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Ubersicht

Die Objekterkennung ist seit vielen Jahren Gegenstandasckung im Bereich Rechner-
sehen und dabei wurden beeindruckende Ergebnisse edgétich stellt die Aufgabe der Objekt-
kategorisierung immer noch eine grof3e Herausforderundtardieses anspruchsvolle Problem
anzugehen, wird in dieser Arbeit ein kiirzlich vorgeseglAnsatz benitzt, der lokale Merkmal-
sreprasentationen mit Support Vector Machines verbinditben der Fahigkeit zur General-
isierung im Bezug auf die Anzahl der Kategorien und der Ahzah Beispielen fur die einzelnen
Kategorien, wird der Ansatz auch unter realen Bedingungéestet. Typische Probleme die von
solchen realen Bedingungen herriihren sind heterogemgediund, partielle Verdeckung und
Skalierung. Alle drei Probleme werden in dieser Arbeit ayagggen, und verschiedene Metho-
den werden untersucht, um diese Herausforderungen aufMargge nicht trivialer Kategorien
zu bewaltigen. Darliber hinaus werden Experimente mieg@ten aus einem Buroumfeld
durchgefiuhrt. Die meisten Ansatze, die Erkennungsdagigauf der Basis von lokalen Merk-
malen durchfuhren, beruhen auf einem Schritt zum Merkatgjeich. Verbesserungen kon-
nten durch die Verwendung von Nebenbedingungen fur derkivi@isabgleich erzielt werden.
Deshalb werden zwei neue Methoden zur Durchfihrung eiregefchs mit Nebenbedingung
vorgeschlagen und gezeigt, wie diese im Kontext von Supfemtior Machines angewendet wer-
den konnen.

Abstract

Object recognition has been the subject of computer visgerarch for many years and im-
pressive results have been achieved. However the taskexftatgitegorization is still challenging.
In this thesis, a recently introduced approach which coewlocal feature representations with
Support Vector Machines is used to tackle this challengnodpllem. Besides the capabilities to
generalize with respect to the number of categories anduh#ar of examples of each cate-
gory, the approach is tested under real-world conditiongichl problems arising from these
real-world conditions are background clutter, partiallosmon and changes in scale. All three
problems are adressed in this thesis and different metheds\eestigated to cope with these
challenges on a set of non-trivial categories. In additmithis, experiments on categories in
an of ce environment are performed. Most approaches thdbpa recognition tasks based on
local features rely on a feature matching step. Improvesieate been achieved by using con-
straints for the matching. Therefore two new methods fofgoering a constraint matching are
proposed and it is shown how they can be applied in the confeXVMs.
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Chapter 1

Introduction

One of the main topics in computer vision is the developmérgystems that are capable of
recognizing objects from image data. This means, given afskhown objects, the system
should be able to make a decision if one out of the set of aé#abijis visible ¢bject detectiohn
or which one of these objects is presentebj¢ct identi cation).

Considering a robot in an of ce environment, such an objecbgnition system is useful, as
it enables the robot to perform tasks like nding a certaifjesh For example, the robot could
react appropriately to a request like “Fetch my cup”, if ish@arned the appearance of “my cup”.
However, for many tasks, this is not suf cient. If | ask forsju‘a cup”, it might not be able to
solve this task, as it cannot generalize from the class “npy tmmthe much larger class “cups”,
which we will refer to as theategory‘cups”.

From this simple example, we can already see how naturafar isumans to express com-
mands or statements in terms of categories. As a conclusiachines that can interpret data in
terms of categories can interact more easily with humans.

Although humans can handle categories with ease, curr@nbaghes to this topic in com-
puter vision have shown limited progress until now. The oed®r this is illustrated in Figure
1.1. Considering the categories shown in Figure 1.1, i@auit cues like color, texture and
shape are often not able to reliably distinguish betweetaicecategory members. This thesis
deals with those dif cult categories including challengiexamples of categories in real-world
settings like shown in gure 1.1.
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Figure 1.1: Examples of images used in experiments in tleisish Note that the cluttered back-
ground can be distracting for recognition algorithms.

1.1 Contributions of the Thesis

The overall goal of this thesis is to use visual informatiorrécognize object categories such
as those shown in Figure 1.1. As the recognition of objeatgmies is an extension to the
well researched topic of object recognition, it is knowntttoe achieving good performance in
real-world settings one has to tackle the challenges ofesked background, occlusion, varying
lighting conditions and noise. In addition to this we havbamdle the severe changes in appear-
ance introduced by the large diversity of the category membe

Therefore we require for a system which recognizes objdegcaies:

Robust representationThe representation has to extract the information whictois-
mon to all of the members of a category and discriminate thremm fmembers of other
categories. Furthermore it has to be robust with respedgtakchanges introduced by
clutter, occlusion, varying lighting conditions and noise

Robust classi cationThe classi cation algorithm must be able to generalizerake large
variety of the category members. In addition to this, it leafate all the challenges which
arise from real-world settings that could not be handledhieyrepresentations.

Therefore we combine recent progress in robust represamtaith a state-of-the-art learning
technique to meet the requirements for recognizing obgtetgories.

Various data representations have been proposed, whish @iy good performance in
object recognition tasks. However, methods which use aayl@presentation of an image like
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in [Mur95] often suffer from cluttered background and ositun. Local feature representations
seem to be a promising solution to this problem, as they relipoal information which is not
globally in uenced by partial occlusion or background ¢&rt[Sch97], [Low99].

On the other hand, a lot of progress has been made in maclaimerig by the introduction
of Support Vector Machines (SVMs, [Vap96], [Sch01]), thatfprm extremely well on a broad
variety of learning tasks also in computer vision [Cha9BH$01].

Recently the robust representation by local features amdxbellent generalization capabil-
ities of SVMs were combined via a new kernel function in [Vi&D calledlocal kernel This
combination of local features and SVM seems to be capableseting the tough requirements
on representation and classi cation described above. éfbe it is a very promising approach
to the categorization problem and is explored in more datdhis thesis.

One of the interesting aspects of [WalO3b] is the introducidf a constraint which helps
identify matching features within the local kernel. Thigsis contributes two new types of
constraints for this.

Furthermore, the whole approach is extensively evaluatddrespect to scale, occlusion and
background clutter. Different methods are applied to imprperformance. Also the in uence
of the number of categories and number of presented exaroplesategory is investigated.
For the experiments in real-world settings new images, whiso include categories commonly
found in of ce environments, were contributed to existimgage collections. We consider very
challenging categories like cow, horse and dog with gresatalisimilarity, too.

Detailed reviews of the literature on categorization, defgesentation and classi cation is
given in the Chapters 2, 3, 4 respectively.

1.2 Outline

The rest of the thesis is organized as follows. Chapter 2idgs de nitions of categorization
and how it is considered in our work. Chapter 3 describes dbal [feature representations.
Chapter 4 gives an introduction to Support Vector Machimes lzow they are applied to local
feature representations. In Chapter 5 experiments argibedand results are presented. The
thesis is summarized in Chapter 6.
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Chapter 2
Categorization

To be able to think about categorization, rstwe need a deam of the term “category”. Follow-
ing the discussion in [Lak87], this chapter reviews botlssieal and modern theories concerning
the nature of categories. We will conclude that for compuitgon applications only the classical
approach seems applicable. However, also the term “caregion” itself will reveal problems
due to its ambiguity. For example it is unclear if categdimaincludes the nding of categories
themselves or only refers to dealing with them, like beinlg &b determine the membership of
an observed entity.

2.1 Categories

Intuitively, categories mean classes that were extendeagaimner that seems natural to us. We
introduce the new term categories, as the standard way dbioamg entities into classes does
not seem to account for the greater amount of variability hesvefor categories. The purpose of
introducing such meta classes at all is clear. Without rieduihie complexity of the world as we
perceive it, we would be lost in details. Furthermore, axstentities would be out of the range
of our reasoning, as they only exist in the context of categor

Also in encyclopedias make similar conclusions and statedhtegories are the basic build-
ing block with which we formulate our thoughts, which deyeloaturally from the way we
generalize and think [BriO4].

These are very vague descriptions of the term category. Gtatipnal systems require a
rmer de nition, and for that we must turn to literature in pbsophy and science.

From the work of Aristotle [Ed28] to the modern approachegrofotype theoryRos88] the
meaning of the term category has undergone considerabhgebaTherefore literature dealing

5
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with this subject from a theoretical (philosophy, cogretscience) or computational (e.g. arti-
cial intelligence, computer vision) point of view does nd¢liver a canonical de nition of this
term either. A brief review of possible de nitions of cate@s is given below, closely following
the introduction given by Lakoff in [Lak87].

Lakoff identi es two basic views on categories. The rst halls theclassical viewwhich has
its roots in the work of Aristotle. Categories were consadkto be something abstract and well
de ned. Boundaries were thought to be de ned by shared ptagge A more recent approach is
the prototype theorjRos88] which extends the classical concept and considgegories to be
far more complex. In this context Lakoff summarizes différgypes of categories, which can be
modeled by prototype theory. We will review them from a maehiearning point of view.

graded categories Not all the members of a category have the same degree of exemb
ship. This results in fuzzy boundaries and central memlsenscentral members a human
observer should be sure about the membership with respacteéaain category, but ap-
proaching the border multiple opinions might exist. An exdarof a graded category is
the category “tall man”. For sure, there can be no disagraenlassifying extremely tall
people. Yet for people whose height is not exceptional, tllitkarly above average, one
cannot be sure about. Methods like fuzzy sets were intratitecéandle such situations,
since this kind of categories will introduce ambiguitidgttare dif cult to resolve.

categories with clear boundaries Even though a category can be internally graded, there
is consensus on the membership of an entity with respectcto &gategory. An example
of a category with clear boundaries is the category bird.hi&sd exists a precise de nition

of what a bird is, the membership and therefore also the bemigslare well de ned. For
computational systems, such categories seem much moibléets handle, especially
with respect to discriminative classi cation approachi&s the one used in this thesis, as
they introduce sharp boundaries by a decision function.

basic level categoriesBasic level categories are embedded within more genedatenme
speci ¢ categories in a hierarchy. They distinguish thelwes from the others as they
are basic with respect to the way we perceive or deal with themexample of a basic
level category is the category dog. Although it is embedated hierarchy in between
more general categories like mammal and more speci ¢ orkesdheep-dog, we most
likely refer to it as dog rst, when we see it. Hierarchicaustering and classi cation is
a widely used technique in machine learning. However, thmcehof the right level of
generalization is mostly covered by heuristics, as no caablevel can be identi ed.
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embodied categoriesCategories are tied to the way humans think and do not exisbut

a human observer. In particular, at least some categogesmabodied, which means that
they depend on the environment and the observers' capebitind experience. An often
cited example of embodied categories are categories forsolrhey depend on experience
and the physics of the visual system. Therefore many caggyaright be beyond the

capabilities of learning approaches as machines lack thes@n properties.

These examples show that many types of these categories gamciple be modeled by
machine learning techniques. Yet how far we can get in gradt forcing methods to model
categories perceived by humans is an open question.

In the following an overview of state-of-the-art approashethe categorization problem in
computer vision is given.

2.2 Current State-of-the-Art within Computer Vision

As we are looking at achievements of categorization in cderptision, we restrict our discus-
sion to visual categories. As mentioned above it has at teds questioned to what extend we
can talk of learning categories in terms of machine learning

Although sometimes not using the tewategory problems involving categories have been
addressed for a long time in computer vision. Recent workdweae on detecting cars [Aga02],
faces [Sch00c] and humans and horses [For97] in real-wettthgs, and in [Nel98] images of
cups, ghters, snakes, planes and cars were recognizedhogeneous background.

Some of the works with more awareness on the category isguecav reviewed in more
detail.

Work of Weber et al. [Web0O0b] and its extensions in [Web00a] a categorizatisk ta per-
formed in terms of learning object class models from unkatbeind unsegmented images of
cluttered scenes. These models consist of constellationgia features which are used to rep-
resent characteristic parts of the object by selecting twémrespect to their distinctiveness on
the data. The classi cation itself is performed in a proliabc framework by computing joint
probability density functions of the feature appearanakthgir constellation.

Work of Fergus and Fei-Fei et al. [Fer03] and [FF03] are extensions to the work of Weber.
The main improvement is the explicit modeling of variationsappearance within a category.
Fergus uses the EM-algorithm to learn new categories. Toasfof [FF03] is to reduce the
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amount of training data required to learn a new categorys iBrachieved by using priors learned
from other categories. Therefore they use a variationaéBiay approach. By this technique the
estimation of a model for a speci ¢ category is dramaticaliypli ed and can be done based on
only a few training examples (1 to 5).

