive, cross–modal stereo between
the Kinect’s rgb and ir camera. However, the method is
troubled by interference from the IR projector that is re-
quired for the active depth sensing method. We investigate
these issues and conduct a more detailed study of the physi-
cal characteristics of the sensors as well as propose a more
general method that learns optimal filters for cross–modal
stereo under projected patterns. Our approach improves
results over the baseline in a point-cloud-based object seg-
mentation task without modifications of the kinect hardware
and despite the interference by the projector.

1. Introduction

Despite the advance of elaborated global (e.g. [2]) and
semi-global (e.g. [5]) stereo matching techniques, real-
time stereo on standard hardware is still dominated by local
method based on patch comparisons. The more surprising it
is that we have seen very little work on improving the cor-
respondences by a learning approach that would be better
suited to a certain setting or conditions [10]. Yet the use of
different pre-filters that are used by practitioners to improve
the matching process are clear evidence that there is room
for improvement over basic patch-based differences.

In our case the need for learning is even more apparent
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Figure 1: 1(a) Response of RGB camera (left) and IR cam-
era (right). 1(b) and 1(c) Image pair obtained by Kinect
with projected IR pattern. 1(d) Disparity map on unfiltered
pairs. 1(e) Disparity map on patch-filtered image pairs.

as we attempt cross-modal matching between the IR and
RGB image obtained from the Kinect sensor. Such a sys-
tem was recently proposed [1] which augments the active
sensing strategy of the kinect by a passive stereo algorithm
between the two available imagers. A very simple pixel
based re-weighting scheme was proposed that produces an
IR like image for improved depth estimates.
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Figure 2: Diagrams for weighted fusion scheme.

This paper identifies three issues and consequently im-
proves over the previous work threefold:

First, we take a closer look at the sensor characteristics
of the kinect and realize that the overlap in the spectral re-
sponse between the sensors is very small. This argues for a
learning based approach that exploits smoothness and cor-
relations in the BRDF function of the materials, as no sat-
isfactory linear reconstruction of the IR channel is possible.
Nevertheless we attempt such a reconstruction and add this
as a baseline.

Second, as argued above we know from practical con-
siderations that patch based stereo matching is often im-
proved by pre-filter operations. This is a richer class than
the pixel based weighting previously investigated. We pro-
pose a method for learning optimal filters for improving
cross–modal stereo that is rich enough to capture channel-
based weighting and filtering like sharpening, smoothing
and edge detection.

Third, we realize that for the best results previously ob-
tained [1] the IR projector had to be covered for captur-
ing the IR-RGB pair. However, this is impracticable as it
eliminates the active depth sensing scheme. We show that
our learning based algorithm can achieve robustness of the
stereo algorithm to these nuisances introduced by the pro-
jector – and in fact we are able to recover the performance
previously only achieved with the covered projector.

2. Related Work
Stereo vision has a far back reaching history and is stud-

ied well in the past decades. However, lighting conditions
or specific material property such as transparency and spec-
ularity [7] still complicate stereo matching. In practice such
variations are typically reduced by filtering techniques (e.g.,
laplacian of gaussians [9]), non-parametric matching costs
(e.g., census [13]) or by hand tuning parameters for opti-
mal matching. [6] provide a thorough comparison of several
stereo matching techniques with respect to complex radio-
metric variations. They compare a large set of filters, and
rank them according to performance and computational ef-
ficiency.

More recently the path of machine learning is taken to
find automatically optimal models for stereo matching [10].
Also [6] propose to learn pixelwise cost based on mutual
information from ground truth data. However, both ap-
proaches are global-based matching scheme and prohibit
real time applications. Also the sensitivity to local changes
[6] limits its applicability for matching across modalities
that exhibit global as well as local variation.

Objects with transparent or specular surfaces have been
also focused on as a detection task. [3] learns object mod-
els from data and [8] detect transparent objects employing
a second time of flight camera. For increasing robustness
of visual category recognition across different sources such
as from the web, high quality DSLRs or webcams [12] the
metric learning formulation proved to be a successful.

