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Abstract. Internet data sources provide us with large image datasets
which are mostly without any explicit labeling. This setting is ideal for
semi-supervised learning which seeks to exploit labeled data as well as
a large pool of unlabeled data points to improve learning and classi-
fication. While we have made considerable progress on the theory and
algorithms, we have seen limited success to translate such progress to the
large scale datasets which these methods are inspired by. We investigate
the computational complexity of popular graph-based semi-supervised
learning algorithms together with different possible speed-ups. Our find-
ings lead to a new algorithm that scales up to 40 times larger datasets in
comparison to previous approaches and even increases the classification
performance. Our method is based on the key insights that by employing
a density-based measure unlabeled data points can be selected similar to
an active learning scheme. This leads to a compact graph resulting in an
improved performance up to 11.6% at reduced computational costs.

1 Introduction

Research on semi-supervised learning (SSL) aims to leverage unlabeled data to
support learning and classification tasks. A key assumption is that the underlying
data distribution carries valuable information about the class distribution. In
combination with the limited amount of available labeled data one can achieve
better performance than with labeled data alone. This idea is also fueled by the
availability of vast sources of unlabeled images from the web.

Due to the active research on semi-supervised learning, the understanding
of theory and algorithms in this area have greatly improved. One of the most
promising frameworks is graph-based label propagation which leads to many
insights [1] as well as high performance algorithms [2, 3]. However, those algo-
rithms typical come with a quadratic complexity that is contradictory to the
initial goal to scale up to large datasets. The “the-more-data-the-better” strat-
egy that usually increases the performance of SSL [4] can often be not applied
due to the prohibitive time and space complexity.

In this work, we question this strategy and show that we can indeed increase
the performance with a more careful selection of unlabeled data. As a result
we get similar or even better performance with only a fraction of all unlabeled
data. This advantage becomes particularly evident when using large datasets like
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ILSVRC 2010 with 1, 000 categories and more than a million images. In contrast
to previous selection approaches [5, 6] that are only applicable to mid-sized data
collections with up to 30, 000 data points, we are able to handle 40 times larger
datasets. A further advantage of our selection method is that we can efficiently
combine label propagation with active learning to further improve performance.
In the context of active learning graph size plays a crucial role and thus our
effective selection of unlabeled data becomes even more advantageous.

Contributions. First, we introduce two selection strategies (Sec. 3). We
compare these criteria to previous methods and show on mid-sized datasets
that we improve these approaches when we consider more realistic datasets with
occlusions, truncations, and background clutter (Sec. 6). After that, we illustrate
on a subset of ILSVRC 2010 with 100 classes that we get better performance
when using only a representative subset of all images instead of all unlabeled
data. We also show that our approach is able to process the entire ILSVRC
2010 dataset with 1, 000 classes and more than one million images. Finally, we
conclude our work in Sec. 7 by applying graph propagation in combination with
active learning resulting in increased performance.

2 Related Work

Large-scale computer vision has become more and more prominent in recent re-
search. There is many work utilizing vast amount of images from the internet
in order to improve one specific object category [7], to generate new datasets
within an active learning framework [8], or to use it for image retrieval [9]. For
image classification, ILSVRC 2010 [10] with 1, 000 classes and more than one
million images is currently one of the most difficult datasets according to size
and number of classes. Although, there are many approaches addressing this
dataset most of them focus more on faster and better image description [11],
analyze semantic similarities [12], or evaluate the scalability of knowledge trans-
fer [13]. However, there are surprisingly few works that consider more advanced
classification schemes beyond linear classifiers.

In contrast, semi-supervised learning (SSL) in particular graph-based meth-
ods are made to leverage labeled as well as unlabeled data to improve perfor-
mance of classification. We observe a large progress towards algorithmic contri-
butions [14, 15]. More recently, there is also a focus on improving graph construc-
tion – the most critical part of these algorithms. Previous works propose a better
weighting function [16, 17], make use of discriminative algorithms like SVM [18],
or remove noise of the data [1]. But although there is a common believe that
more unlabeled data helps for learning, there is almost no work that address the
scalability issue to take advantage of this huge available amount.