Work of Leibe et al. Although in [Fer03] it is stated that there is broad agreenuérthe
issue of representation - namely object categories aresepted as a collection of features
or parts, where each part has a distinctive appearance atidlgposition, in [Lei0O3a] global
representation besides local representation performdédtae. The author explicitly restricts
his investigations to basic-level categories. For a sutfsaese categories, cars and cows, results
are reported in [Lei0O3b] for a category-speci c gure-gmai segmentation task. Therefore a
statistical model based on a codebook generated from afkatalre representation is used.

As far as we know all the work which is related to recogniziragegories in real-world
settings is limited td. to 6 categories. In addition these categories are fairly dititia. Examples
are:

[Web00a]: cars, leaves
[Fer03]: motor bikes, airplanes, faces, cars(side), earfr spotted cats

[LeiO3b]: cars, cows

2.3 Problem De nition

In this thesis we consider the categories to be explicitgcspd by labeled examples of the
categories, which enforces tletassical viewof categories. In this context, categorization can
be described as object recognition with a dramaticallygased variation in the object classes,
which by far surpasses the simple visual similarities hathdh object recognition. Consider-
ing the conclusions drawn above, the automatic detectiaatggories themselves has inherent
problems due to the nature of many categories and is therafutrconsidered in this thesis. In
contrast to recent work, we will attempt to handle categowich are hard to classify due to
their visual similarity. Therefore we will also consideitegories like cow, horse and dog.
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2.4 Summary

As categories are considered to be strongly related to tlyehwenans generalize and think, it
is clear how valuable it is representing information abaatadn terms of categories. Although
there is recent progress in describing category phenom#hahe concept oprototype theory
we restrict ourselves to thelassical view as we train models on labeled data sets. Therefore
in this thesis categorization is understood as the taskoofgr@zing object categories previously
de ned by humans, and where the boundaries of categoriedeae

Although there has been some work on categorization in ctenpision, there are still clear
limitations to what has been achieved. Especially in reallavsettings, the number of categories
addressed in recent literature does not exceed six andtiégocees are chosen that the members
have a fairly distinctive visual appearance.
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Chapter 3
Local Image Features

Recentlylocal feature representatiortsave gained a lot of interest in computer vision. In con-
trast toglobal representationg/hich are computed on the whole image, local features captur
the appearance only at a set of points calledrnberest points

Global representations like histograms [Sch00a] or eigaoes representations [Mur95] are
popular approaches to encode global image characteriséithough they have shown good
performance in many experiments, they usually suffer inpilesence of a heterogeneous back-
ground and occlusions. This is one of the reasons why loa#life representations gained inter-
est as they show very good performance even with clutter anldision [Sch96] and therefore
they are considered to be a promising solution to these @nudl

Another issue why local features are considered to be a gooidesis related to the task of
recognizing object categories. In works like [Web00a] aRerp3], the use of local features is
motivated by identifying and redetecting parts of an ohjetich are characteristic for the whole
category. For example, in order to describe a car, we areestedd in nding tires, headlights,
the windshield and so on. These parts have to be describesh@maer so that is distinctive, but
also accounts for the large variability allowed within aezpdry.

The acquisition of a local feature representation is ddit¢o two steps:

1. Detection An interest point detectois used to determine the position of characteristic
features in the image.

2. Description A local descriptoris computed at each detected interest point to represent the
local appearance.

In Section 3.1 a brief summary on scale-space is presergetpfiers theoretical insight to
the process of local feature extraction and leads to a socedeiant representation. Then Section

11
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3.2 presents methods for detecting interest points. Ini@est3 two local feature descriptors
are described. Finally a summary of the Chapter is given ati@e3.4. The whole Chapter is a
review of techniques.

3.1 Theory of Local Features

Assuming that an image is nothing more than a collection ohitive structures like edges,
blobs and corners, one can make the important observatthise structures appear at certain
scales, according to their physical extent in the scenémtie to the camera and resolution of
the image. To describe how to exploit this, the principalsaafle-space notation will be reviewed
in Section 3.1.1. In preparation of Section 3.2 where we i@ie able to compute derivative
based quantities in scale-space, Section 3.1.2 deschbegchnical basics and Section 3.1.3
explains how to select characteristic scales.

3.1.1 Scale-space

The size of objects in images is in uenced by the image rdaswiyfocal length of the camera
and other, generally unknown, parameters. This motivateshtilti-scale image representations
that explicitly represent the image at different scalesluzfavvation. Among many alternative
approaches to construct such a representation, Gaussilspace theory has shown to be a
natural choice due to its convenient mathematical progerind close relations to biological
vision [You87].

Starting from a set of axioms, [Wit83] and [Koe84] derived @a/Gsian scale-space represen-
tationL and have shown that it has to satisfy the diffusion equation:

@L_ 1 ,
@z Er L (3.1)
with the initial condition:
L(x;0) = s(x) ; (3.2)
whereL : RP R, ! R is the scale-space of a continuous sigsal R° ! R and

is a continuous scale parameter. The solution of this ddfugquation can be computed by
convolution with a Gaussian kernel:

a(x; )= —5€ 27 (3.3)
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e

original =1 =2
Figure 3.1: Slices through the scale-space of the imageelethat different values for

Therefore the Gaussian scale-space is given by:

L(x; )=9g(x; ) s(x); (3.4)
where denotes convolution.

As we are interested in a scale-space representation of ageimve restrict ourselves for
further consideration to two dimensions. Therefore théesspace is built by:
2

Lixi )= 5oge TF 1) 35)

wherex = (Xx;y) speci es a position in the image. Examples of slices through such a scale-
space are presented in Figure 3.1. The image of the car i®dtavith Gaussian kernels with
increasing . Moving to higher scales the image gets more and more bludreditively, this
low-pass Itering can be thought of as simulating the losgwddrmation when moving to higher
scales or respectively moving away from an object, whichiltesn changes of image charac-
teristics like derivatives. But even though informationtieé original image is lost, the scaling
reveals new characteristics, which are typical for higlradess. In Section 3.2 we will exploit
this fact to build richer models. In contrast to resolutigmgmids [Cro82] the images are not
down-sampled to preserve the spatial resolution in theifeatetection procedure.

Due to quantization and noise there is a lower limit for th@eccalled the inner scale. This
is basically the scale where the support of the GaussiandiaBy within one pixel. Obviously
the result of the convolution will not change by further reahg . There is also an outer scale,
which means that due to the nite size of the image, the siz&trofctures that can be captured
is limited. This limit is reached when the support of the Gaaus is about the size of the whole
image. Therefore it makes only sense to perform computaabdacales which lie between these
bounds.
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3.1.2 Derivatives

As will be seen in Section 3.2 and 3.3, popular approacheadadnterest points and to describe
their local characteristics need the computation of déviea. The standard method for comput-
ing derivatives is to derive a lter kernel by using a niteftirence approximation [Pau97]. For
the rst order derivative the central difference is used:

Q.

@x
The second order derivative is computed by the consecutireotution with two nite differ-
ence approximations of rst order derivatives.

@
@F’

101 (3.6)

11 11 = 1 21 (3.7)

Higher order derivatives are computed by combinations of ¢8,6) and egn. (3.7). Computing
these derivatives at a certain scala scale-space we get:

@
Lijuin (X5 )= i@ a( ) f(x) (3.8)

@@

Gaussian derivatives

As the values of the derivative decreases with increasiagpsin [Lin98] scale normalized
derivatives were introduced,

Dil:::im(X; ): mLil:::im(X; ) (39)

which will become of importance in Section 3.3 to derive desgavariant representation. The
normalized Laplacian yields:
[ 2Loom = 2(Lxx + Lyy) (3.10)

Gaussian derivatives develop from the scale-space repetgm, but have also shown to be
more stable than the normal derivative. As the derivatiaisa high pass lters, the Gaussian
smoothing reduces the otherwise ampli ed noise [ForO3].Figure 3.2 the lIter kernels of
the relevant Gaussian derivatives and the Laplacian apagtisd. These Iters have recently
gained interest in various elds of computer vision [Hay@4d were also motivated from human
perception in psychophysics.

The success of these approaches is based on capturingulifidraracteristics of an image
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Oxx gxxy Oxx + g)’y

Figure 3.2: Filter kernels for Gaussian derivatives and_tygacian

by choosing different s for the computation of derivative based statistics. Bubhase is no a
priori information how to choose such approaches can suffer from the increased amount and
dimensionality of the data. Therefore in [Lin98] the thetyautomatic scale selection has been
introduced, which also lead to a scale-invariant represemt.

3.1.3 Scale selection

The assumption of scale selection is that there is a chaistatescale at which a function of
Gaussian derivatives, called a differential entity, achgea maximum. If this extremum can
be reliably detected, a scale-invariant representationbeaconstructed and the ambiguity of
representing the same image feature at different scale®dbe introduced scale parameteis
eliminated again. In [Lin98] it was shown that functionsdikace(H) (Laplacian) andlet(H)
attain a maximum on synthetic data and real images, WHasdhe Hessian matrix in the context
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of normalized scale-space derivatives is given by:
|

» Lo(X; ) Ly(x; )

HOG )= Ly (X; ) Lyy(x; )

(3.12)

In experimental evaluations in [MikO1], the Laplacian yiglgood results for scale-selection.
To use the Laplacian to detect maxima in scale-space, weasedle derivative of the Lapla-
cian. Considering egn. (3.10), the scale derivative of themalized Laplacian is given by
([Lap04],[Lin93]):

@ @
@r “Loom = @2 2(Lax + Lyy) (3.12)
= L +|_+2@(|_ + Lyy) (3.13)
XX yy @ XX yy .
2
= Lyt I—yy + (L xxx +2|—xxyy + I—yyyy) (3.14)

In egn. (3.12) the normalized derivative from egn. (3.10)sed and in eqn. (3.13) only the
product rule of derivation is applied. For egn. (3.14) wddad)@—@;(Lxx + L,y) as a scale-space
of the the functio. = L, + L,y and replace it with the right-hand side of the diffusion dpra
(3.1). By using this trick, no additional scales have to bepoted, as it would be the case for a
nite difference approximation in scale.

In Figure 3.3 two slices through scale-space parallel toxtbed y axes of the car image
shown in Figure 3.5 are given. Each column of these imageallisdcscale-space signature or
scale-space trace in the literature. As predicted by theryhenaxima can be observed on these
traces. A more detailed look reveals some typical propediethese traces. First, the traces
one would identify by a rst glance at Figure 3.3 are no sthaiines going from the bottom to
the top. Many of them are bent. These bent traces are calkgul steucture. This property is
illustrated in Figure 3.4, where features are extracteccatiaer at different scales. The detected
location is marked by a cross and the scale is visualized éiite of a circle centered at that
position. The typical projection of a deep structure lyipgximately on the bisecting line of
the corner can be observed. We will refer to methods whichwih this property in Section
3.2.
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(@) (b) ()

Figure 3.3: (a) Laplacian of the input image of s&6«256; (b) and (c) slice through scale-
space of the Laplacian gt= 128; right: slice through scale-space of the Laplaciar at 128
(scale-space displayed from= 1 at bottom of the image to = 8 at the top)

3.2 Detection

As already mentioned, the process of extracting local featis divided into two steps: the
interest point detection and description. Interest paanésrequired to be characteristic for the
image and robust to redetect. The information content ofidseriptor, which is computed in the
second step, is highly dependent on the chosen interedsgblik02a]. A common assumption
for a characteristic point is that there is a signi cant cpamn the intensity value of the image
and therefore a strong derivative at the interest point. pubar choice for interest points are
local maxima of a function of derivatives, which will be refed to as an interest function. As a
representative, thieaplace detectowill be reviewed in Section 3.2.1. But edge-like structures
can also preserve a high score along a line and often donk sledl de ned maxima. For this
reason more selective functions were de ned such adidreis detector[Har88] described in
Section 3.2.2. Thereafter, methods for dealing with scadedascribed - namely the multi-scale
approach [Sch97] in Section 3.2.3 and automatic scaletgmigik01] in Section 3.2.4. Finally
Section 3.2.5 brie y reviews experimental comparisonsérest point detectors.
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Figure 3.4: Features detected at a corner at multiple scadles feature positions are marked
with a cross and the scale is visualized with a circle.

