The NBNN kernel

T. Tuytelaars
K.U.Leuven, ESAT - PSI, IBBT
Leuven, Belgium

Tinne.Tuytelaars @esat.kuleuven.be

Abstract

Naive Bayes Nearest Neighbor (NBNN) has recently
been proposed as a powerful, non-parametric approach for
object classification, that manages to achieve remarkably
good results thanks to the avoidance of a vector quantiza-
tion step and the use of image-to-class comparisons, yield-
ing good generalization. In this paper, we introduce a ker-
nelized version of NBNN. This way, we can learn the clas-
sifier in a discriminative setting. Moreover, it then becomes
straightforward to combine it with other kernels. In partic-
ular, we show that our NBNN kernel is complementary to
standard bag-of-features based kernels, focussing on local
generalization as opposed to global image composition. By
combining them, we achieve state-of-the-art results on Cal-
techl01 and 15 Scenes datasets. As a side contribution, we
also investigate how to speed up the NBNN computations.

1. Introduction

Recently, Boiman et al. [3] proposed a novel, non-
parametric method for object classification, the Naive Bayes
Nearest Neighbor classifier, or NBNN for short. NBNN is
remarkably simple: given an image, one first computes a
set of local features. Then, one searches for the class that
minimizes the sum over all features of distances to the re-
spective nearest neighbours belonging to that class. In spite
of its simplicity and the complete absence of a training
phase, NBNN achieves surprisingly good results on stan-
dard benchmarking data sets such as Caltech101, compet-
itive with the state-of-the-art. The authors of [3] attribute
this good performance to i) the lack of a vector quantization
step and ii) the use of an ‘image-to-class’ distance instead of
comparing ‘image-to-image’. The former avoids discretiza-
tion errors which they show are especially outspoken for the
more informative features found in less dense areas of fea-
ture space. The latter enables a good generalization beyond
the provided labelled images. Indeed, when evaluating a
test image, NBNN combines bits and pieces of information

M. Fritz
MPI Informatics
Saarbriicken, Germany
mfritz@mpi-inf.mpg.de

K. Saenko, T. Darrell
UC Berkeley EECS & ICSI
Berkeley, US

saenko @eecs.berkeley.edu
trevor @eecs.berkeley.edu

Figure 1. Limos and cars are an example of two classes that may
be hard to distinguish using NBNN, since they are both composed
of very similar local features. Also the picture on the right would
probably be recognized as a car with high confidence, since most
of its local features resemble car features. Bag-of-features based
classifiers, on the other hand, look at the overall feature distribu-
tion and would have no problem classifying these images. This
shows the complementarity between both methods.

from different example images. This is especially valuable
when only a limited number of labelled images are avail-
able.

However, the NBNN framework also has its limitations.
The needed computation time during testing is high, espe-
cially when sampling very densely which often seems nec-
essary to obtain good results. Moreover, the method as-
sumes similar densities in feature space for all classes, such
that the same kernel bandwidth can be used for all of them.
In practice, this assumption is often violated, resulting in
a strong bias towards one or a few object classes. These
two points have been addressed by [1] and [21] respectively,
who both introduce a learning phase in order to do so.

Additionally, the independence assumption underlying
NBNN can also be criticized. Since each feature is treated
separately, information concerning the overall image com-
position is ignored. As a result, distinguishing e.g. between
a limo and a normal car is likely to be difficult for NBNN.
This is illustrated in Figure 1. For every local feature found
on a limo (resp. car), very similar features can be found
both on other limos as well as on other cars. Likewise, a
set of tires may get a good score for either of these two
classes, since most of its local features resemble car or limo
features, even though obviously important object parts are
missing. This is in sharp contrast to bag-of-features based

approaches, which directly encode the overall distribution
of features in an image and as a result would not encounter
the same difficulties. This illustrates the complementarity
between the two methods.

To combine both methods in a single framework, we
propose to kernelize the NBNN classifier. This way, it
can be integrated in a multiple kernel learning framework
(e.g. [6, 11, 26]). Various authors have studied the use of
kernel learning for object categorization [6, 10, 12, 16].
However, these works mostly focussed on combining dif-
ferent features (e.g. grayscale and color features, different
levels of invariance) or different spatial binning schemes.
Here we propose to exploit another sort of complementar-
ity.