Main problem is that graph-based algorithms come with a quadratic runtime
and space complexity. Previous work proposes methods to reduce the dimension-
ality of the used image descriptors [19], or classify with an approximation [20].
Other works reduce the amount of unlabeled data to approximate the distance
matrix [21, 22], or to construct a smaller graph that represents the entire data
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data distribution [5, 6, 23]. In this work, we build on this idea. But instead of
representing the entire data space we focus on the data regions that are more
relevant for our image classification task.

3 General SSL-framework

This section briefly introduces our SSL setup consisting of label propagation [14]
extended with active learning [24] to further improve the performance.

3.1 Label propagation (LP)

Given n = l + u data point with l labeled examples L = {(x1, y1), ..., (xl, yl)}
and u unlabeled ones xl+1, ..., xn with x ∈ Rd the features, y ∈ L = {1, ..., c} the
labels, and c the number of classes. We build a symmetric k-nearest neighbor
graph with the L1 distance and use a Gaussian kernel to get the final weighted
graph W . Based on this graph a normalized graph Laplacian is computed

S = D−1/2WD−1/2 with Dij =

{∑
j Wij if i = j

0 otherwise
(1)

We use an iterative procedure [14] to propagate labels through this graph

Y (t+1)
m = αSY (t)

m + (1− α)Y (0)
m with 1 ≤ m ≤ c, (2)

with Y ∗m the limit of this sequence. The initial label vector is set as follows

Y
(0)
m = (ym1 , ..., y

m
l , 0, ..., 0) with ymi ∈ {1,−1} for the labeled data and zero

otherwise. Parameter α ∈ (0, 1] controls the overwriting of the original labels.
Finally, the prediction of the data Ŷ ∈ L is obtained by Ŷ = argmax1≤m≤cY

∗
m.

3.2 Active Learning (AL)

Similar to [24], we combine uncertainty (exploitation) and density (exploration)
criteria. For uncertainty, we use entropy over the class posterior P (ỹij |x) by
normalizing the prediction values from Eq. 2:

H(xi) = −
c∑

j=1

P (ỹij |xi) logP (ỹij |xi). (3)

For the density-based sampling, we employ the graph density criteria introduced
by [24]. This criteria make use of the symmetric k-NN graph to find dense regions
and is defined by the sum of all neighboring nodes divided by the number of
neighbors

D(xi) =

∑
j Wij∑
j Pij

, (4)
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with an adjacency matrix P and the weight matrix W . To make both criteria
comparable, we compute a ranking for each criteria separately such that high
entropies or dense regions are mapped to small ranking values. These numbers
are used to combine both criteria s(xi) = βH(xi)+(1−β)D(xi) with parameter
β ∈ [0, 1]. Finally, we query the label with the smallest score s and add this
sample to our labeled set.

4 Graph enhancement techniques

As motivated above, graph-based SSL-techniques are quadratic in the number of
data samples. Therefore, we are interested in techniques that benefit from more
unlabeled data while simultaneously minimizing the runtime. After reviewing
previous techniques (Sec. 4.1) we propose two novel techniques (Sec. 4.2) that
can be scaled to 40 times larger datasets than any previous techniques that we
aware of due to their lower computational complexity (Sec. 4.3).

4.1 Previous techniques

Several approaches have been proposed to enrich a given dataset. The simplest
one is to add unlabeled data randomly with a uniform distribution either from
an already existing dataset or from the internet. To have a stronger baseline for
our experiments, we enrich our data distribution with already existing datasets
to exclude wrong annotated and thus misleading images that are an integral part
of web sources. We call this baseline random.

There are several other approaches that propose a graph construction with
a representative unlabeled subset called anchor graph. In [6] k-means cluster
centroids are used as anchor points which can be advantageous when the clus-
ters represent one class each. Otherwise they introduce many shortcuts between
different classes. We show experimentally that k-means works well for datasets
with a smooth manifold structure but fails for more difficult data collections.

The second approach [5] finds representative unlabeled data in a greedy fash-
ion by repeatedly selecting the sample that is farthest from the current subset
S consisting of the training set L and the already selected unlabeled data Z:
arg minj∈Z\S

∑
i∈L∪S Wij , with W a similarity matrix for all images using L1

distance and a Gaussian weighting function. This method covers the entire data
space without introducing redundant information and works well as long as there
are not too many outliers in the data collection.