3.2.1 Laplace detector

A common approach to look for interest points is to look fa thaxima of the Laplacian for the
Laplacian of Gaussian in a scale-space context with scatealzed derivatives:

r2L(X; )= 2La(X; )+ 2Lyy(X; )] (3.15)

The associated lter is displayed in Figure 3.2. Convolvimith such a lter leads to an interest
function which responds to blob-like structures similaithie lIter itself. But also edges will

lead to high output, and so this lter is also applied as aneedegtector. Figure 3.6 shows two
examples of the interest function and the detected pointgpoted by the Laplacian. A high
score is associated with the contour which has a strong e@feourse, lots of these points
will not be redetected, as they do not correspond to a charsiit part of the scene. Another
observation is that the interest points seem to be disatbuwandomly on the contour which
illustrates the already mentioned problem of there being@lb-de ned maxima along an edge.
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Figure 3.5: rstrow: image data at different scales; secawd Harris function (normalized for
displaying) at different scales

original

A
\>\0/ a

L

3.2.2 Harris detector

Some of these problems can be solved by a different appradied ¢he Harris corner detector

[Har88]. The basic building block of this method is the setaroment matrix:
!
L2(x; L,Ly(X;
X; 15 p)= 59( 1) «(X: o) Xzy( o) ; (3.16)
LxLy(X; D) Ly(X; D)
where | is the integration scale at which the derivatives are coeghahd p the detection scale,
which can be thought of as an additional smoothing to stabthe detection of local maxima.
The integration scale is determined by the scale at whichn@mgs to detect interest points and
a common choice for the detection scale js = 2 1. From this matrix the Harris interest
function:

det( (x; )) (trace( (x; ))?) (3.17)

is computed, where = 0:04is proposed in [Har88].

Intuitively, the Harris detector looks for points that hateong curvature in the two orthog-
onal principal directions. This is enforced by seeking lonaxima of the determinant of the
second moment matrix, which is the product of the eigenwhedonging to the orthogonal
eigenvectors of this symmetric matrix. The term on the riggint be thought of as a penalty term
for edge-like structures.

Two examples of the interest function and the detected paiomputed by the Harris de-
tector are shown in Figure 3.6. The interest points are ngdoooncentrated on the edge and
are more spread out over the whole object. The Harris dethashown good performance in
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car apple

interest function detected points interest function detbpoints

Laplacian

Harris

Figure 3.6: Example for interest points computed by Lapkace Harris measure. The corre-
sponding interest functions are shown, too. The weaklyutext object apple on black back-
ground reveals problems of the Laplacian measure.

comparison with other detectors [Sch98]. In Figure 3.5 therid interest function is computed
at different scales. Assuming that the Harris detectore$ul$or detecting characteristic interest
points, one can observe that for different scales diffesémictures of the image are considered
characteristic. Again this af rms the hypothesis that vagya scale parameter in feature extrac-
tion leads to a model capable of capturing characteristiistwotherwise would be undetected.
But as already mentioned in Section 3.1.1 the choice of thégmarameter is unclear.

Therefore two approaches will be given how to take advantdglis scale parameter without
running in the problem of storing a lot of redundant inforioat

3.2.3 Multi-scale

The multi-scale approach, which was applied in [Sch97], @amthe scale-space at a set of

xed s 2 R. As for example the size of an object changes in the same wtyrespect to
the distance of the observer, this spacing seems natural ddeding with scale. At each scale
interest points are detected. They are gathered into aesgsgjglof all interest points across all
scales. Of course many of these points will refer to the sdmetsare viewed at different scales
especially when the spacing of the sampling is very ne. Thiscause redundancy in the model
and lead to higher computational costs and larger storaggresments.
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3.2.4 Automatic Scale Selection

The redundancy introduced by the multi-scale approach f8eetion 3.2.3 can be reduced by
applying the theory reviewed in Section 3.1.3. This is dopstbring the feature at the scale at
which it yields the strongest response of the interest fanctin [MikO1] a combined Harris-
Laplace detector was presented which nds scale-spacemaawith an iterative algorithm, and
in [Low99] a more exhaustive search for localizing scalaegpinterest points was used, which
is referred to as the SIFT key detector.

Harris-Laplace Detector

In [MikO1] a Harris detector is used for detecting interestnps in the spatial domain and a
Laplace measure for the scale domain. In addition one hasnpensate for the problems
mentioned in Section3.1.3. The deep structures we pergeivigure 3.3 and 3.4 are bent and
therefore the detected interest points at different sadféers by several pixels. To solve these
problems, an iterative algorithm was introduced in [MikOWhich takes initial detections of
points and searches along scale traces for a characteststie where the Laplacian attains a
maximum. After each iteration the location of the point idetected with the Harris detector to
update the position. A Nassi-Schneiderman diagram of tqarighm is given in Figure 3.7.

Further extensions like af ne invariance were not consdegrs in [Mik02a] an experimental
evaluation showed that with small viewpoint variationswestn images< 20 ), the Harris-
Laplace detector showed better repeatability than itseataunterpart.

SIFT Detector

In [Low99] a new type of local features is introduced, calledFT. The interest point detec-
tor, which Lowe calls key detector, uses a scale selectiochar@sm based on differences of
Gaussians. The scale-space is built by convolving with &auns and down-sampling after each
octave, so that a pyramid-like data structure is obtaindtk difference of Gaussians are com-
puted by the difference of neighbouring scales. After timd¢rest points are detected by looking
for maxima with respect to the eight bordering pixels. In eosel step all the points which rep-
resent a maximum in scale-space are selected, by checlengdbest pixel at the next higher
and next lower scale.
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3.2.5 Comparison

In the beginning of this Chapter, the assumption was madédbta features capture the appear-
ance at characteristic points in the image. That they areactexistic implies that they can be
reliable redetected in many views of the scene varying fangxe the lighting conditions and

the viewpoint. Therefore experimental evaluations of tgeatability of interest point detectors
under typical transformations and degradations of the endaga were made in [Sch0Ob] and
[Mik02b]. The Harris detector and its extension to scaleeh@elded favourable results.

3.3 Description

After the detection of the interest points the appearandheofocal vicinity around the interest
point has to be captured. Therefore an interest point gascris computed based on a patch
around the interest point. On the one hand this descriptouldibe discriminative, so that it
captures characteristic information of that patch. On tireiohand it should be robust or even
invariant to changes not of interest in the speci c task. pityal example is invariance to rotation.
These properties are con icting, and the question how tartee them is unsolved especially in
categorization. For rather continuous changes produceubise, varying lighting conditions
and af ne transformations, invariants were introduced.t B changes caused by capturing
the same structure of different members of a category, gtledhcomputing invariants seems
hopeless. For that reason it is concluded that one has t@ndllye learning stage to generalize
over such severe signal changes, and try using technicuesiioject recognition to describe the
appearance.

In Section 3.3.1 the de nition of thivcal jet descriptor is given while Section 3.3.2 reviews
theSIFT descriptor. Section 3.3.3 refers to experimental compas®f local image descriptors.

3.3.1 Local Jet

In [Koe87] a descriptor called thiecal jet was introduced. This approach may be written in a
scale-space notation as:

INIFI(x; )= fLi.i. (x5 )j(x; )2R? R*;n=0;:::;Ng (3.18)



3.3. DESCRIPTION 23

In this thesidocal jetsincluding derivatives up to third order are used to captheelbcal ap-
pearance:

Lx(X; )
Ly(x; )
Lux (X5 )
Ly (X5 )
Ly (X5 ) (3.19)
I—XXX(X; )
Ly (X5 )
Ly (X5 )
Lyyy (X5 )

The grey value itself at position was not considered, as it is very dependent on the lighting
conditions. Furthermore, there is a need for a scale-nazethterivatives for the scale invariant
representation. A scale normalized descriptor is obtayed

L x(x; )
L y(x; )
2Lax (X5 )
2Ly (X; )
2Ly (x; ) ; (3.20)
3LXXX(X; )
Sy (X5 )
Sy (X; )
SLyyy (X5 )

where is the scale at which the feature was detected.

3.3.2 SIFT

As a starting point for the SIFT descriptor proposed in [L&}y$he magnitud®l;; and direction
R of the gradientd\; at a certain scale and pixel position; ] are computed:
q
M i = (Aij Ai i )2 + (Aij Ai;j +1 )2 (321)
1 A Aisgg
A+ Aj

tan (3.22)
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For robustness to illumination changes, the magnitudeefthdient is thresholded. To achieve
rotation invariance, canonical directions are computeddtgcting maxima in the histogram of
local gradient orientations. The magnitude of the gragieniveighted according to the distance
to the interest point and the histogram is smoothed, tolstalthe maximum selection.

The SIFT descriptor itself consists of 16 orientation hyséans with 8 orientation bins. The
area around the interest point is divided into a grid of shgiars. From each of these regions
the orientation histograms are computed resulting in a I'2@uisional vector.

3.3.3 Comparison

In [Mik03] Mikolajczyk performed experimental evaluati®on the distinctness and robustness
of local descriptors under typical transformations andrdégtions. In these experiments the
SIFT descriptor performed best, followed closely by stekerdters [Fre91], which are rotation
invariant versions of local jets. Again it has to be mentmrtbat these experiments were con-
ducted within the task of recognizing speci ¢ exemplargsltinclear how these results transfer
to the task of classifying object categories.

3.4 Summary

After reviewing scale-space theory, different methods#decting interest points and computing
a descriptor at these points have been described. Thesexteregled to handle scale as proposed
in the literature. Experimental evaluations from the atere propose the use of the Harris and
Harris-Laplace detectors for nding interest points andesaible Iters and SIFT descriptors
for describing the local features. As we will not considepiane rotations of the camera and
incorporate rotations in depth in the training, in the faling local jets are considered instead of
steerable lters.

However one has to note that many assumptions and evalsatier® made for object clas-
si cation. It is unclear how they will transfer to the task i@cognizing object categories. Ques-
tions like what repeatability of interest points means i@ tiontext of categories are still open.
For two members of a category there might be structures imhges which refer to the same
semantic part, but nothing can be stated about their visoalesity. In fact visual divergence
can be an essential part of the category. This holds for elkafopthe category “number plate”.

Concerning variations of the interest point detection aascdption by in uences due to
noise and illumination and in particular the shortcominfysiodeling intra-category variations,
we have to rely on the approach of the learning approach itbeskcin the next Chapter.
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Harris-Laplace — detection of Harris-Laplace points using scale selection

initialize: steps  min s max » MaXiter

harrispoints . = detect Harris points at scale

FOR eachharrispoint in harrispoints

WHILE no convergence ANDGter < iter nax AND no divergence
AND min < < max

compute scale-space derivati\g:r 2L (egn. (3.8))

direction = sign(2r 2L) sign(r 2L(X; o))

step — direction j stepj ; new = od 25
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Figure 3.7: Nassi-Schneiderman diagram of the Harrisd@pldetector for
points in the space and scale domain
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Chapter 4
Classi cation

As pointed out in the introduction, besides a robust reprtasi®n, a method for robust classi-
cation is the other essential step in a system for recogujbject categories. Therefore we
rely on Support Vector Machines (SVMs) for the learning t{aak they have shown excellent
generalization performance in pattern recognition, atsearious tasks in computer vision.

The task of classi cation can be described as predictingthgs membership of data sample
based on features computed from the data. Therefore waglissh between the feature vector
of a data sample& 2 RY and its labely 2 N (also called target), which determines its class.
To solve this task, most proposed methods build a model ofithe from a set of examples

a model there are basically two main approaches. The prigiatapproach with its foundation
in Bayesian optimal decision theory [Dud01] and the disanative approach based on learn-
ing theory [Vap96]. The probabilistic approach relies ond@long probability density functions
(pdf), from which the likelihood of an observed data sammkbging to a certain class can be
computed. Using the probabilistic framework one can takeathge of all the methods devel-
oped in the fairly long history of probabilistic calculus §d02]. However, choosing a proba-
bilistic approach involves estimating a representative@honhich is a more ambitious task than
solving the given classi cation problem [HerO1]. This iseoof the reasons why discriminative
models have recently gained interest. They skip the “oathef modeling pdfs by sacri c-
ing the advantages of working in a probabilistic framewdike straight forward formulation of
detection and rejection.

Section 4.1 describes Support Vector Machines which amfoselassi cation in this thesis.
As we have to deal with multiple classes an overview of héiamaulti-class extension is given

27
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in Section 4.2. To combine the robust representation by features described in Chapter 3 with
this classi cation method, we make use of a recently progdgpe of kernel which is described
in Section 4.3. Finally, a summary is given in Section 4.4.

4.1 Support Vector Machines

Support vector machines (SVMs)[Vap96], [Sch01] , whicH i the main focus of this Chapter,
are discriminative models and have recently raised a lattefést because of their well-founded
theoretical background and very good performance. Foritb@sg SVMs the concept of linear
discrimination is reviewed in Section 4.1.1 which is extethdo optimal separating hyperplanes
in Section 4.1.2 and soft margin hyperplanes in Sectior84lfitroducing a different formulation
using kernels in Section 4.1.4, we will arrive at the conad@®VMs, which allows us to use a
certain set of functions described in Section 4.1.5. Wesatjofollow the excellent presentation
of this topic given in [Sch01].