Building a kernel that exploits image-to-class instead
of image-to-image comparisons may seem contradictory at
first, since a kernel by definition works on a pair of (im-
age) representations. However, the two image representa-
tions (sets of local features) need not be compared directly.
Instead, we compute their distances to the different classes
and compare these, as illustrated in Figure 2.

The main contributions of this paper can be summarized
as follows. We introduce a kernelized version of NBNN.
The NBNN kernel incorporates the main ideas underly-
ing NBNN - nearest neighbor search in feature space and
image-to-class comparison. Yet it is also a Mercer kernel,
so0 it can be used with a support vector machine to discrim-
inatively train a classifier. Moreover, the NBNN kernel can
then be combined with the standard bag-of-features kernels,
building on the strengths of both approaches. With NBNN
focussing on appearance details without discretization er-
rors and good generalization beyond the provided labelled
images, and bag-of-features encoding the overall feature
distribution in an image, the combined scheme outperforms
each of them individually and yields state-of-the-art results.

As a side contribution, we also investigate how to speed
up NBNN as well as the NBNN kernel. To this end, we
introduce an asymmetric scheme, where one samples more
densely for the training images (to generate the database for
the nearest neighbor search) while sampling less densely
during testing. This reduces the computation time with only
a limited effect on the accuracy.

The remainder of this paper is organized as follows. We
first discuss related work. Section 2 explains our NBNN
kernel. Section 3 starts with a complexity analysis and then
proposes a way to speed up the algorithm. Section 4 de-
scribes our experimental results. Section 5 concludes the

paper.

Related work A few papers have looked into variations
of the original NBNN algorithm, mostly aiming at reduc-
ing the bias in case of unbalanced datasets, by adapting the
(isotropic) kernel bandwidth [1, 23] or using metric learn-

O Features from image i — Image-to-class distances
B Features from image j — Image-to-image distances
@ Features from other images of same class

Figure 2. The image-to-class concept: even though the features of
the two images are not very similar (close), their distances to the
class distribution are similar, and that is what counts for NBNN.

ing [21]. These propose dedicated solutions for the partic-
ular NBNN setting. Our work, on the other hand, reformu-
lates the core ideas of NBNN in the standard kernel frame-
work.

Other researchers have investigated alternative ways to
avoid the vector quantization step, using sparse coding [22]
or locality-constrained linear coding [21]. However, neither
of these integrates the ‘image to class’ ideas of NBNN.

Before the introduction of the bag-of-features
paradigm [4] and its wide adoption in the computer
vision community, other kernels for directly comparing
sets of features have been proposed as well, with varying
success. Wallraven et al. [19] proposed the ‘matching
kernel’, which involved explicit matching of features
between images. However, later it was found by Liu et
al. [13] this is not a Mercer Kernel, although for many
practical cases this hardly matters. Instead, they propose
the sum match kernel, which is at the basis of our NBNN
kernel. Bo and Sminchisescu [2] have proposed a method
to make the computation of such kernels more efficient by
projecting to a lower dimensional space.

Also worth mentioning is the Kullback Leibler kernel
proposed by [17], which directly compares two feature dis-
tributions. Finally, based on its name, one might think the
SVM-KNN framework proposed by Zhang et al. [24] is re-
lated as well. However, they are in fact solving a very dif-
ferent problem.

2. Kernelizing NBNN
2.1. NBNN

The Naive Bayes Nearest Neighbor algorithm [3] as-
sumes all features {x} are independently sampled from a
class-specific feature distribution p(x|c). Classification of a
query image () then boils down to a Maximum Likelihood
classifier:

¢ = argmaz. p(clQ) = argmaz, [[p(xlc) (1)

X

Algorithm 1: NBNN

1. Compute a set of features X = {x}.

2. VxVe Compute the NN of x in ¢, NN°(x),
and its distance-to-class dS = ||x — NN¢(x)||2.
3.c=argmineec Y e x d%-

assuming a uniform prior p(c). This is shown to be equiv-
alent to minimizing an image-to-class Kulback Leibler dis-
tance K L(p(x|Q)||p(x|c)). The class specific feature dis-
tribution p(x|c) is approximated using Parzen density es-
timation. When only the Parzen kernel around the nearest
neighbour is retained and the same kernel bandwidth is used
for all classes, this results in a very simple algorithm: Given
a set of local features X = {x}, one searches for the class ¢
which minimizes the sum »___ |[x — NN¢(x)||?, where
N NF€ is the nearest neighbor of x belonging to class c (see
Algorithm 1).