All methods aim to represent the entire unlabeled data space independently
from the task itself. If the unlabeled data is representative for the test data as
it is the case for ETH80 (Sec. 5), these methods work well. However, when the
ratio between test samples and unlabeled data is very small as it is often the
case for large datasets, these approaches fail to focus on the relevant part of the
distribution thus not achieving optimal performance.
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4.2 Novel techniques to enrich graph structure

In this work, we propose two novel selection criteria called dense and NN that
focus on the classification task at hand but in a completely unsupervised way.
Our goal is to enrich the area around a given set T consisting of training and
test data with unlabeled data. The idea behind this is that we want to benefit
from unlabeled where it is most needed and helpful. Additionally, for large-scale
datasets we cannot apply “the-more-data-the-better” strategy due to the time
and space complexity issues.

We consider three scenarios for extension: 1) training set only; 2) test set
only; and 3) training+test set. The first scenario leads only to local improvements
because of the small amount of labeled data. Additionally, this approach becomes
problematic if the neighborhoods around the labels are sparse as it leads to
many false neighbors. Enhancing the area around the test data only improves
the results for the same reasons. Experimentally, we observed that enriching the
neighborhood of both training and test works best so that we report only results
for this setting in the following.

(i) dense. Our first criteria uses the previously introduced graph structure
to find dense and thus representative regions. Of course, these regions can be
anywhere in the unlabeled data space. Therefore, we look only in the immediate
neighborhood of T for high density nodes. More specifically, we select the k
nearest neighbors for each xi ∈ T so that we have a pool of at least |Zpool| + c
samples with |Zpool|+ c� |Z|, i.e.,

Zpool ← {xj} with xj the k nearest neighbors of xi ∈ T. (5)

We order these data points by their graph density D from Eq. 4

r(xi) = mi, where mi ≤ mj ⇔ D(xi) ≥ D(xj) (6)

with xi, xj ∈ Zpool. Finally, we select the first |Z| data points with the smallest
score r(xi),

Z ← {xi} where r(xi) belongs to the |Z| smallest scores (7)

Usually, the chosen data points are more representative for a group of samples
so that propagation is more reliable. In the experimental part, we will see this
positive behavior in particular for a small set of Z. The larger |Z| becomes, the
more redundant nodes are selected.

(ii) NN. Beside this positive behavior regarding our set T , this method still
does not scale well to large datasets (see Sec. 4.3) as we have to calculate the
entire distance matrix. For this reason, we propose a second criteria NN that
can be seen as an approximation of dense. This selection technique needs only
the distances between xi ∈ T to all unlabeled data xi ∈ U with U = N \ T
and all data N . Usually, we have |T | � |U | so that the runtime is moderate. To
enhance T , we select the first k nearest neighbors for each xi ∈ T , i.e.,

Zpool ← {xik} with xik the k nearest neighbors of xi ∈ T (8)
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This procedure ensures that each point in T is separately enriched. For the case
that |Zpool| > |Z| we randomly subsample this set until we achieve our selection
size |Z|.

4.3 Runtime complexity

In the following, we briefly analyze the runtime complexity of all introduced
graph enhancement techniques and then compare their runtime behavior in the
context of label propagation (see Fig. 1). Given |N | = |T | + |U | images with
T the original dataset consisting of training and test set and U the pool of
unexplored and unlabeled data. The runtime of k-means is directly linked to
the number of clusters, i.e., O(|Z||U |m) with |Z| the number of anchor points
(∼ number of added data) and m the dimensionality of the image descriptor.
With increasing unlabeled data volume, memory and and runtime requirements
increase disproportionately as can be seen in Fig. 1 (left).

For greedy, we have to compute all distances between the current point
set L ∪ Z(t) at time 1 ≤ t ≤ |Z| to all remaining unlabeled data U \ Z, i.e.,
O(|Z||T ||U |m). This iterative procedure is the most time-consuming part. De-
pending on the dataset size and |Z|, it is faster to compute the entire distance
matrix once (O(|N |2m)). But for large pools of unlabeled data with more than
one million data, the full matrix does not fit into memory so that we have to
deal with approximations instead.