4.1.1 Linear Discrimination

The basic idea of a linear decision function is to specify peamglane in the input space which
separates the two classes. Such a hyperplane is de ned Imptheal form:

w'x + b=0; (4.1)

wherew is the direction normal to the hyperplane dnid the distance of the hyperplane to the
origin of the coordinate system.

For every data sampbe the distance to this hyperplane can be computed. The sigmeof t
distance tells us on which side of the plane the sample libgrefore the decision function is
given by:

f(x) = signw'x + b) (4.2)

4.1.2 Optimal Separating Hyperplane

The formulation in egn. (4.2) is not unique, as there are énddise of separable data in nitely
many hyperplanes that separate the data. To get to a uniqueseatation, one de nes the
optimal separating hyperplane, that is also shown to bengpfrom a decision theoretical point
of view. The optimal separating hyperplane is the planethatthe maximal margin to the data
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Figure 4.1: lllustration of the normal form of a hyperplarnkhe orientation of the hyperplane
is given by the orthogonal vectar which is constraint tgjwjj = 1 and the distance from the
origin by b. The hyperplane is chosen to separate the two shown clagbes maximal margin.
The so-called support vectors are marked in grey.

samples. In order to compute this plane we formulate thevetlg optimization problem:

max f minl(yi(xiTw + b)g (4.3)

wbjjwij=1 i=1;:;

This situation is illustrated in Figure 4.1. By normalizimgth the length ofw, this can be
reformulated without the constraijpwvjj = 1.

min 3jjwjj? (4.4)

subjectto yi(xfw+b 1;i=1;:::;l (4.5)
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This is a constrained, convex optimization problem. As actision only one global minimum
exists and the solution can be found ef ciently. We rewrite problem by taking the constraints
into account via Lagrangian multipliers, obtaining the taagye function:

XI

Lwibs )= giwi? © xTw B D=1, (4.6)
i=1
where = 4;:::; | are the Lagrange multipliers. Therefore the minimum of thgnoization
problem must satisfy:
C
@b(w,b, )=0 4.7
and @
—L(w;b; )=0 4.8
a ( ) (4.8)

Substituting eqn. (4.7) and eqn. (4.8) in eqn. (4.6) oneinbthe dual optimization problem

maXW( )_PI ; lpl PI RV RVIEVE RV 4.9

oRl - =1 | E j:l =1 | ]yly]xl X] ( . )
P

subjectto ; 08i=1;:::;;land |, iyi=0 (4.10)

As a solution we obtain values for thes which leads to the following decision function:

|
f(x)= sign(X yi iX'Xi+b (4.11)
i=1
Computing the s on typical data sets it turns out that many &f are0 and therefore do not
contribute to the decision function. Tkxe with non-zero s are called support vectors. To be
able to evaluate the model, they have to be stored togethietivé s and determine the memory
size of the model. In Figure 4.1 the support vectors are naarkgrey.

The technique reviewed above solves the problem where theadalinearly separable. Fre-
guently, data we encounter in real-world applications dbstmw this property. But even if
that can be solved, additional problems arise from nois#, ¢an lead to wrong and too com-
plex boundaries. Therefore two extensions were introd{i¢ap96], [Sch01]. Thekernel trick
to make the data linear separable by non-linear transfeomaf the data and thsoft margin
hyperplanewhich can handle noisy data introducing slack variableb wipenalty term.
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>

WTX+b:\ 1 wWix+b=0 W'x+b=1

Figure 4.2: Noisy data is handled by slack variablesvhich allows some data points to lie
within the margin or even on the “wrong” side of the hypergan

4.1.3 Soft Margin Hyperplane

To account for data samples that cause the data set to beeparableslack variables; 0
were introduced changing the constraints to:

yiw'xi+b 1 (4.12)

As this can introduce classi cation errors even on the irajrset, a cost function is added,
to penalize for this behavior, to the function with is subjecthe minimization in eqn. (4.4):

min jjwijj?+ C " (4.13)
h 2 . ! )
w ;b i=1

subjectto ; O;yi(xfw+b 1 ;i=1;:::51 (4.14)
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Figure 4.3: lllustration of a non-linear mappingwhich makes the classes in the data linearly
separable.

In Figure 4.2 the slack variables are illustrated. The smtuto this optimization problem is
obtained analogously to the linearly separable case[MapSéh01]. There is no canonical way
to chose the parameté€r. It has to be chosen appropriately depending on the task.

4.1.4 Kernel Trick

The kernel trick is a method to make a linear classi er moreegee. The data is transformed
into afeature spacél by a non-linear mapping which increases the separability of the data:

RIITH (4.15)
X7 (x) (4.16)

This is illustrated in Figure 4.3. The key to the success of #pproach lies within egn.
(4.11). Interestingly, the data andx; enter eqn. (4.11) only by their scalar product. As the
function might be expensive to compute or even map to an in nitely disienal space, one is
more interested in functions which perform both, the mag@ind scalar product computation.
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Such a function is called kernelk:
k(x;xi) = (x)T (x) (4.17)

To assure that there exists a space in which the kernel ceshe scalar product implicitly, one
uses kernels that satisfy the Mercer condition - so cdleccer Kernelsthe de nition of which
is discussed next.

4.1.5 Mercer Kernels

K i = k(Xi;Xj) (418)

is symmetric positive semi-de nite. Matrices that haveyonbn-negative eigenvalues are posi-
tive semi-de nite. For a more detailed presentation of thssie, we refer to [Cri00].

Meanwhile many kernel functions have been proposed oftecialized for a certain task and
incorporating a priori information about the type of thealftval0O3b], [Cha99]. But there are
some commonly known kernel functions which perform well iany relevant learning tasks:

polynomial kernelk(x;x;) = (xTx;)®; a2 N
Gaussian kernek(x;x;) = exp( 2%d%): 2 R
sigmoid kerneltanh( x'+ ); ; 2R

New Mercer kernels can be obtained from known Mercer ketmgtsomposition. In [Cri00]
an overview of rules is given. Given the Mercer kerrt€lsandK ,, a 2 R, a real valued function
f,amapping : X ! R™ with akernelK; overR™ R™, the following are Mercer Kernels:

K(x;2) = Ku(x;z)+ Ka(x;2) (4.19)
K(x;z) = aKy(x;z) (4.20)
K(x;z) = Ki(x;2)Ky(Xx;2) (4.21)
K(x;z) = f(x)f(z) (4.22)
K(x;z) = Ks( (x); (2)) (4.23)

K(x;z) = x'Bz (4.24)



34 CHAPTER 4. CLASSIFICATION

4.2 Multi-Class SVMs

For a multi-class problem we have to make a decision betweatasses ; = 1;:::;K
instead of only two. As already mentioned in the introductio this Chapter, with SVMs the
extension to multiple classes is not trivial. Although sdledall-togethermethods have recently
been proposed that formulate and solve the optimizatiobleno described in Section 4.1.2 for
the multi-class case [Wes98], [Cra00] are up to now not Béagor large datasets. Therefore we
have to rely on heuristic extensions:

one-against-alt K classi ers are trained, where theth classi er discriminates between
class and all the other classes. Instead of the sign of the distentiee hyperplane in
eqgn. (4.11), the distance itself is considered and a decisionade by selecting with
maximum distance to the hyperplane.

one-against-one w classi ers are trained, which means one for all possiblespaii
classes. This can be thought of as a fully connected grapghthat classes as nodes. For
each decision made in favour of a speci c class, this class gee vote. The class with
the most votes is selected.

directed acyclic graph methadAs the name proposes, a directed acyclic graph is set up,
in which each node represents one classi er. For making sbecthe graph is traversed
starting at the root and following the edges according tadi@sions made in each node.
The leaves of the graph are labeled according to the clagsosec

In [Hsu01] two all-together methods and the mentioned theagistic approaches were com-
pared. The authors concludes that one-against-one andréut acyclic graph method are best
for most problems. A nice property of these methods is alabttiey train more, smaller classi-
ers than in the one-against-all case. As each classi easlyg trained in parallel, these methods
pro t from a reduced granularity in terms of parallelizatio

4.3 Local Kernels

The robust local feature representation described in @n&ptonsists for each imade;i =

tracted features from image andl; denotes the descriptor of theth feature computed at
positionp;. In [Wal03b] it is shown that there is no straightforward wayuse local features
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in SVMs. Most work on local features, for example [Sch96] §bow99], agree on the fact
that a feature matching step is required to establish featarrespondences. Based on these
correspondences a decision is made.

Section 4.3.1 reviews a recently introduced kernel, whitiggms local feature matching in
SVMs. Then Section 4.3.2 describes a metric for compariogllfeatures and how it is used in
the local kernel together with the constraints proposecertiSn 4.3.3.

4.3.1 De nition

A new class of kernels for comparing local feature sets wapgsed in [WalO3b]:

Ki(Lp:Ly) = %[K‘(Lh;l_k)+ K(L;Ln) (4.25)
with
1 X
K(LnLy) = o argmay, - ..., FKi(lj, (Ln); 1, (L)) 9 (4.26)
jn=1

whereK is a Mercer kernel. The features are implicitly matched bysodering feature pairs
for which the kerneK, achieves a maximum. Practical issues on the evaluationkémnel
are reported in the Appendix A.

Although the local kernel achieved excellent results inegkpents [WalO3b], the Mercer
condition could not be shown. Toy examples have shown tleatigh of negative eigenvalues
of the kernel matrix can not be excluded. However, recentigcap evaluations of this type
of kernel have shown that these problems only occur for patars that are not relevant to
applications, as small number of matches or low local featlimension [Cap03].

A problem of this kernel is that it permits multiple matches €ach feature. However, the
kernel may be modi ed to guarantee a one-to-one matchindg(8éj. This is done by identifying
the best match between two feature sets with respect to thelké, and not considering these
two local features for further matches. Thus, egn. (4.2%joisneeded anymore to make the
kernel symmetric. This can be formulated in terms of a kernel

1 X
Kone o one(Lnibi) = —max zs, ; 25, Kil g)(Ln)il (y(L i) (4.27)

j=1

wheren is the number of considered matches &pdare all permutations of possible matches.
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We use the following decomposition of the kerkgt

Ki(Ln;Lk) = Kn(lj, (Ln)i 1 (L) Ke(py, (Ln)s Py (L k) (4.28)

whereK ,, andK . are Mercer kernels. According to egn. (4.21), this openaticeserves the
Mercer condition. While&K ,, has to provide a metric to compare local featutes,deals with
position information of the features to improve the matghioy introducing a constraint. We
considerK ; as optional.

In the following Sections 4.3.2 and 4.3.3, several choice&t, andK are given.

4.3.2 Metrics for Comparing Local Features

The choice oK, in egn. (4.28) depends on the type of local features thatsed.u

Local jets The zero-mean normalized cross-correlation is used inQ@dIfor comparing the
local jet features, which were described in Section 3.3Her&fore the following kerndf , is
used for local jets:

< X ) y =
ix Xy oyl

Km = Kjet =€Xp 1 (4.29)

SIFT The L2-norm is proposed for comparing SIFT features in [LBw9ASs it is shown in
[Bur99] the linear kernel and the Gaussian kernel imply anhric in the feature space. As the
Gaussian kernel has shown favourable performance in maag ¢8ch01], we decide to use the
Gaussian kernel as,, for the SIFT features. The Gaussian kernel given in Sectibrb4

4.3.3 Constraints

To improve the stability of the feature matching variousstoaints have been introduced in the
literature to steer the matching process ([Wal03b], [S¢H9@102], [Pri98]). But most of these
methods cannot be formulated in terms of kernels or they @amgatationally too expensive as
the kernel typically has to be evaluated several millioresmTherefore we consider a constraint,
which has already been used with the local kernel in [Wal@8io] two new approachés

1This work is based on an idea of Christian Wallraven
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number of features

A

bins

Figure 4.4: Distance histogram: all features lying in a familistance are binned

Feature distances If the object of interest is always presented at the sameiposn the image,
it is a reasonable assumption, that also correspondingrésashould occur at similar positions.
In practice for example an attention mechanism driven byionair depth can provide a segmen-
tation of the image, so that for a selected segment the osijags in focus and the assumption
holds. In [Wal03b] the following choice fdf . is proposed to exploit this a priori knowledge:

(pjh(l— h) pjk(l— h))2
2 2

Kce= Kt (LniLk) =exp (4.30)
Intuitively, a Gaussian is placed at the position of a loeatfire. According to eqn. (4.28) the
similarity computed between the two features for a possiidéch is modi ed by the value of
this Gaussian with respect to the distance between the tadidates.