2.2. The NBNN kernel

Here, we propose to transfer these ideas to a discrimina-
tive scheme. With the NBNN kernel, the core ideas under-
lying the NBNN algorithm are preserved and can be com-
bined with the mature technology of kernel-based learning.

Here, we build on the normalized sum match kernel pro-
posed by Lyu et al. to compare sets of features X = {x}
and Y = {y}(see [8, 13, 2]):

K(X.Y) = 8(070(Y) = g 3 Y hlxy) @

xeX yeY

Since we work in a multiclass setting, we sum together var-
ious class-specific kernels:
K(X,Y) = Y KX)Y) 3)

ceC

1 .
= szzkc(xd’) “)

ceCxeXyeY

with C' = {c} the set of all classes.

It can be shown [13] that (unlike the match kernel pro-
posed by [19]) K (X,Y) is a Mercer kernel if the local ker-
nel operating at the feature-level, k°(x,y), is a Mercer ker-
nel. Choosing k°(x,y) = 4(x,y), with §(x,y) = 1 if
x and y have been assigned to the same visual word and
0 otherwise, this degenerates into a linear kernel computed
on bag-of-features [2]. Instead, for our NBNN kernel, we
choose the local kernel as a combination of functions of dis-
tances to the different classes:

¢°(x)" ¢ (y))
feldy, .., diENT fe(dy, ..., dlfl) (6)

ke (x,y)

Algorithm 2: the NBNN kernel

1. Compute a set of features X = {x}.

2. VxVe¢ Compute the NN of x in ¢: NN¢(x),

and its distance-to-class dS = ||x — NN¢(x)||?.

3.Ve (X)) =Y, oy fdL,...dlh).

4. 3(X) = [®1(X)...®l°(X)T.

5. Repeat steps 1-4 for a second set of features Y = {y}.
6. K(X,Y)=o(X)To(Y).

with dS again the distance from x to its nearest neighbour
belonging to class c. In other words, we do not compare
features x and y directly, but instead compare the distances
to their respective nearest neigbours extracted from refer-
ence images of various object classes. x and y may be far
apart in feature space; if they have similar distances to the
various classes (i.e., both close to or both far away from the
same classes), they are considered similar. This is in line
with the ideas underlying NBNN: features are not vector
quantized, and information from multiple reference images
is combined, using a distance-to-class instead of a distance-
to-image.

In practice, we have experimented with two different

functions fe(dL, d2, ..., d\"), namely

fildy, ... dCh = d 9

where dS represents the closest distance to all classes ex-
cept c. When using f¢, ®¢(X) corresponds to the average
of the distances to the nearest neighbours for all features ex-
tracted from the query image, which is very similar to the
sum of distances used in the NBNN algorithm. With f5, we
subtract the distance to the nearest neighbor not belonging
to class c. This corresponds to using the likelihood ratio
instead of the likelihood in equation 1, and in our experi-
ments gave superior results. This is somewhat similar to the
Mutual Information measure used by [23]. Of course, other
functions can be tried as well, e.g. adding a kernel parame-
ter p as exponential weight to introduce a bias as in [13].

Algorithm 2 summarizes the computation of the NBNN
kernel. Once we have computed the kernel, we solve the ob-
ject categorization problem using a support vector machine,
but other kernel methods could be used as well.

In fact, when using f{, one can also explain the result-
ing method in another, simpler yet more ad hoc manner,
as follows: we compute the sums of distances to nearest
neighbours of each class, exactly as in the standard NBNN
procedure. However, instead of then selecting the class for
which this sum is minimal, we concatenate all the sums into
a large vector. This constitutes our new image representa-
tion based on which a support vector machine then learns to
distinguish the different object classes.

features/image | spatial coord. | accuracy
NBNN 2000 no 44.14+1.5
NBNN 2000 yes 62.7+ 0.5
NBNN 500 yes 56.5 £ 1.7
NBNN, asymmetric | 2000/500 yes 60.0+0.9

Table 1. Caltech-101 classification accuracy with our implementation of the NBNN algorithm of [3] using 15 training images. ‘Slow’

methods on top, ‘faster’ methods below. (mean and standard deviation)

3. Optimizing NBNN

Complexity analysis In spite of its simplicity, the NBNN
algorithm is not particularly fast at test time. This is due to
the fact that, for each feature extracted in a test image, one
needs to search for the nearest neighbor among all features
extracted from the labeled images and this for each class.
Using a naive implementation, this is quadratic in the num-
ber of features, i.e. O(N?) with N the average number of
features extracted from an image. Using approximate near-
est neighbors, this is reduced to O(Nlog(N)). Boiman et
al. [3] report a computation time of 1.6 seconds per image
per class. This means that, for instance, for the Caltech101
dataset with 101 classes it takes 163 seconds per image or
almost three days to process one split of 15 training images.
The same nearest neighbor computations are also needed
for the kernelized NBNN, so the time complexity at test
time is roughly the same. However, now we also have a
training phase for which we need to compute the distances
for all the training images.