For our dense criteria, we require O(|N |2m) to compute all distances and
O(|N |2 log(|N |) to sort these distances for each image separately. Graph con-
struction and calculation of graph density is considered a linear operation. Ad-
vantage of this method is the small memory requirement because we can split
|N | into smaller pieces Ni � |N | so that we need at most Ni×|N | space. Finally,
we are only interested in the first k nearest neighbor, i.e., we disregard all other
distances. In our case, we set k = 1, 000. We have to compute this distance ma-
trix only once because we can reuse it for label propagation itself or for different
training and test sets.

As mentioned before, NN serves as a good approximation of dense. Instead
of computing the entire distance matrix over |N |, we only need to calculate all
distances between T and all unlabeled data U . Additionally, we also have to
sort T times the according distances. Finally, we get a runtime complexity of
O(|T ||U |m+ |T ||U | log(|U |)).

To run LP, we have to construct the k-NN graph thus requiring O((|T | +
|Z|)2m) to compute all distances for the set T ∪Z, and O((|T |+ |Z|)2 log(|T |+
|Z|)) to sort these. LP itself needs O((|T |+|Z|)2C) with C the number of classes.
The calculation of the graph Laplacian S = D−1/2WD−1/2 is fast because D is
a diagonal matrix and the graph structure W is sparse so that we do not observe
any memory problems.

Fig. 1 visualizes on the left side the runtime of the several graph enhancement
methods including the random baseline for the dataset IM100 introduced in the
next section. This is a subset of ILSVRC 2010 with 100 classes and approx.
130, 000 images. We plot number of added images against the expected runtime.
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Fig. 1. Left: Complexity for selecting |S| unlabeled data x ∈ U with m dimensions
of the image descriptor given a fixed training and test set |T | and label propagation.
Right: Complexity against performance of IM100 (see Sec. 5) for DSIFT.

To approximate the runtime, we run one experiment 5 times under almost ideal
conditions, i.e., only one process per time and scale this value to all other points
in this plot given our complexity analysis. Note, the values of k-means are opti-
mistic because it assumes that the algorithm converges after one iteration which
is usually not the case.

Greedy is not shown in this figure because it does not fit on the y-axis: For
the first point, i.e., adding 10, 000 unlabeled images we need approx. 80 hours.
k-means needs only 8 hours and is slightly faster than our dense criteria with
10.9 hours but slower than NN with 4.4 hours. To increase the dataset size by
25, 000 unlabeled data points, k-means needs 21.1 hours while NN requires only
6.4 hours and dense needs 12.9 hours. For random, we would need 2.7 hours.

On the right side of Fig. 1, we plot runtime against classification performance
for the same dataset. k-means and greedy cannot be applied on this large unla-
beled pool due to the runtime and space complexity. Most interestingly we see
for a given time budget that we achieve better performance than random. For
example if we look at 20 hours for random that corresponds to a graph size of
65, 000 images, we get a performance of 17.6%. In contrast, dense and NN need
only a graph size of 25, 000 to get a higher performance with 19.9% and 19.6%
respectively. This emphasizes our claim that we are not only faster but also ob-
tain better performance with a more representative subset of the unlabeled data.
Although ”the-more-data-the-better“ strategy actually leads to a mostly consis-
tent improvement (blue curve) the final performance is clearly below the results
achieved with our methods (red and green curve). This loss of performance is
often a consequence of added images that connect many images from different
classes bringing them mistakingly close together.

5 Dataset and image representation

In our experiments, we analyze four different datasets with increasing dataset
size and number of classes. Example images are shown in Fig. 2. ETH80 [25]
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ETH C-PASCAL ILSVRC 2010

Fig. 2. Example images for ETH (left), C-PASCAL (middle), and ILSVRC 2010 (right)

contains 3,280 images divided in 8 object classes with 10 instances per class.
Each instance is imaged from 41 viewpoints in front of a uniform background.

Cropped PASCAL (C-PASCAL) is introduced in [4]. Bounding box anno-
tations of the PASCAL VOC challenge 2008 training set are used to extract
the objects such that classification can be evaluated in a multi-class setting. In
this paper, we use the larger PASCAL VOC challenge 2011 with 8,900 images
of aligned objects from 20 classes but with varying object poses, challenging
appearances, background clutter, and truncation.