The Kinect depth estimate yields impressive results on
(un)structured lambertian surfaces. Yet it completely fails
on specular, transparent or reflective surfaces. This issue
is addressed in previous work [1] by using a cross–modal
stereo approach based on built–in RGB and IR sensor that
complements the Kinect depth estimate.

In order to study the similarity between IR and RGB
the authors of [1] investigate various fusion schemes and
present a pixel-based optimization based on ground truth
(see Fig 2). In contrast to their work, we replace the pixel
based weighting and focus on learning patch based filters.

3. Capturing and Analyzing Sensor Character-
istics of the Kinect
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Figure 3: Schematic for experimental setup for reading sen-
sor characteristics.

In [1] a mapping between IR and RGB was learned from
patterns that were illuminated by environmental light. How-
ever, there was no justification given if there is any hope to
actually recover the sensor response characteristic by a lin-
ear combination of the RGB channels. Therefore we pro-
vide here a first analysis of the sensor characteristics of the
imagers in the Kinect.

To this end we capture diffracted light which is pro-
jected on a “white” surface. This allows us to determine



the characteristics of the Kinect cameras by measuring their
response to different wavelength (see Fig 1).

The setup is depicted in Fig. 3. Environmental light is
shielded so that we are only capturing the relevant wave-
length. A special target that is almost perfectly lambertian
ensures that the results are not corrupted by any specular
effects. A light source is directed toward two small slits
that serve as an aperture for selecting close to parallel light
rays. This minimizes overlap between nearby wavelength
on our target. Behind the slits a optical grating pattern
causes diffraction which separates out the different wave-
length. The light source is a 500 Watts Halogen light which
– as a black-body-like radiator – emits light across the vi-
sual spectrum well into the infrared part, following roughly
Planck’s law [11]. We do not use a calibrated light source
in this study and consider it of lesser importance as we are
mostly interested in relative sensitivities under naturally oc-
curring light.

After acquiring reference images in ambient light, we
calibrate the images and calculate the response profile
across wavelength. We do this for each RGB channel sep-
arately, as well for the IR-image. (See Fig 4 bottom). This
gives us the sensitivity for each channel independently.

Having an estimate for the sensor response characteris-
tics, we can now estimate a reconstruction of the IR sensor
by a linear weighting of the RGB responses. Therefore we
find the following least squares solution:

min
w
||Rir − [RrRgRb]w||2 (1)

where Rir is the spectral response of the IR sensor and
Rr, Rg, Rb are the responses of the red, blue and green
channel respectively.

Results Fig 5 depicts the sensor readings we have ob-
tained. The raw sensor data is plotted in pale colors, while
the saturated colors show a gaussian fit. For each chan-
nel we subtract the minimum response in order to compen-
sate for sensor noise and residual ambient light and then fit
a gaussian mixture model with 3 modes as we observe 3
maxima of the diffraction pattern. The dominant mode is
plotted per channel. There are 4 IR channels as we read the
raw IR image from the Kinect that comes in a bayer pat-
tern. We expected slightly different response characteristics
for each channel, but they turn out to be almost identical.
Furthermore we observe that the overlap between IR and
RGB-channels is relatively small. The linear reconstruction
of the IR channel from Equation 1 results in the cyan line
shown in Fig 5. As the profile is very flat, we also show
an amplified version. The low magnitude indicates that the
reconstruction is not working well. The weights for the in-
dividual channels are as follows: wred = 0.0111, wgreen =
−0.0066, wblue = 0.0022. Obviously, the red channel has

rgb ir
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Figure 4: Spectrum from Experiment as in Fig 3.
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Figure 5: Spectrum from Experiment as in Fig 3. Light
colored plots correspond to the response along blue lines
through raw image data (Fig 4). Strong colored plots corre-
spond to Gaussian fitted curves.

the highest weight, as it is closest to the infrared part. Inter-
estingly, we get a negative weight for green which “pushes”
the red channel further to the infrared part. The positive
weight for blue again compensates partially for the intro-
duced dip in the green to blue wavelength. This is also an
interesting parallel to [1] where similar weights were ob-
tained by training pixel correspondences without explicit
knowledge of the spectral sensitivities.