[21] have suggested to sample less densely, and try to
counter the reduction in accuracy by learning a good metric
in feature space. Here, we suggest an alternative method to
reduce the computational complexity, namely the use of an
asymmetric scheme.

An asymmetric approach When comparing two images,
a good repeatability is ensured as long as we sample very
densely in at least one of the images. If the training im-
ages are sampled very densely, the test images can be sam-
pled more coarsely. Indeed, computing the average distance
to the nearest neighbor of a particular class probably does
not need tens of thousands of distances, but can be approx-
imated from just a few hundreds of distances. Since the
computation time is linear in the number of features in the
test image, reducing the number of features by an order of
magnitude will also speed up the classification procedure
by an order of magnitude.

4. Experimental results
4.1. Caltech-101

Implementation details In our experiments with the
Caltech-101 data set, we follow the experimental setup of

Vedaldi et al. [18]. In particular, we use the same train-test
splits as they do, rescale the large images the same way they
do, and add jittered images the same way they do. Also,
we use their ‘phowGray’ kernels with three different spatial
binnings as our ‘bag-of-features kernels’. We experimented
with the multiple kernel learning of [16] included in their
framework, but found that the mclp-boost method proposed
by Gehler and Nowozin [6] yields superior results.

For the NBNN-kernel, we use the code of [14] to com-
pute approximate nearest neighbors, and liblinear [5] for
learning the support vector machine. Since NBNN works
best with balanced data and cannot cope with 40.000 fea-
tures per image, we do not use the same dense sampling
(every other pixel) used for the bag-of-features kernels, but
only a subset thereof, making sure the number of features
per image is more or less constant.

During training of the NBNN kernel, the distances-to-
class must be computed for the training images. Here, one
must be careful to exclude all features originating from the
image itself (as well as jittered versions thereof). We start
with experiments using 15 training images per class.

Standard NBNN First, we evaluate the effect of differ-
ent settings for the standard NBNN algorithm as proposed
by [3] — see Table 1. In the original NBNN publication,
the image coordinates were added as additional elements in
the local feature descriptors. This steers the NN search to
features in nearby locations. Indirectly, this enforces some
kind of global distribution, as it makes extreme multi-to-
one matchings as in the right part of Figure 1 impossible.
The impact of this ‘trick’ of adding the spatial coordinates
on the results cannot be underestimated: not including the
spatial coordinates causes a drop in performance of almost
20%. We set the weight « to balance the spatial coordinates
with the rest of the feature vector empirically and keep it
fixed for all experiments.

Also, good results can only be obtained when sampling
sufficiently densely (as also pointed out by [21]). With
2000 features per image, we get an accuracy of almost 63%,
which is still below the 65% reported by [3] '. However,
as discussed in section 3, sampling more densely makes

Note that they did not include the background class as we did - if we
leave out that class, our score goes up a bit to 63.3 = 0.4%.

Bag-of-feature kernels better

NBNN kernel better

TTTTTTTTTT [TTTTTTTTITT I T T T I T T I T T T T T T TRTITTTITRTITTITTTITT TTTTTT TRTT T TRT T T T T T T I T T ITTITITTTTITTT
r5yessrustaensocepunten s SoRORYSS U g9pon sadeuc e bs S SRR 840 RN BEE ILERD A SRS S P 0
e e = S S RS e ol S Ml még*““;ggfﬁggour‘%%e‘agg&-%”g%””%wgégswéo £02805580°083 oeN2sE R6S

O =& © D> = c SOC Igoos +Qf O, U CSC= (o) cOo =1e} O o 8
o==sg goF5nw 0SSR B5ET SO FRE 20200 8 Sy s SOSELTERE B0 mmess 855egE 2 £ o 32 Sz 2 8 o
375 % S 33588 o SEOg>r 08c § £ecge @ ED S5 ©% 5289265 < ago ° 8 5 9°85

& © 8O g o6 = o Z=2d s °3 £8 =2 > 3 3
w o == - 5 Q E® = o o

e = © So ©

S g =
(O]
2
Q
<
o

Figure 3. Classification accuracy per class (i.e. the diagonal of the matrices shown in figure 4) for NBNN (blue) and the bag-of-features

based approach (red).