IM100 is subset of the ILSVRC 2010 challenge one of the state-of-the-art
datasets for large-scale image classification. IM100 contains 100 classes with
approx. 130, 000 images. Finally, we show also results on ILSVRC 2010 with
1, 000 categories and approx. 1.26 million images. Objects can be anywhere in
an image and images contain background clutter, occlusions, or truncations.

For all datasets, we evaluate three different image descriptors to show that our
insights generalize to several settings. Gist (960 dimensions) is computed by us-
ing the code of [26]. Dense SIFT (DSIFT) and spatial dense SIFT (SpDSIFT) are
extracted with the implementation VLFeat proposed by [27]. SIFT features are
calculated on a regular grid and quantized into 1000 visual words. For SpDSIFT,
we use a subdivision of 4 × 4 that are concatenated to a final histogram repre-
sentation with 9, 000 dimensions.

6 Experiments

In our experiments, we select randomly 5 training samples and 45 test samples
per class that serves as the original dataset T . This setting exactly corresponds
to the classical semi-supervised setting with 10% labeled data [2, 16, 4]. The
remaining images of these datasets are considered as the data pool U from
which we select unlabeled data to enrich T . We run all experiments 5 times with
5 different sets T and evaluate the performance on the test set only. Therefore,
we are able to compare our results independently from the amount of added
data. In the following, we analyze each dataset separately.

ETH80. Fig. 3 shows for all three image descriptors graph quality (GQ, first
row) and accuracy after label propagation (second row) without (solid lines)
and with (dashed lines) active learning (AL). Graph quality denotes the average
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Fig. 3. Graph quality (first row) and LP accuracy (second row) for ETH80 with (dashed
lines) and without (solid lines) active learning for different number of added images:
Gist (left), dense SIFT (middle), and spatial dense SIFT (right)

number of correct nearest neighbors in our symmetric k-NN graph structure for
the training and test data and serves only as a theoretic measure as we need to
know all labels for this evaluation. For AL, we start with one training example
per class randomly selected from our fixed training set of 5 samples per class,
and request in average 4 labels per class from the remaining training set plus
the additional unlabeled set.

We observe that the graph quality starts saturating after 60% to 70% added
data. The performance of all selection methods is similar including the random
baseline. This can be explained by the smooth manifold structure of the dataset.
There are almost no outliers in this dataset so that our test set benefits from
almost all images equally. For LP, we see a consistent improvement when active
learning is used1. Tab. 1 shows graph quality (GQ) and accuracies with 50%
(≈ 1500) additional unlabeled data. For DSIFT with NN selection we improve
LP without AL from 72.4% to 77.3% with AL. k-means performs slightly better
for LP without AL. The cluster centers seem to be good anchor points for the test
data. Our density selection criteria shows on average slightly worse performance
for LP without AL probably due to the oversampling of dense regions (e.g. apples
and tomatoes are high density regions which are preferred by this criteria).

C-PASCAL. This dataset corresponds to a more difficult classification prob-
lem with many outliers and overlapping classes. We observe for both GQ and LP
(Fig. 4) a large performance gap between our selection methods and previous
methods. For SpDSIFT and DSIFT, k-means and greedy are even worse than
the random baseline, e.g., LP+AL decreases for SpDSIFT from 28.3% with ran-

1 as this is true also for all other datasets we show only the performance for active
learning in the following.
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Gist DSIFT SpDSIFT
method GQ LP +AL GQ LP +AL GQ LP +AL

random 81.5 68.0 74.3 82.1 72.33 75.0 82.3 70.9 75.9
dense 83.0 67.2 73.8 84.1 70.9 76.3 83.0 70.3 74.7
NN 83.3 67.4 73.7 84.1 72.4 77.3 83.5 69.7 75.2
k-means [6] 82.5 69.4 73.6 83.6 73.1 77.3 82.9 72.7 76.1
greedy [5] 78.1 67.3 71.7 81.7 72.1 76.2 82.2 73.1 77.8

Table 1. Graph quality (GQ) and LP accuracy without and with (+AL) active learning
for ETH80 after adding 50% unlabeled images.