Distance histograms A constraint which is referred to agdéstance histograns motivated by
the Belongie descriptor proposed in [BelO1]. The idea isaptare the distribution of features
with respect to each feature by a histogram. While the caiglescriptor uses a histogram with
respect to angle and distance, we restrict ourselves tanties, as we are dealing with much
less feature points. The computation of such histogramiigrated in Figure 4.4. One of the
standard measures to compare histograms is tfstance.

d.= X y)?

Ty (4.31)
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Figure 4.5: Distance pro le: the distance to all featuresdged to obtain a pro le shown on the
right.

We refer to [Pre92] for more details and a nice discussiohisfrhetric. In [Cha99] it is shown
how to use a generalized form of the Gaussian kernel withdistance measure. Using thé
in this form yields:

Ke= Kan(LnsLk) =exp( d z(his(p;,(Ln)) hist(p;, (Ln)))) ; (4.32)

where the operation hist refers to the computation of therdsesd histogram from the feature
positions. For this approach a number of bins for the histwgnas to be speci ed.

Distance pro les Distance pro lesare similar to the distance histograms which were intro-
duced in the previous Section. But for distance pro les angady computes all the distances of
one feature to all the other features and sorts these degtaas shown in Figure 4.5. A reason-
able way to compare two such pro les is to calculate the segi@rror. This suggests again the
use of the Gaussian Kernel which is de ned in Section 4.1.5.

4.4 Summary

This Chapter describes support vector machines which Heersexcellent generalization per-
formance in many machine learning tasks and also in compugeEm. To make use of this
powerful learning approach, a recently proposed classaad lkernels is used. It is extended to
perform one-to-one matching which is a desired propertynndiealing with local features. To
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compare different feature types different kernels werggéd into the local kernel. The kernel
is additionally extended to handle constraints based ofetitare locations, which is a common
method to improve the matching process. Besides a sifaptare distanceonstraint, two new
constraints are proposed. Ttistance histogranwhich describes the distances to neighbouring
features by a histogram and ttisstance pro le which is a pro le of sorted feature distances. In
contrast to théeature distancesonstraint, the new constraints do not make the assumgbtain t
the object always stays centered in the image.
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Chapter 5
Experiments

In this Chapter we present experiments testing the methmdobust data representation and
robust classi cation which were described in Chapter 3 and Heir performance is evaluated
under real-world conditions. At rst, in Section 5.1 the straint introduced in Section 4.3.3 are
evaluated on ground-truth data, to decide which of themIshmeifurther considered. After that
we present a series of experiments on the CogVis databaperftorm multi-category recogni-
tion. We conduct experiments to investigate how the apprggneralizes with respect to the
number of objects in the training set and how many objectsyacessary for learning a good
model of a category. These are presented in Section 5.2e¢h Wh investigate the performance
of the approach with respect to different variations whichuw naturally in real-world settings:

scale controlled lab setting with homogeneous background amdilsited scale (Section
5.2.2)

occlusion controlled lab setting with homogeneous background amdilsited occlusion
(Section 5.2.3)

cluttered background: real-world setting with heterogeneous background (8ad&i2.4)

In the experiments on scale and occlusion, several methredsompared to cope with the
posed challenges. The methods which have shown good penfieerare then applied to the real-
world setting with cluttered background. All the experirteeare run on extremely challenging
sets of categories.

Section 5.3 presents experiments performed on the DIROK&hbdse. The goal of the
experiments is to perform categories recognition on objectnmonly found in of ce environ-
ments. We present experiments in homogeneous and hetemgebackground. With respect to

41
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the experiments in cluttered scenes, we use the DIROKOLbdatgand new images recorded at
CVAP-KTH. To cope with the low number of objects present facte category in this database
a learning approach is tried out to increase the performance

For the experiments cross-validation is used, if a partitig of the data is involved.

5.1 Experiment on Constraints

Section 4.3.3 presented three position constraints, tleagxensions to the local kernel. These
are (i) thefeature distancewhich exploits the assumption that corresponding featwriseoc-
cur at similar positions, (ii) thdistance histogranwvhich compares histogram-based statistics on
the feature positions and (iii) tlldstance pro lewhich compares pro les obtained by sorted fea-
ture distances. To evaluate their usefulness, a matchipgriexent is performed on the “model
house” image sequenée

In this sequence a camera is moved around a house keepingube tentered in the image.
The advantage of this sequence is that besides the imagaldatdne camera matrices are pro-
vided. Thus we use this sequence to test matching robustmrsespect to viewpoint changes.
Given the camera matrices we can decide if a match made byetimelks correct or wrong.
Matches are considered to be correct if they are consistiémtive epipolar geometry de ned by
the camera matrices. For a correct match, we require thentistof each point to the epipolar
line of the matched point to be less than 2 pixels. Althougé tlndition is necessary but not
suf cient, we consider it to be precise enough to gather anmmegul statistic on the matches.
For details on epipolar geometry we refer to [Har00].

The three mentioned approaches are tested in combinatibthei metric from Section 4.3.2,
varying the settings of the parameters. Besides the nunild@ne for the distance histogram
approach, an additional parameter is considered whichledcthe neighbourhood. It speci es
how many features are used to compute the histogram or thie.pFsom each of the images
156 features are extracted and only the best 50 matchesrasieleced. The matching experiment
was performed for every possible pair of images in the secpien

In Figure 5.2 the number of correct matches averaged ovemalje pairs that have the
same distance in the image sequence are shown. For eaclaeppresults for the parameters
which performed best with respect to subsequent frameserséguence. This is motivated
by the databases which are used in the classi cation exgerisnthat also have a rather dense
sampling of the viewpoints. For distance histograms anthdce pro les a neighbourhood of

Ihttp://www.robots.ox.ac.uk/vgg/data/
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Figure 5.1: Samples of the house sequence which is used litagydhe constraints. Frame
1; 3;5;7;9 of the9 images long sequence are shown.
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Figure 5.2: The average number of correct matches on theersaguence with respect to the
distance of the image pair in the sequence.

40features yielded the best results. The number of binshWsaEigure 5.2 shows that for small
viewpoint differences the feature distance approach gigh@ best results. For intermediate
viewpoint differences, distance histograms and distanzdgs give slight improvements, while
the distance histograms once perform worse than the bagicithim where no constraint is
applied.

Overall, this experiment suggests that the feature distapproach is most suitable. How-
ever it is clear that this approach is not at all position rrasat. Although we are dealing in the
experiments with images in which the object is mostly cexdewe will also evaluate the dis-
tance pro le approach, since it should be more robust totmesschanges of the object and has
shown competitive results with respect to the feature degta in informal recognition experi-
ments on images with homogeneous background.
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Figure 5.3: CogVis database

5.2 Experiments on the CogVis Database

The CogVis database [Lei03a] is designed to study objeegaoaization. Therefore it contains
80 objects from 8 different categories: apple, pear, tomaip, car, horse, cow and dog. For
each object 41 views from equidistant points on a hemispherdaken. The object is always
centered in the image, and the background is set to black bgsk mhich is also provided by
the creators of the database. Toy objects are used for thgarads car, cow, horse and dog. One
view of each object is shown in Figure 5.3.
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5.2.1 Experiments with Different Numbers of Objects in the Taining Set

An open issue in object categorization is the dimension eftthining set for each category.
For example, if the task is to recognize cups, how many diffemstances do we have to show
to the algorithm, before it is able to generalize and recogmill cups? In order to partially
(and qualitatively) answer this question, we performedimiaary experiments on the categories
apple, tomato, dog and horse.

We run 5 different experiments, each corresponding to ®udifft partitions of training and
test set. The number of objects in the training set is vanechfl to 9. The remaining objects
which are not used for training are used for test. Each olgaefpresented by 16 views equally
spaced around the object

As data representation, the multi-scale approach in caatibim with the local kernel with
feature distance constraint as described in Section Ss212ad. In Figure 5.4 the averaged error
rates are reported and details are given in Table B.1. Evemgimmgle example for each category
an average error rate of less thb% can be observed. The error rate decrease roughly linearly
until 7 instances of each category are included in the trainingesty a error rate belo@%.

A surprising result of this experiment is that even for a Brexample for each category a
good performance is achieved, especially considering llosen categories with strong visual
similarities. We observe a kind of saturation7bbjects in the training set, where already
excellent performance is achieved.

From these experiments and the more extensive experimes#atty done in [Cap04], we
decide to usé objects in the training set for further experiments, as sleams suf cient to learn
a model for a category and leaves enough objects for vadidaind test.

5.2.2 Experiments with Variation in Scale

Variations in scale occur naturally in real-world settingsd humans are very good at handling
it. Robustness to varying viewing distance and image réisolus also crucial in many tasks
for arti cial visual systems. Therefore we test our method fecognizing object categories at
different scales. We tried different methods to compenfeatéhe variations introduced by scale.

To make a quantitative evaluation of the performance wispeet to scale, we made catego-
rization experiments with arti cially scaled images frolmetCogVis database. Allimages of
each object are used. The challenging categories applaidohmorse and dog are used, as they
provide category pairkapple, tomatg andf horse, dog which show a wide visual similarity.
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Figure 5.4: Average error rate with respect to number of @tasof each category in the training
set.

The following scales were considered:

1
N

5,2 8,2 5,2 5;2%25;25;25;28; (5.1)

wherelsizeorig is the size of the scaled image wilze,i; being the size of the original image.
We run 5 experiments on 5 different partitions. Trainindidation and test set are described in
details in Figure 5.5.

As described in Chapter3, scale can be handled by the datesesypation. Therefore, we
evaluate the following three approaches:

multi-scale(Section 3.2.3): The Harris detector (Section 3.2.2) iglusedetect interest
points at multiple scales to capture the different appeazraf features at different scales.
To reduce the computational complexity the number of festis thresholded. In addition,
the images are down-sampled1®&, as otherwise too many features would be required
to represent the image at these ne scales properly. 78resmfre extracted by selecting
the strongesh features at each scale with respect to the Harris interestin eqn.
(3.17). The used scales speci ed by thewvalue and thresholds for these scales are shown
in Table 5.2.2. Finally, the local jet descriptor from Senti3.3.1 is used to describe the
features.

scale selectiorfSection 3.2.4): Another way for dealing with scale is to pone a scale
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obj1 | obj2 | obj3 | obj4 | obj5 | obj6 | obj7 | obj8 | obj9 | obj10
trainl valil testl
test2 | train2 vali2 test2
vali3 test3 | train3 vali3
traind vali4 test4 | traind
train5 vali5 | test5 | train5

Figure 5.5: Partitioning of the datasets for scale expeatnise

scales : 20 [ 205 | 21 [ 215 [ 92 [ 925 [ 23
thresholdsh ;|| 25| 18 | 11| 9 6| 5|4

Table 5.1: From each scale the strongest features with respect to the Harris interesttiomc
are used. The scales and these thresholdge shown.

invariant representation by applying automatic scalecsiele (Section 3.2.4). The itera-
tive scheme of the Harris-Laplace detector is used to detate invariant interest points,
starting with the interest points detected for the mulals@pproach as an initialization.
Again, local jets are used to describe the local features.

SIFT (Section 3.2.4): SIFT features are used as their interast getector also performs
scale selection. The implementation of David Lowe is t/sed

All these approaches have been successfully applied tatolgeognition. However their
applicability to categories is unclear. To our knowleddps ts the rst systematic experimental
evaluation of the performance of these descriptors forgcaies recognition.

For classi cation a SVM with the local kernel eqn. (4.27) ised. For the experiments
involving local jets, we use the correlation based sintyaneasure eqn. (4.29) with and without
the feature distances constraint egn. (4.30). For the S¥gfufes, the Gaussian kernel is used
for measuring similarity in the local kernel, as propose8éation 4.3.2. The SVM parameter

2available at http://www.cs.ubc.calowe/keypoints/
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overall recognition rate
without constraint with constraint
multi-scale 90:02%0 4:26 88820 6:09
scale selection 87:.01% 6:23 88570 6:27
vali scales 895% 4:50 90:3% 4.67
train scales 8833% 6:95 91:44% 4.75
SIFT 67:36% 1000

Table 5.2: Overall recognition rates of the experimentsaates The feature distance constraint
is considered optionally.

is set tol00while the parameters for the local kernel and for the constraint were determined
during the training on the validation set.