Figure 4. Confusion tables for NBNN (left), for the bag-of-features based kernels used in our experiments (middle), and for the combination

of both (right).

the procedure really slow. With only 500 features per im-
age the method becomes much faster, but the performance
drops significantly as well. Using the proposed asymmetric
scheme brings us back to a 60% accuracy while the compu-
tation time is still about 4 times lower than in the original
setting.

Complementarity with bag-of-features Next, we com-
pare the classification results of the standard NBNN algo-
rithm with an SVM classifier trained on bag-of-features.
For the latter, we use the ‘phowGray’ kernels LO, L1 and
L2 of [18], corresponding to different spatial binnings. This
is the best ‘single feature’ kernel combination reported
by [18]. Figure 4 shows the respective confusion matri-
ces and Figure 3 plots the classification accuracies for each
class, sorted by the difference in performance between both
methods.

Both methods show some complementarity. The largest
difference can be found for the class 'Leopards’. This is
due to the fact that the bag-of-features based method (us-
ing a varying number of features per image) can exploit the
small size of images of this category, while NBNN ignores
this information. This also explains why ’wild cats’ score
lower, since they get confused with leopards. NBNN scores
better on those classes for which there aren’t ‘typical image
compositions’ (e.g. ‘soccer ball’ or ‘chair’) and less good
for classes that lack distinctive features (e.g. ‘wrench’ or
‘umbrella’). More important than the absolute classifica-
tion accuracies are the confusion tables of Figure 4. Here,
we observe that mistakes made by NBNN are often due to
related classes such as ‘Faces’ vs. ‘Faces-easy’, ‘crocodile’
vs. ‘crocodile-head’, ‘cougar-body’ vs. ‘cougar-head’, etc.

features | kernel | accuracy

NBNN kernel + SVM 2000 f 57.7£1.5
NBNN kernel + SVM 2000 fa 61.3£0.2
NBNN kernel, asymmetric + SVM | 2000/500 | f; 56.6 = 0.7
NBNN kernel, asymmetric + SVM | 2000/500 | fo 604+1.1

Table 2. Caltech101 classification accuracy with the NBNN kernel, using 15 training images. (mean and standard deviation)

accuracy
NBNN kernel 61.3+0.2
phow kernels 66.9 + 1.3
NBNN & phow kernels | 69.2 0.9

Table 3. Caltech101 classification accuracy with 15 training im-
ages per class. Comparison of different kernel combinations, all
starting from the same features (dense sampling + SIFT). (mean
and standard deviation)

Kernelized NBNN Next, we evaluate the performance of
the kernelized NBNN. The results are summarized in Ta-
ble 2. Contrary to our expectations and in spite of the dis-
criminative learning, the kernelized version of NBNN did
not manage to outperform the Naive Bayes scheme based
on maximum likelihood. This may be due to overfitting to
such small amounts of training data. The kernel based on
the log likelihood ratio (i.e. using f5) gives much better re-
sults than the one using the log likelihood directly (using
f1)- Hence we will be using this kernel from now on.

NBNN-Kkernel in combination with other kernels Fi-
nally, we use the mclp-boost code provided by Gehler and
Nowozin [6] to combine the NBNN kernel with the bag-of-
features kernels. As shown in Table 4, the boosting manages
to exploit the complementarity of the different kernels, and
outperforms each of them individually. The final confusion
table is shown in Figure 4, right.

30 training images We repeat the same experiments with
30 training images. To keep the computational load under
control, we only use the asymmetric scheme. Under this set-
ting, our initial results (65.5%) are significantly below the
70.4% reported by Boiman et al. [3]. However, given the
higher number of training images, the problem with overfit-
ting is reduced, so when switching to the kernelized version,
the accuracy increases to 69.6%. Combining the NBNN
kernel with the bag-of-features kernels, we again outper-
form the individual kernels, leading to a final classification
accuracy of 75.2%.