In summary, we have to conclude that the overlap of the
IR and RGB sensitivity of the sensor is indeed smaller than
expected, which seems very bad news for any cross–modal
matching attempt. However, in practice we do often have
light sources that cover a reasonable part of the spectrum
– like the above used halogen lamp – and in addition typ-
ical materials also reflect in a relative broad and smooth
spectrum. This gives a justification to learning-based ap-
proaches like the one in [1] that can exploit correlations and
smoothness of BRDFs.

4. Methods

Our aim is to increase robustness as well as computa-
tional efficiency of cross–modal stereo under projected pat-
terns by learned filters. A simplistic scheme that is ex-



clusively based on pixel-wise re-weighting of IR and RGB
seems to be too limited. A learning-based version of this
linear scheme was attempted in [1] and we also derived a
weighting based on spectral measurements in the previous
section.

As we want to stay in the roam of efficient patch–
based stereo algorithm, we propose to extend the class of
learned transformation to linear filters that leverage a pixel
neighborhood in all channels to optimally preserve matches
across modalities. These linear filters encompass smooth-
ing, sharpening and edge detection methods that have been
shown useful as prefilter in stereo algorithm and can poten-
tially alleviate problems with the projected pattern.

The core idea is to collect corresponding pairs of patches
between IR and RGB images into a set S for the training
step. Then we use them to determine the weightings of
each elements in the IR and RGB patches so that the corre-
sponding patches have a smaller distance after the transfor-
mation. We employ an optimization framework to describe
this problem.

We denote the s–th corresponding pair of patches by
{IRs, Cs} ∈ S where C = {r, g, b} contains three color
channels from the RGB image. With the assumption that
the patch is in the size of n × n, we would like to ob-
tain the different weightings {wIR

i,j , wC
i,j} for every pix-

els {IRs
i,j , C

s
i,j} of different positions (i, j) within IR and

RGB patches {IRs, Cs}. The resulting optimization prob-
lem reads:

min
wIR,wC

X
s∈S

‚‚‚‚‚‚
nX

i=1

nX
j=1

wIR
i,j IRs

i,j −
X

C=r,g,b

nX
i=1

nX
j=1

wC
i,jC

s
i,j + b
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1

subject to
X
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nX
i=1

nX
j=1

wC
i,j = 1.

(2)
where b is an offset. By applying these weightings for each
color channels of RGB images and for IR images, we can
transform the RGB images into “IR-like” images then use
the same stereo matching algorithm to compute the dispar-
ity maps as usual. Note that this weighting procedure is the
same as utilizing filters for images. We display an instance
of our proposed filtering procedure in Figure 8.

5. Experiments

In order to evaluate the effectiveness of our approach
we compare to the results from [1] in the same experimen-
tal setting. A clustering approach is used to segment ob-
jects in a table-top scenario. The dataset was deliberately
designed to expose problems of the standard kinect depth
sensing scheme on materials that are, e.g., specular or trans-
parent. The groundtruth is given as 2d bounding boxes and
the PASCAL matching criterion is used that requires the
intersection over union between groundtruth and detection

bounding box to be larger than 0.5. The dataset consist of
106 objects in 19 scenes.

5.1. Learning Filters

Given image pairs of IR and RGB images, our goal is
to learn optimal adaptation between IR and RGB images
using the Kinect hardware without any modifications. We
manually collect thousands of corresponding pairs of 3× 3
patches between low–resolution IR and RGB images un-
der the influence of the IR–projector. The patches are dis-
tributed over normal and difficult regions including trans-
parent, specular and reflective surfaces. To solve the opti-
mization problem in Equation 2, we use cvx [4], a matlab–
based toolbox for convex optimization.