Gist DSIFT SpDSIFT
method GQ LP +AL GQ LP +AL GQ LP +AL

random 21.1 21.1 21.4 21.7 19.0 21.8 28.9 27.3 28.3
dense 23.8 20.8 22.1 26.1 20.3 24.3 33.4 29.0 32.2
NN 23.9 20.9 22.7 25.9 20.0 24.0 33.1 29.0 32.9
k-means 20.5 20.8 21.6 21.6 19.1 21.2 24.0 25.0 20.1
greedy 19.4 20.6 21.3 20.1 19.8 19.5 25.4 26.2 23.5

Table 2. Graph quality (GQ) and LP accuracy without and with (+AL) active learning
for C-PASCAL after adding 50% unlabeled images.

dom to 20.1% with k-means, and to 23.5% with greedy. For k-means, this drop is
a direct consequence of the used cluster centroids. Many clusters contain more
than one class so that these clusters connect all examples of those classes and
bring them closer together. In contrast, greedy focus more on outliers.

NN and dense perform similarly well. Furthermore, we observe a decrease
in graph quality as well as LP accuracy when using all unlabeled data. For
SpDSIFT, we get best performance for 50% (≈ 4, 600) added images with 33.4%
GQ, and 29.0% LP accuracy. These values drop to 29.8% GQ and 28.4% LP+AL
when using all data. This is an important insight because it demonstrates that
there is no need to use an arbitrary large number of unlabeled data. As a conse-
quence we are able to reduce the amount of unlabeled data drastically without
loss of performance. Note, the decrease of the GQ is a side effect of the symmetric
graph structure. The more data the more unrelated samples connect to our train-
ing and test data. Although the graph quality of a non-symmetric graph shows
better performance, label propagating through this graph structure consistently
leads to worse results (up to 5%, see supplementary material).

IM100. In the following, we analyze a subset of ILSVRC 2010 with approx.
130, 000 images. This subset is large enough to increase the amount of unlabeled
data by a factor of 25 but also small enough to run SSL on the entire dataset.
k-means and greedy cannot be applied to this dataset due to their time and space
complexities (see Sec. 3). Similar to all previous subsections, we show GQ and
LP+AL in Fig. 5 for different numbers of added data (graph size), and Tab. 3
contains results when adding 20% unlabeled data.
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Fig. 4. Graph quality (first row) and LP accuracy (second row) for C-PASCAL with
(dashed lines) and without (solid lines) active learning for different number of added
images: Gist (left), dense SIFT (middle), and spatial dense SIFT (right)

Gist DSIFT SpDSIFT
method GQ LP +AL GQ LP +AL GQ LP +AL

random 15.7 11.6 14.9 17.0 12.2 16.6 20.4 16.4 21.1
dense 23.2 12.6 17.7 24.0 13.0 19.9 30.5 17.9 27.0
NN 22.0 12.7 17.3 24.1 13.0 19.7 30.2 18.0 26.2

Table 3. Graph quality (GQ) and LP accuracy without and with (+AL) active learning
for IM100 after adding 30, 000 unlabeled images (≈ 23%).

Again, we observe a significant improvement of our selection methods over
random. For SpDSIFT, we increase GQ from 20.4% with random to 30.5% with
dense and to 30.2% with NN, and LP+AL from 21.1% to 27.0%. Similar to
C-PASCAL, our performance is with 20% to 30% additional data better than
using all unlabeled data. For SpDSIFT, we observe a decrease of GQ from 31.2%
with dense and 30% unlabeled data to 27.6% with all data.