Comparison to state-of-the-art In Table 5, we compare
these results with the state of the art, focussing on methods
that use the same image representation (dense sampling +

accuracy
NBNN 65.5£1.0
NBNN kernel 69.6 £0.9
NBNN & phow kernels | 75.2 1.2

Table 4. Caltech101 classification accuracy with 30 training im-
ages per class. Comparison of different kernel combinations, all
starting from the same features (dense sampling + SIFT). (mean
and standard deviation)

| 15images | 30 images
Results of methods using dense sampling + SIFT
Gehler et al. [6] 54.5+09 | 63.8+1.0
Griffin et al. [7] 59.4 676+ 14
NBNN [3]* 65.0+£ 1.1 70.4
LLE [20] 65.43 73.4
Vedaldi ez al. [18] 66.3 £ 1.1 ?
ScSPM [22] 67.0+0.5 | 73.2+£0.5
ours 69.2+09 | 75.2+1.2
Results using a single feature (other than SIFT)
Gehler et al. [6] (1 descr.) | 61.0£0.2 | 69.4+£0.4
Pinto et al. [15] 61.4 67.4
NIMBLE [9]* 70.8+0.7 | 785+04

Table 5. Comparison with state-of-the-art, focussing on single-
descriptor methods. Methods with an asterix did not include the
background class in their experiments, so are probably slightly
overestimated.

SIFT). In this category, we obtain the best results reported
so far (to the best of our knowledge).

For reference, we also include the best performing meth-
ods using a single feature (other than SIFT). Here, our result
is only outperformed by Kanan et al. [9] 2. Moreover, note
that their good result is due to the special features they in-
troduce. This seems complementary to our contribution, so
it seems likely that applying our scheme on top of their fea-
tures could increase the score even further.

We have left out results combining different features.
Usually the results get better the more features or kernels
are taken into account, with currently best results for Gehler
and Nowozin’s combination of 48 different kernels, achiev-
ing 74.6% with 15 training images.

2But note their result again did not consider the background class.

accuracy
NBNN 75+ 3
NBNN kernel 79+£2
bag-of-features kernels HE3
NBNN & bag-of-features kernels | 85 =4

Table 6. Classification accuracy for 15 Scenes dataset. Compar-
ison of different kernel combinations, all starting from the same
features (dense sampling + SIFT). (mean and standard deviation)

4.2. 15 scenes

We also tested our method in the context of scene catego-
rization, using the 15 scenes dataset. Here, we use the stan-
dard scheme with different splits of 100 images for training
and 100 images for testing. Table 6 summarizes the main re-
sults. Again, we start from densely sampled image patches
described using SIFT. We extract around 1500 features per
image. Since the number of training images is larger, we
do not add jittered images. In this case, the discriminative
learning brought by the kernelized version of NBNN does
pay off, with a 4% increase in performance relative to the
original NBNN.

Next, we combine the NBNN kernel with spatially
binned bag-of-features kernels (again LO, L1 and L2, i.e.
flat, 2 x 2 and 4 x 4 subdivisions), using a visual vocab-
ulary of size 500. These results can probably be improved
further when combined with denser features or more ad-
vanced kernels, e.g. based on sparse coding or soft quanti-
zation. Nevertheless, we already obtain results competitive
with the current state-of-the-art (best score to date is also
around 85% [25]).

5. Conclusion

We have shown that the NBNN classifier is complemen-
tary to the widely used bag-of-features based approaches,
focussing on individual details as opposed to overall im-
age composition respectively. To exploit this complemen-
tarity, we have introduced the NBNN kernel. The NBNN
kernel keeps the basic ideas underlying NBNN intact (no
vector quantization and image-to-class comparisons), yet
allows to cast them in a discriminative setting. In some
cases (when the number of training images is sufficiently
large to avoid overfitting), this already outperforms stan-
dard NBNN. However, the main benefit comes from com-
bining the new kernel with bag-of-features kernels in a mul-
tikernel framework, exploiting their complementarity. This
outperforms each of them individually and systematically
yields state-of-the-art results (best results to date starting
from dense sampling + SIFT).

As future work, we plan to explore alternative (non-
linear) kernels as well as feature selection. Indeed, a short-
coming of the current approach is that it does not scale well

in the number of classes. It would be interesting if we could
impose sparseness, such that one does not always have to
compute the distance to all classes. And of course, we are
curious to see what performance we can obtain on bench-
mark data sets if we combine our new NBNN-kernels with
other kernels using a variety of different features.