The resulting filters wr, wg, wb, and wIR are as follows
with the offset b = −56.6978:

wr =

 0.1451 0.1900 0.1228
−0.0354 0.0089 0.1244
0.1788 0.0985 0.1809


wg =

0.1844 −0.0806 0.1249
0.1866 −0.1393 0.1129
0.1981 −0.0841 0.0841


wb =

−0.0702 −0.0260 −0.0098
−0.1430 −0.0915 −0.0600
−0.0984 −0.0654 −0.0365


wIR =

 0.0049 0.0961 −0.0006
0.1532 −1.0000 0.1084
−0.0018 0.0741 −0.0062



(3)

Visualizations are provided in Figure 8.

5.2. Evaluation

Our evaluation uses the same data as [1] and is consis-
tent with their setting in order to ensure comparability. The
stereo image pairs from the Kinect were obtained under two
conditions. The first one is to cover the IR projector and the
second one is under the normal situation with the IR projec-
tor.

From the evaluation of different fusion schemes un-
der these two settings, the best results previously obtained
are an average precision of 69% with IR–projector–on and
72.5% with IR–projector–off by using a late fusion strategy.

Comparing to the average precision 46% of the built-in
Kinect depth estimate, the method can improve the Kinect
depth over 20% but meet the practical issues as we men-
tioned in Section 4. In contrast, our method simply uses the
early fusion scheme with applying the filters on IR–RGB
images captured under IR–projector–on but still achieves an
average precision of 71.5%.

The Precision–Recall curves of the late fusion scheme
under IR–projector–off setting, our proposed method, and
Kinect–only are plotted in Figure 6.
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Figure 7: Disparity maps computed from (a) original image and (b) IR–RGB–image pair without IR–projector, and from (c)
images filtered by our trained filters.
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Figure 6: Precision–Recall curves of late fusion scheme
under IR–projector–off setting, our proposed method and
Kinect–only.

Our approach outperforms all their settings using IR–
projector–on and is on par with their best result with mod-
ified hardware. Also note that our method shows strong
improvements in precision and produces the first false pos-
itives not until almost 40% recall which is 10% more than
the competing methods. In Figure 7 we show examplary
disparity maps computed from images in the IR–projector
off case, and filtered images by our proposed method.

5.3. Discussion

In the middle column of Figure 8, we present the vi-
sualization of the filters obtained from optimization pro-
cess. The filters of red channel and blue channel resem-
ble smoothing operators and the filter of green channel, the
smoothing seems to be applied along the y–axis while the
x–axis direction resembles a Laplacian operator. The fil-
ter of IR channel basically computes a filter similar to a

2–dimensional Laplacian operator.

6. Conclusions

We have presented a method to optimize filters for im-
proved stereo correspondence IR and RGB images that is
robust to projected IR patterns. We have experimentally an-
alyzed the spectral characteristics of the Kinect cameras in
order to justify such an approach. Adapting RGB in fre-
quency domain to mimic an IR image did not yield im-
proved performance. The small overlap between RGB and
IR seems prohibiting this approach. In contrast, learning
several filters based on image patches allowed improved
stereo vision across modalities. We conclude therefore, that
our pre-filtered, cross-modal, SAD-based stereo vision al-
gorithm profits most from combination in the spatial do-
main, rather than in the frequency domain. Our patch-based
approach shows increased performance and improved ro-
bustness against IR-specific interference from the projector.

However, the Kinect hardware limitation still disallows
us to capture RGB and IR simultaneously. This requires
to switch both channels by software and limits the frame
rate to 2-3fps. While sufficient for many applications, an
increased frame rate is certainly preferable.

Upon publication, we will make the source code of our
method available.
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