ILSVRC 2010. Finally, we run LP on the entire ILSVRC 2010 challenge
with 1, 000 classes. We start with our set T given by 5 training samples and
45 test sample per class, i.e., 50, 000 images (Tab. 4, first line). After that, we
continuously add 50, 000 unlabeled data from the pool of the remaining 1.2
million images. Tab. 4 shows graph quality (GQ), top 1, and top 5 accuracy for
LP+AL and the difference to random selection. For computational reason, we
apply only NN. To further increase the speed of AL, we use batch active learning
with a batch size of 100 labels per query. So that we request 400 times a batch
of 100 labels to get in average 5 labels per class.
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Fig. 5. Graph quality (first row) and LP accuracy (second row) for IM100 with active
learning for different number of added images: Gist (left), dense SIFT (middle), and
spatial dense SIFT (right)

random NN selection
added data GQ top 1 top 5 GQ diff top 1 diff top 5 diff

0 2.4 2.8 7.1 2.4 2.8 7.1
50,000 3.5 3.9 8.4 5.3 +1.7 5.0 +1.2 9.4 +1.0

100,000 4.3 4.1 8.7 7.2 +2.9 5.4 +1.3 9.7 +1.0
150,000 4.8 4.2 8.8 8.5 +3.7 5.5 +1.3 9.9 +1.1
200,000 5.3 4.5 9.0 9.5 +4.1 5.7 +1.2 10.0 +1.0
250,000 5.8 4.5 9.1 10.1 +4.4 5.7 +1.2 10.0 +1.0

Table 4. ILSVRC 2010 with random and NN enrichment for DSIFT: graph quality
(GQ), top 1 and top 5 accuracy after LP with AL, and the difference to random.

For comparison, we run also a linear SVM on the base setting with 50, 000
images and with different parameters. The best performance we observe is 0.22%
averaged over 5 different runs. In contrast with LP without enrichment we get
2.8% top 1 accuracy. This large difference can be explained by the additional
graph structure we used in SSL. According to the selection criteria, we improve
increasingly our graph quality (GQ). For 50, 000 additional unlabeled images we
note a difference between random and NN of +1.7% while for 250, 000 added
images this difference increase to +4.4%. We also observe an improvement for
LP. For 150, 000 additional images, we increase LP from 4.2% with random to
5.5% with NN. However, LP benefits only limited from this improving structure.
One explanation might be that we run a batch AL instead of a single AL. Usually
these batch AL show worse performance in comparison to single AL.
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gist DSIFT SpDSIFT
acc gain acc gain acc gain

LP 11.2 11.4 14.7

+25,000 random 11.8 +0.6 12.2 +0.8 16.6 +2.0
+AL 14.5 +3.3 16.3 +4.8 21.4 +6.7

+25,000 NN 12.2 +1.0 13.0 +1.6 17.8 +3.1
+AL 17.9 +6.8 19.7 +8.3 26.3 +11.6

using all data 12.4 +1.2 12.8 +1.4 16.7 +2.0
+AL 16.3 +5.1 16.1 +4.7 20.6 +5.9

Table 5. IM100: baseline (5 training + 45 test images per class), 25, 000 randomly
added data without and with AL (row 2-3), with 25, 000 NN selections without and
with AL (row 4-5), and using all unlabeled data without and with AL (row 6-7).

7 Conclusion

In this paper, we enhance the graph structure for graph-based algorithms with
more unlabeled data and address the scalability of these approaches. These algo-
rithms come with a quadratic runtime so that “the-more-data-the-better” strat-
egy does not scale to large datasets like ILSVRC 2010 with 1, 000 classes and
over one million of images. We propose two selection criteria for enriching a
dataset and to improve the graph structure. These criteria drastically reduce
the amount of unlabeled data in comparison to the “the-more-data-the-better”
strategy while still achieving better performance than using all unlabeled data.
Moreover, given a fixed time budget we show significant improvements on four
different datasets with less unlabeled data in contrast to previous approaches.

Tab. 5 summarizes our main insights from this paper on the dataset IM100.
First of all, we see a consistent improvement when adding more unlabeled data.
For SpDSIFT, we increase from 14.7% to 16.6% with randomly added 25, 000
unlabeled data points to finally 16.7% when adding all available data. But these
results are clearly below the performance of 17.8% that we achieve with our novel
criteria NN. This fact becomes even more obvious in combination with active
learning where we improve SpDSIFT with our new criteria by 11.6% to 26.3%
while we increase this performance only by 5.9% when applying “the-more-data-
the-better” strategy.

This summary shows once more that a careful selection of unlabeled data
leads to better results as well as to a more compact graph that scales also to
large datasets such as the complete ILSVRC 2010 dataset containing over a
million images.
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