Acknowledgments

The research leading to these results has received fund-
ing under the European Community’s Seventh Framework
Programme(FP7/2007-2013) from the European Research
Council / ERC grant agreement nr. 240530 Cognimund
and from the European Commission / Integrating Project
AXES, and from a Feodor Lynen Fellowship granted by the
Alexander von Humboldt Foundation.

References

[1] R. Behmo, P. Marcombes, A. Dalalyan, and V. Prinet. To-
wards optimal naive bayes nearest neighbors. In European
Conference on Computer Vision, 2010. 1, 2

[2] L. Bo and C. Sminchisescu. Efficient match kernel between

sets of features for visual recognition. In Advances in Neural

Information Processing Systems, 2009. 2, 3

O. Boiman, E. Schechtman, and M. Irani. In defense of near-

est neighbor based image classification. In Computer Vision

and Pattern Recognition, IEEE Computer Society Confer-
ence on, 2008. 1,2,4,6

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.

Visual categorization with bags of keypoints. In Workshop

on Statistical Learning in Computer Vision, 2004. 2

[5] R. Fan, K. Chang, C. J. Hsieh, X. R. Wang, C. J. Lin, and

S. Sonnenburg. Liblinear: A library for large linear classi-

fication. Journal of Machine Learning Research, 9:1871-

1874, 2009. 4

P. Gehler and S. Nowozin. On feature combination for multi-

class object detection. In International Conference on Com-

puter Vision, 2009. 2,4, 6

G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-

egory dataset, 2007. 6

[8] D. Haussler. Convolution kernels on discrete structures,
1999. Technical report. 3
[9] C. Kanan and G. Cottrell. Robust classification of objects,
faces, and flowers using natural image statistics. In /IEEE
Conference on Computer Vision and Pattern Recognition,
2010. 6
[10] A. Kumar and C. Schminchisescu. Support kernel machines
for object recognition. In International Conference on Com-
puter Vision, 2007. 2
[11] G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and
M. L. Jordan. Learning the kernel matrix with semidefinite
programming. Journal of Machine Learning Research, 5:27—
72,2004. 2
[12] Y. Lin, T. L. Liu, and C. S. Fuh. Local ensemble kernel learn-
ing for object category recognition. In International Confer-
ence on Computer Vision, 2007. 2

3

—

[4

—_

[6

—_

[7

—

[13]

[14]

[15]

[16]

(7]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

S. Lyu. Mercer kernels for object recognition with local fea-
tures. In Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, 2005. 2, 3

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spa-
tial matching. In IEEE Conference on Computer Vision and
Pattern Recognition, 2007. 4

N. Pinto, D. Cox, and J. DiCarlo. Why is real-world visual
object recognition hard? PLoS Computational Biology, 4,
2008. 6

M. Varma and D. Ray. Learning the discriminative power-
invariance trade-off. In International Conference on Com-
puter Vision, 2007. 2, 4

N. Vasconcelos, P. Ho, and P. Moreno. The kullback-leibler
kernel as a framework for discriminant and localized repre-
sentations for visual recognition. In European Conference
on Computer Vision, 2004. 2

A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multi-
ple kernels for object detection. In International Conference
on Computer Vision, 2009. 4, 5, 6

C. Wallraven, B. Caputo, and A. Graf. Recognition with
local features: the kernel recipe. In International Conference
on Computer Vision, 2003. 2, 3

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In Computer Vision and Pattern Recognition, IEEE Com-
puter Society Conference on, 2010. 6

Z.Wang, Y. Hu, and L.-T. Chia. Image-to-class distance met-
ric learning for image classification. In European Conference
on Computer Vision, 2010. 1, 2, 4

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyra-
mid matching using sparse coding for image classification.
In Computer Vision and Pattern Recognition, IEEE Com-
puter Society Conference on, pages 1794-1801, 2009. 2,
6

J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search
for efficient action detection. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009. 2, 3

H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Dis-
criminative nearest neighbor classification for visual cate-
gory recognition. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 2, 2006.
2

X. Zhou, N. Cui, Z. Li, F. Liang, and T. S. Huang. Hierarchi-
cal gaussianization for image classification. In International
Conference on Computer Vision, 2009. 7

A. Zien and C. S. Ong. Multiclass multiple kernel learning.
In International Conference on Machine Learning, pages
1191-1198, 2007. 2