In addition to the three approaches for dealing with scatbémdata representationwve also
test twopure learning-basednethods . The idea is to learn the variations due to scale ing us
scaled data in the training set. The use of this method headlrbeen shown in [Hay04].

vali scale To in uence the model selection not only the validation gea, but also scaled
versions of them are used for model selection. For this meploe coarsest, the original
and the nest scale are used:=2 &;2°; 2.

train scale As an extension to theali scaleapproach, thérain scaleapproach includes
scaled versions of the original images in the training aredvhlidation set. Again the
scales: =2 ;2% 25 are used.

The results with respect to variations in scale are repartddgure 5.6. From left to right
the scale of the test images are varied from the nearest/sezde2 2 to the farest/coarsest
scale2z. Scalel speci es the scale of images in the database. We report estes. The
standard deviations are given in Table B.2 and Table B.3. avezall recognition rates are
given in Table 5.2. Besides the SIFT features, all of the aggites achieve an average error
rate of approximatelyl0% for the reference scale = 1. Changing the scale the error rates
increase betweeB% for thetrain scalemethod with constraint an@i6% for the multi-scale
method with constraint. Again the SIFT features show woeseilts with an increase of nearly
20%. Interestingly, the increase in error for experimentiite feature distance constraing
stronger when testing on coarser scales than on ner scales.

Concerning the data representation approach to handlaig gariations the multi-scale ap-
proach without position constraint gives the best resiilie constraint does not help in this case
as the basic assumption that features can be detected isear@ghbourhood is violated in the
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Figure 5.6: Average error rates of experiment with variaiioscale. The feature distance con-
straint is considered.

case of more severe scale changes. This is also supportbé bps$ervation, that the error rate
increases faster for coarser scales than for ner scalerddmon for this is that the change in the
size of the object is more dramatic when moving to coarsdesc@herefore also the position of
the local feature change more, which violates the assumgptar thefeature distancapproach.
That the methods based on scale selection do not performriavy has two reasons. First we
have to note that especially the objects apple and tomatoesyeweakly textured. Therefore
they also lack of a suf cient amount of structure that couéddetected at a characteristic scale.
In the case of the tomato, the SIFT interest point detectlyraetects 6 features for some views.
Although the multi-scale approach does not detect strotegest points either, it at least per-
forms some kind of sampling of the object. Another issue & ftale can also be an important
cue. For example, in the chosen set of categories, a dog amdadan easily be confused if one
does not account for the scale. This is also supported byxjperienents. Figure 5.7 compares
multi-scale approach, which captures scale, and the selet®n approach, which is designed
to be scale-invariant. Error rates with respect to the categ are shown. The risk that a horse
can be confused with a dog is ampli ed by changing to the sica@riant representation. There-
fore we conclude that scale can provide essential infoonati distinguishing objects that are
visually similar, but have different size or proportions.
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Figure 5.7: Average error rates of experiment with variatioscale for all categories.

With respect to the learning approaches, titagn scaleapproach with théeature distance
constraint performs best. As scaled data is in the trairehglse assumption that features reoccur
at similar positions seems to hold again, so that we can tdkandage of the feature distance
constraint. However, this comes at the price of a increas@uing set which results in increased
storage requirements and training time.

In conclusion, therain scaleapproach is the most effective for handling scale among the
tested methods. Concerning the data representation apprttee simple multi-scale method
performs best. Given the dif cult set of categories, witlsg#o confused pairstomato, applg
andf horse, dog, the results on these images with homogeneous backgroumédseellent.

5.2.3 Experiments with Occlusion

Another common problem in real-world settings is occlusibinerefore the robustness of the ap-
proach with respect to the loss of information due to padalusion is investigated. Occlusion
is simulated by successively removing features from lefigbt according to their position in
the image until the desired amount of occlusion is achielredontrast to the experiments with
scale, we use the categories car, cup, cow, horse and dog@aredthe rst object from the test
set to the validation set. The rest of the setup stays the.sémeis done to be consistent with
the experiments in clutter, as we see these two topics celatdoth cases, either decreasing the
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number of features or adding distracting features, the agethust be able to rely on matched
subsets.

For data representation, we use the multi-scale approablthva corresponding local kernel
with and without feature distance constraint as describe8dction 5.2.2. To investigate the
dependence of the performance on the number of categoagmfour experiments:

expl 3 categories: car, cup, cow

exp2 4 categories: car, cup, cow, horse
exp3 5 categories: car, cup, cow, horse, dog
exp4 3 categories: cow, horse, dog

From exd to ex@® the number of categories increases andlegpised to show how dif cult the
added categories are. Ekponsists of 3 animal that show a wide visual similarity.

Results are presented in Figure 5.8. We report error ratetailBd results for all partitions
are reported in Table B.4 and B.5.

Especially for the case, where the feature distance consisaused, the performance drops
only slowly with respect to increased occlusion. Therefeeeconsider the approach to be robust
with respect to occlusion of less thaf%. With respect to the categories, we observe a rather
sever loss of performance, when increasing the number efjoaes. However, this must be
considered in the context that the added categories aredifasylt to distinguish. This can be
seen from the results on ekpthat is in terms of error rates very close to 8xphich includes
two more categories than ekpWe conclude that the stability with respect to the number of
categories strongly depends on the added categories.

5.2.4 Experiments with Clutter

To evaluate the approach with respect to distractions dabgeclutter, we learn models for
the categories car, cup, cow, dog and horse on the CogVibakavhich provides images in
homogeneous background and test them on real-world imagesterogeneous background. It
has to be noted that for the categories horse, cow and doGad¥is database provides images
of toy objects, while the images in the test set are pictufeea animals. In Figure 5.9 two
examples of each category are presented. The categoriesrasielered to be very challenging
due to their visual similarity. Especially the three animaow, dog and horse are supposed to
be very tricky, as they also consist of similar parts.
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Figure 5.8: Average error rates of experiment with occlasio

The real-world images of cars and cows were obtained frontidageibe [Lei04]. The
horse image were download from the homepage of Eran Boianst&he images of the other
two categories dog and cup, are new contributions. The imafi¢he cups were recorded at
CVAP-NADA in an of ce environment. The cups are shown frone gide and are approximately
centered in the image. The scale can also be considered tupkly the same for all images.
The lighting conditions were uncontrolled. The dog imadasmed were partly by a web search.
Already a google search gave some results, but large partsolseained from websites of animal
shelters and private pages dedicated to the topic dog. Wetsdlimages where a dog is in the
center of the image and covers a reasonable size of the in@itper conditions like pose and
light are uncontrolled. We use 100 images of each categomhoese, cow, dog and cup. For the
car and cow images a region around the object was selectedrulyth ensure that the object is
centered and approximately at the same scale.

The setup of the datasets is the same as for the occlusioniregne in Section 5.2.3 with
two exceptions. Only 16 views from equidistant viewpoins ased for each object and the test
set is replaced by the cluttered images.

To cope with these real-world problems, different approaah tried, which have shown
favourable performance in the previous experiments. Atarmulti-scale approach as described

Shttp://www.wisdom.weizmann.ac.ilboren/
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Figure 5.9: Samples of the images gathered for experimemisitered background.

in Section 5.2.2 is used as a baseline. To compensate fardésathat are distracted from the
object by the background, we increase the number of extidetgures from the cluttered views
to 156 by raising the thresholds for each scale:

scales: 20 | 205 | 21 [ 215 | 22 [ 225 | 73
thresholds fol56features:|| 50| 36 | 22| 18 | 12| 10| 8

Table 5.3: From each scale thestrongest features are used. The scales and these thieshold
are shown for the case of cluttered views.

As there are still some scale variations present in the isjage try to improve the results
by applying the train scale approach, which performed welbéction 5.2.2. From a learning
point of view, we try to improve the model selection by spidf the set of cluttered images
in two, to use one half for validation and the other half fostiteg. All these approaches are
tried with and without the feature distance constraint. ldeer this constraint relies on strong
assumptions about the position of the object. Thereforedditianal experiment is performed
with the distance pro le constraint which we expect to havawch broader applicability.

In Figure 5.4 the overall recognition rates of the experita@ne given. An additional exper-
iment using thalistance pro leconstraint is reported in Figure 5.5. In the Appendix addidil
results are given in Table B.6 to B.11. Training times for omadel, test times for one image
and parameters are given in the Appendix in Table B.12.

We consider the multi-scale experiment as a baseline. Tognition rate varies fror81:6%
for ve categories t061:0% for three categories. The use of fleature distanceonstrain gives
a consistent improvement of approximatél§®s in recognition rate. For this baseline exper-
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| approach | experiment] without constrain{ with feature distanceb
1 5100 534 6047 1306
multi-scale 2 4230% 643 5445% 4:99
(baseline) 3 31.64% 4.76 47.68% 4.47
4 37.00% 439 46.00% 7.32
1 37.73% 596 7067 691
validation on clutter 2 2910% 572 6240% 1.52
3 1808% 6:85 5544% 4:98
1 52406 242 67670 1454
train scales 2 39100 4:67 604000 8:09
3 3064% 347 46.44% 6.01

Table 5.4: Overall recognition rate of experiments in drgtl background. The feature distance
constraint is considered optionally.

iment, we also conducted exp4, which uses the categories lomwe and dog. It has to be
remarked, that for the case with position constraint thegation rate for this three category
experiment is even below the ve category experiment3xjVhile we get very poor results
for the validation on cluttered views without the positianstraint, the experiments with the
position constraint bene t from an additional increase pprximatelyl(% with respect to the
baseline experiments with position constraint. The lapt@gch in this line of experiments is the
train scalemethod which has performed very well on the scale experisa&iso in experiments
with clutter improvements of approximatedo can be observed. Only eXploes not show the
improvement.

Considering the extremely dif cult sets of categories ahd thallenging real-world con-
ditions it is not surprising, that only reasonable perfong®is achieved. The best results are
achieved by using cluttered views in the validation set,clvhjields recognition rates between
70:67% for the categories car, cup, cow abil44% for the categories car, cup, cow, horse, dog.
For the baseline setup, a category set 4 with the three asinaa used, to show how dif cultitis
to distinguish between the categories which are succégsigided to the experiment. It turns out
that the performance drops approximately to the level oBseith 5 categories. Also the train
scales method results in a good improvement which sugdestshis method of compensating
for scale also works in cluttered background. Comparingébkalts without and with the feature
distance constraint, one can observe considerable immpraves of aboul0%. This underlines
the importance of an appropriate constraint, as it is abt®topensate for the increased distrac-
tion by the background. Also it shows how generic the issuscafe is in such a real-world
setting. Although all the objects are approximately at #i@a size, an appropriate approach to
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| approach | set| with distance pro les|
1 5347 2.02
multi-scale| 2 4390% 1:67
3 3272 479

Table 5.5: Overall recognition rate of experiments in drgtd background with distance pro le
constraint.

handle scale achieves signi cant improvements.

An additional experiment is performed using tistance pro leconstraint. The results are
reported in Table 5.5. The improvements with respect to @seline without constraint vary
betweenl% for ex @B and2:5% for expl. These stay far behind the improvements achieved with
thefeature distanceonstraint.

Even though the performance in this real-world setting chnompete with the performance
of feature distanceonstraint, this has to be seen in relation to the requirésnefhefeature
distancemakes strong assumptions on the feature positions and peFieents have shown,
that their violation have serious effects. Tdistance pro lemakes less assumptions and should
be at least to some extend position invariant by constraclitlierefore it remains an interesting
alternative to the feature distance constraint.

5.3 Experiments on the DIROKOL Database

The DIROKOL image database [Rei01] consists of 13 objecsfthe of ce and health care
domain: cola can grey, cola can red, puncherl, puncheg@esta stapler2, cup, cup with plate,
fork, spoon, knife, NaCl bottle and medicine box. The olgect shown in Figure 5.10. For each
object the database contaiBg20images in homogeneous black background on a hemisphere
above the object. The sampling is non-uniform. 3 differegiiting settings are used which
change from view to view. In addition a second hypersphetie an offset was recorded, but we
do not use this data in out experiments . To simulate clutbeekground, the database includes
1860images of each object, where the foreground object was aiicaily segmented out from
the homogeneous background and pasted into new, clutteegges, as illustrated in Figure 5.10.
The images have a resolution266.

Preliminary object classi cation experiments on the auttd views of this database yielded
results far worse than expected. In object recognition expnts results betwee36.57% for all
13 objects and6:56% for 3 objects (can, stapler, puncher) are achieved usanfigpttiiure distance
constraint. We had anticipated better results since duket@onstruction of the database, the
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objects are perfectly centered, so thatfiture distanceonstraint should be able to eliminate
most of the wrong matches.

The reason why the recognition rates are so low is that theaatic segmentation procedure
evidently performed somewhat poorly on some of the images. riiuch of the foreground is
removed, implying that the object contains “holes” throwmghich the background is visible.
Typical images containing these artifacts are shown intei§ull. The nal example in Figure
5.11 illustrates another problem with the automatic exé@déoreground masks. Here not all of
the black homogeneous background is rejected, inducingctdps” of black in the new images.
These artifacts give rise to a number of spurious detectdfesatures.

As this caused problems especially with the local featuyg@ch, we decided to record
new images in cluttered background and to not further cengtte heterogeneous views of the
DIROKOL database.

5.3.1 Extension to the Database

The DIROKOL database was extended by images in clutterekbbawnd for each of the cate-
gories can, cup, puncher and stapler. These objects weees| as they are commonly found
in of ce environments and therefore relevant to robotidktas such environments. With a view
to classifying object categories, we imagBaidifferent cans3 staplers2 punchers ané cups.
The views were taken i1 different background settings. Some examples are showigurd-
5.12. The object is always centered and approximately asdinee scale. The lighting is not
controlled. The objects are all recorded from approxinyatieé same viewpoint which has an
elevation angle o5 with respect to the ground. All in all we add&d@ images of cans;6 of
cups,55 of staplers an®5 of punchers.

5.3.2 Experiments in Real-World Settings

For the real-world experiments on the new views in cluttdr@ckground, the data representation
and the local kernel are the same as for the baseline expdrone¢he CogVis database described
in Section 5.2.3. For trainind,21views of the DIROKOL database were used, covering viewing
angles o5 15. The mapping from the DIROKOL classes to categories is destin Table
5.6.

We performed experiments on two sets. In the rst, objerst used for training and objet
is used for validation and in the second experiment olfjastused for training and objedtis
used for validation. As validation on cluttered views does seem possible due to the limited
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| [ can | cup | stapler [ puncher ]

objectl | ColaGrau| TasseD | HefterGruen| LocherGruen
object2 | ColaRot | TasseTeller HefterWG LocherRot

Table 5.6: Mapping of the DIROKOL objects to categories.

number of views, we tried a different approach to improve elgdlection. As mentioned earlier,
occlusion and clutter can be seen as related topics as irchsés the classi cation has to rely on
subsets of the features. This suggests the use of occlusiba validation set for an experiment
on cluttered data. The occlusion is simulated in the sameasay Section 5.2.3.

In Figure 5.13 the results are shown. 86 occlusion the standard approach is reported,
while the other data points represent results using oantusi the validation set. Without oc-
clusion in the validation set, the best results were obthwigh the feature distance constraint.
For setl we achieved®1:36% and46:82%. For seR with constraint, increasing the occlusion in
the validation set increased also the performance on clidewever, for sefl with constraint
exactly the opposite can be observed.

The error rates are quite high and the occlusion approack doeshow any systematic
improvements. Given the challenging cluttered views anlgt one training example, the error
rates can be considered as reasonable. We conclude thatkveulecient data to train a good
model for a category.

5.4 Summary

In this Chapter our approach for object category recogmitvas evaluated with respect to real-
word settings. We addressed the problem visual similargosies and problems like scale,
occlusion and clutter. This was done to an extend which inoa$een done, to our knowledge.

In the experiments, a pure learning approach to handlinig $@s shown very good results.
Due to the nature of local feature, we observed a good robsstwith respect to occlusion
up to50%. Although the real-world experiments with cluttered bgrckund have proven very
challenging, especially due to the visual similar categmnve obtained reasonable results.

A general observation in the experiment is that many assongfrom standard object recog-
nition approaches do not hold. This causes techniqueshwizce reported excellent results in
object recognition to perform poorly in the categorizatcmmtext. As an example, we want to
mention the scale selection mechanism. Although we expezk more generic problems with
weakly textured objects, in particular visual similar caiees like horse and dog caused prob-
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lems. In this case, the relative scales of the local featamresin important cue. Another issue is
related to the assumptions made for local feature. In aleperiments the matching without
constraints performed quite poorly and the use of consggielded signi cantly better results
than without. Therefore we consider the use of constraomtsihitching local features in the cate-
gory context as important, as the assumption of visual anityl between corresponding features
or object parts is often violated.

We have to note, that the performance of the system is vergrikgmt on the choice of the
categories. This makes the comparison of systems for reziagrobject categories a very hard
task, as it is clear that visual similar categories causeseproblems.
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Figure 5.10: Objects in the DIROKOL database. First anditbelumn: objects in homogeneous
black background. Second and fourth column: objects inrbgemeous background.
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Figure 5.11: Problems on the DIROKOL database due to autosegmentation.

Figure 5.12: Examples of the recorded image of of ce object.
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Figure 5.13: Results for the cluttered views with training BIROKOL with an attempt to
improve recognition rates by validating on occluded views.



Chapter 6
Summary

Humans deal naturally with categories, the ways we peraeivenvironment and formulate our
thoughts are based on the concept of categories. With eagemwegalize from a speci c cup to
the category of all cups, although their appearances canibedjverse.

Although categories are connected to our daily life, theindtion is still a matter of debate.
As stated in [Lak87], recent approaches argue that catgare far more complex than was
initially thought and that they are tied to the person whocpetes them. However, for time
being, in computer vision we have to stay with the classieatition that describe categories as
large classes, but with still exact de ned borders. This eferto as the recognition of object
categories.

To set up a system which is capable of recognizing objecgoaites, two main requirements
are identi ed. The rstis a robust representation, whicimakescribe what is common to mem-
bers of a category and what separates them from other caegdihe second is a method for
robust classi cation, which is able to build a model for @ees taking into account the large
variability within a category. To be of use in real-world tsggs, both steps need to be robust
with respect to noise, illumination changes, clutter ancusion.

In this thesis, state-of-the-art local features are usefltlh the requirement of a robust
representation. We use and compare the multi-scale agppsaposed in [Sch96], its extension
with the scale invariant Harris-Laplace detector in [MikD2and the SIFT features introduced in
[Low99].

For robust classi cation, we use Support Vector Machineg\S) [Vap96], which have
shown excellent performance in computer vision tasks [Ghg®Ro001], [Hay04]. Only re-
cently their range of application was extended to localuesatlata via a new class of kernels
in [Wal03b]. All experiments presented in this thesis ardgened in this framework. For this
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purpose, the new kernel was adtéalthe SVM software library LIBSVM [ChaO1].

Most methods for recognition based on local features usatarie matching step to estab-
lish feature correspondences. To make this step more leliatany different constraints were
introduced [Sch96], [Tel02], [Pri98]. As the local kerndd@ performs an implicit matching,
this thesis investigated different methods for settingst@ints in the matching process. The
rst constraint is a simple method based on feature distanseggested in [Wal0O3b]. In ad-
dition, two new approachésnamely the distance histogram and the distance pro le tcaims
were evaluated and added to LIBSVM. The performance of ttiese constraints in a matching
experiment on ground truth data and recognition experimydaads to the conclusion that for
images where the object is always shown at the same pogititie image, the simple approach
based on feature distances gives the best results. One akth@pproaches, called distance
pro les, yielded a small improvement in a recognition exp®nt in cluttered background. Al-
though the gain is considerably less than with the simpl@dce constraint, the new constraint
does not make as strong assumptions on the position of tleetofjherefore it is an interesting
alternative.

To investigate the generalization capability of the apphpaa qualitative experiment was
performed varying the number of examples of each considsatatjory. Surprisingly good per-
formance is achieved with only a few examples.

To evaluate the approach with respect to real-world comaftitypical variation like scale,
occlusion and cluttered background are tested indivighwadlthe CogVis database and nally in
a more uncontrolled setting on real-world images.

The scale experiments are performed on arti cially scaledges. To cope with this vari-
ation we applied different methods related to the represiem and the training step. For the
representation that handles scale explicitly, we used di#sedle approach like in [Sch96], its
extension to scale invariance by the Harris-Laplace detdmdm [Mik02b] and the SIFT fea-
tures introduced in [Low99]. From the learning point of vieve included scaled images in the
validation set and in a second approach also in the trai@f@s it was done for material classi -
cation in [Hay04]. Surprisingly, the scale invariant mathdike the one with the Harris-Laplace
detector and SIFT did not show the favourable results tylgicaported for object recognition
[Mik02b],[Low99]. We identi ed two reasons. First, some aldy textured objects violate as-
sumptions on the underlying automatic scale selectionga®and second, for distinguishing
between categories like horses and dogs the overall sibe @fiiject and relative scales between
features seem to be important cues. This hypothesis is sigoidoy the fact that the method us-

lwith the generous support of Christian Wallraven
2this work is based on an idea of Christian Wallraven
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ing the Harris-Laplace detector for scale selection sigantly increased the confusion between
horses and dogs. The method with training on scales has sti@vwmost stable results with
respect to scale.

An other important issue in real-world settings is occlasion the experiments occlusion
is simulated by successively eliminating features fromtiefright in the image. Our approach
gives good results if the occlusion is less tf#Bo.

For experiments with cluttered background, images weresgad for the categories car, cup,
cow, horse and dog. While the images for cars, cows and hargegathered from existing
collections, the images for dogs and cups are new contoibsiti The training is performed on
the CogVis database which contains only toy objects for ¢twsses and dogs. For a baseline
experiment, applying a multi-scale representation yial@8:4 7% overall recognition rate for a
3 category experiment which drops4@.68% for a5 category experiment. This has to be seen
in relation to the successively added categories of honseéslags. Further experiments have
shown that these categories are extremely hard to disshgiue to their visual similarities of
object parts. Therefore we conclude that how the metho@seeth the number of categories is
strongly related to the actual categories and cannot beearshvin general.

Similar experiments on objects in cluttered backgroundevparformed with training on the
DIROKOL database. Therefore images of cans, puncherdestaand cups were recorded in an
of ce environment. The best observed recognition rat8348%. An approach to improve the
model selection by including occluded views in the validatset did not show any systematic
improvements. We conclude that the database does not previdugh different objects of a
category to learn a good model.

Another important observation is that the use of constraigtiching showed signi cant im-
provements in many experiments, especially in presenckittéred background. Therefore we
conclude that constraints are a suitable method for congpiensfor the distraction caused by
the background in the matching process.

However, much work must still be done to even approach thakihpes of humans with
regards to recognizing object categories. From the pointi@f of data representation, the
state-of-the-art approach is still to apply methods fronedbrecognition, in the hope that they
will show robustness with respect to the increased vanatidAn extensive study of the use of
different descriptions for categories has not been donecduld be of great use to understand
categorization better.

Another important issue is to build databases on which éxy@ts on categorization can
be performed. For object recognition many databases déxisthey do not offer the variety of
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objects required for categorization.

As was shown in this thesis, an approach based solely on featlres relies strongly on
the process which nds corresponding features in two imagBEsis matching problem is by
no means solved. One approach to this problem are constesrthey are used in this thesis.
Another approach is to use more cues to make the representatire distinctive. Especially
categories like tomatoes which have shown problems dueettatik of features might bene t
from a different cue like for example colour. Therefore sova¢egorization problems could
possibly simplify dramatically by using the right cue likelor, shape, texture or even combining
them by an appropriate scheme.



Appendix A

Optimization of the Local Kernel

As described in Section 4.3 a kernel which can handel loedufes should perform some kind
of feature matching. In the case of the local keligle o one €9n. (4.27) one-to-one matching
is used. As mentioned before, this is done by computing unimgatches between the local
feature of two local features sdts andL which maximize the sum of the kernel valuiés.

In practice this is done by computing a similarity mat@xwhereS;; is the kerneK, evaluated
for thei-th feature ofL,, and thg -th feature ofL,, with S 2 R" "« given thatL, consists of
ny andLy consists ohy features. The straightforward idea to nd the matches istrsh for a
maximum inS and take this as the rst match. Then the row and the columhisfrhaximum
are not further considered by setting them to a very low vghagssening). After that the next
maximum is searched, until the desired number of matchebdws found. As each maximum
search has a computational complexity of or@n,n,) and has to be done for the desired
number of matches, the whole procedure of computing the matches is of o@lgr,ngn).

A signi cant speed-up could be achieved by computing theamas with a different algo-
rithm 1. In the following we will denote the smaller feature set with. The basic idea is to
derive an algorithm from the properties of a match. We caardilde feature pair corresponding
to the entryS;; in the similarity matrix to be a match, if there is no match @vhgives a higher
value for the kerneK, with repect to the unmatched features. This is the case \Bheis the
best match for the thieth feature of sek ;,:

argmaxSj, = | (A.1)
b=1;::;n

lidea of Christian Schuldt
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and at the same time best match for jhi feature of seL:
argmaxSy = | (A.2)

This can be assured by checkingif is maximum with respect to its column and row.
Therefore the improved algorithm searches row by row for aimam. If a maximum is
found, it is checked if the entry is a maximum for the colunwou.tlf this is the case, a match
is found and this column and row are eliminated by settingithe a low number (poissening).
This is repeated untihin(ny; ny) matches were found. From these matchesithatches which
result in the highest kernel value are selected. A diagratheoélgorithm is given in Figure A.1.
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Fast maximum search —fast computation of one-to-one feature matches in a siityilaratrix

matches =0

WHILE matches < ny,

FORi=1tony

Jmax = argmaXp; ..., Sip

foundMatches+ = S

imax ;j max g

matches = matches+ 1

Sie iz, = Inf

S]_ ----- i = inf

foundMatches = sort(foundMatches)

foundMatches = foundMatches;....,

Figure A.1: Algorithm to signi cantly speed up the one-taefeature matching used in the local
kernel, assuming thaty, is the local feature set with less or equal number of featinasL ,
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Appendix B

Detailed Experimental Results

B.1 Experiments with Different Number of Objects in the Train-

ing Set
| objects in train| recognition rates for each partition | average recoghnition rate

1 8941% | 88720 | 81.08% | 91.15% | 81.42%% 86:35% 4.74
2 91.02% | 86720 | 91.60% | 95126 | 8242%% 89.38% 4:90
3 8951% | 8571% | 9821% | 96:21% | 87:05% 91:34% 557
4 90:36% | 9245% | 9818% | 91.93% | 97:14% 94.01% 344
5 84:38% | 97.81% | 9844% | 9531% | 9875% 94:.94% 6:06
6 91:80% | 96:88% | 99226 | 992206 | 9883% 97:1% 3:17
7 9896% | 97.40% | 10000% | 10000% | 97:40% 9875% 1:31
8 97.66% | 9844% | 10000% | 10000% | 97:66% 9875% 1:18
9 9844% | 10000% | 10000% | 10000% | 9844% 99:38% 0:86

Table B.1: Recognition rate for each partition, varying isenber of objects in the training set.
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B.2 Experiments with Scale

| scale]| multiscale | scale selectior] valiscales | trainscales | sift |
27 || 1488% 459|1821% 7:01|1569% 6:22|1406% 7.71| 41:87% 5:84
2 3 | 1093% 4:48] 1423% 642|11:30% 465]| 1240% 8:42| 3642% 7:46
2z 9:88% 436 | 11:26% 6:20| 1041% 4:31| 1232% 822 | 3638% 7:78
2% 854% 2:92 | 1057% 553| 870% 295 | 11:34% 7:48| 3330% 1119
20 870% 342 | 1045% 584 | 9:39% 363 | 11:34% 7:25| 2248% 7:87
23 866% 378 | 11:50% 567| 897% 376 | 1163% 7:31| 2988% 8:36
21 837% 407 | 11:62% 6:01| 870% 391 | 1037% 756|2984% 1083
23 951% 415 | 1329% 650| 9:72% 384 | 1041% 652 | 3057% 1155
23 10:33% 547 | 1581% 7:22| 1077% 547 |11:14% 7:64| 3301% 1223

Table B.2: Error rates for all methods and 9 scales, averaged5 partitions; no constraint is
used.

| scale| multiscale | scale selectior] valiscales | train scales |
2 || 2321% 6:58]2016% 5:95]1492% 6:27] 9:47% 469 |
s | 1345% 2:35]1301% 584|11:06% 4:90| 8:70% 4:40
:
3

9.63% 338 | 992% 632 | 886% 452 | 866% 4.90
7.76% 4.00 | 939% 579 | 7.64% 357 | 7.93% 4.66
7.28% 4:28 | 7793% 480 | 809% 4.01 | 801% 512
7.60% 385 | 874% 526 | 837% 390 | 854% 5:37
866% 4.00 | 9:115% 523 | 805% 4:32 | 8.62% 5:82
1020% 377 | 1089% 570| 9:15% 404 | 825% 564
1285% 395| 1370% 5:86| 1033% 4.98|890% 6:19

NNI\JI\J[\CJ)NNNN

NIH ol BH ool

Table B.3: Error rates for all methods and 9 scales, averaged5 partitions; feature distance
constraint is used.
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B.3 Experiments with Occlusion

set| occlusion recognition rates for each partition average recognition rate
0% 91:46% | 9837% | 9472% | 8984% | 97:.97 % 9447% 381
1 25% 84:96% | 97:56% | 93.09% | 8537% | 97:15% 91:63% 6:16
50% 8374% | 9390% | 83.74% | 77.64% | 8862% 8553% 6:09
75% 77.24% | 7886% | 37.80% | 6220% | 50:00 % 6122% 17:63

0% 84:76% | 9268% | 9390% | 8994% | 8354% 8896% 4:65
2 25% 76:52% | 89:63% | 9360% | 8415% | 8232% 8524% 661
1076} 6921% | 8445% | 8476% | 71:65% | 81:10% 7823% 7:32
7% 60:67% | 67:38% | 60:37% | 5213% | 5457% 5902% 5:95

0% 81:95% | 87:80% | 90:24% | 8317% | 8220% 8507% 374
3 25% 7366% | 8341% | 8561% | 7829% | 80:24% 8024% 464
5% 6317% | 7561% | 7390% | 6366% | 7561% 7039% 641
7% 49.02% | 54:88% | 48.05% | 43.90% | 5268 % 4971% 4:26

0% 80:08% | 81:30% | 89:02% | 71:14% | 71:95% 7870% 7:38
25% 7358% | 76:02% | 8496% | 6992% | 6911% 7472% 637
4 50% 60:98% | 65:85% | 7561% | 60:57% | 6504 % 6561% 6:07
& 40:24% | 4553% | 44:31% | 4553% | 4472% 4407% 2:20

Table B.4: recognition for all 4 sets of categories and dd#ifiet levels of occlusion. The recogni-
tion rates on all 5 partitions and the average recognititaisareported. No constraint is used.
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| set| occlusion| recognition rates for each partition | average recognition rate

0% 97:97% | 9959% | 1000 % | 90:65% | 9959% 97.56% 394
1 25% 9472% | 9919% | 9512% | 91:06% | 9878% 9577% 3:33
5% 90:65% | 9837% | 91:46% | 87:40% | 9512% 9260% 424
7% 7398% | 8577% | 77:24% | 7276% | 5488% 7293% 1130

0% 9329% | 97:87% | 96:95% | 8841% | 8872% 9305% 444
2 25% 8598% | 96:65% | 9482% | 87:80% | 86:89% 9043% 493
5% 7835% | 9329% | 90:85% | 8384% | 8567 % 86140% 5:90
& 67:99% | 71:65% | 71:95% | 6860% | 64:02% 6884% 3:22

0% 86:10% | 95:85% | 9268% | 85:37% | 8805% 8961% 451
3 25%% 7585% | 9220% | 8927% | 81:46% | 86:.83% 8512% 651
1076} 66:10% | 86:83% | 8220% | 7366% | 8415% 7859% 855
%% 4805% | 6341% | 6366% | 56:59% | 6463 % 5927% 7:.04
0% 86:18% | 93:09% | 91:46% | 8496% | 80:49% 87.24% 510
4 25% 80.08% | 87:80% | 87:80% | 80:08% | 77:24% 8260% 4:89
1076} 70:73% | 8049% | 7967% | 7276% | 7561% 7585% 424
7% 4959% | 60:16% | 5813% | 46:75% | 5244 % 5341% 5165

Table B.5: recognition for all 4 sets of categories and dife¢: levels of occlusion. The recog-
nition rates on all 5 partitions and the average recognitae is reported. The feature distance
constraint is used.
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B.4 Experiments with Clutter

| car | cup | cow |
car || 5840% 1389 | 0:.00% 0:00| 41:60% 1389
cup || 4040% 1648 | 6:00%6 5:10| 536000 1592
cow || 5280% 2372 | 0:.00% 0:00| 47.2000 2372
| | car | cup | cow | horse |
car | 6340% 1328| 0:20%0 0:40 | 2560% 1581 | 1080% 9:20
cup || 39600 9:85 | 10400 7:34 | 3260% 1237 | 17400 6:80
cow || 5860% 2839 | 0.0 0:.00 | 31.20% 2318 | 102006 5:91
horse| 24406 1237 | 0:00% 0:00 | 27:80% 11:65| 47:.80% 2:04
| | car | cup | Cow | horse | dog |
car | 2880% 8:23| 0:20% 0:40 | 2860% 1875| 860 7:12 | 3380% 1955
cup || 1500% 5:10| 24:40% 9:71| 2340% 1266 | 1240% 6:09 | 2480% 1437
cow || 4.00% 2:83 | 0:00% 0:00 | 32400 2289 | 16.00% 7:16| 47.6000 2976
horse|| 6:40%60 2:73 | 1.40%0 1:85 | 26.40% 1237 | 3%00% 6:23| 26:.80% 1514
dog || 280% 2:71 | 0:80% 1.60 | 4040% 1399 | 2240% 3:.01| 3360% 1193
| | cow | horse | dog |
car | 35007 2386 | 1840 6:80| 46:60% 2842
cup || 2960% 1371 | 412006 7:65| 29200 1411
cow | 4260% 1407 | 2260% 3:32| 3480% 1129

Table B.6: Averaged confusion matrices over 5 partitionstf@ experiments on the CogVis
database with testing images in cluttered background. Metcaint is used.
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Table B.7: Averaged confusion matrices over 5 partitionstf@ experiments on the CogVis

| | car | cup | Cow |

car || 7980% 1078| 1.60% 3:20 | 1860% 1113

cup || 26:60% 2864 | 3100 3023 | 42400 26.65

cow || 36:40% 3265| 7:80% 1560 | 5580% 3098

| | car | cup | cow | horse |

car || 7600% 1715| 0.00% 000 | 1660% 1439| 7:40% 4.96

cup 1140% 8:59 | 2640% 1612 | 1440% 1318 | 47.80% 6:46

cow || 4160% 31:31| 0:.00%0 0:00 | 21:40% 2306| 37.00% 27.58

horse|| 9:40%0 6:77 0:00% 0:00 80020 881 | 82600 1025
| | car | cup | cow | horse | dog

car | 7460% 1570| 0:00% 0:00 | 15200 1032| 9200 7:93 1:00% 0:89
cup 6:40% 242 | 3560% 1019 | 1040% 1040 | 3060% 1545| 17.00%6 1761
cow || 2380% 1774 0:.00%0 0.00 | 3260% 2419 | 2820% 1612 | 1540% 1852
horse|| 8200 4:79 0:40% 0:80 7806 7.03 | 7000% 1356 | 13600 1221
dog 50000 2:83 0:20%0 040 | 102000 8:23 | 5900% 1459 | 2560 1640
| | cow | horse | dog |

car | 37.80% 2076 | 28000 17.40| 34.20% 3585

cup || 11:80% 1353 | 71400 1722 | 16.80% 1298

cow | 1860% 1883 | 526000 2162 | 2880% 1625

database with testing images in cluttered background. &&ieife distance constraint is used.




B.4. EXPERIMENTS WITH CLUTTER

| | car | cup | cow |
car || 4360% 1806 | 2.00% 2:10 | 5440% 2010
cup || 2140% 1063 | 3540 6:05| 4320% 1266
cow || 2060% 2385| 1.20% 1.47 | 782006 2531
| | car | cup | cow | horse |
car | 3800% 5:83| 0:00% 0:00 | 390020 2369 | 23000 1912
cup || 17406 2:87 | 2580% 9:06 | 3420% 1411 | 2260% 1312
cow || 840% 6:95 | 0:00% 0:00 | 33800 2523|5780 2062
horse|| 10:20% 4.62| 1.00% 0:63 | 30.00% 1556 | 5880% 1254
| | car | cup | cow | horse | dog
car | 27.00% 6:81| 0:00% 0:.00 | 27:20% 21:02| 9:20% 8:61 | 36:60% 20:11
cup || 1460% 554 | 23.80% 3:43| 2120%0 1329 | 1200% 5:02| 28400 1354
cow | 4:40% 508 | 0.0 0.00 | 24406 2336 | 21:80% 8:13| 49406 27.35
horse|| 7:40% 4:22 | 1.00% 0:63 | 2340% 1563 | 4280% 4:40| 2540% 1435
dog || 240% 3:83 | 0:00% 0:00 | 3500% 1502 | 27.40% 546 | 352000 1248

Table B.8: Averaged confusion matrices over 5 partitionstf@ experiments on the CogVis
database with testing images in cluttered background ulsengain scales method to compensate
for scale changes. No constraint is used.
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| | car | cup | Cow |
car | 83400 774 | 0600 1:20 | 1600% 8:17
cup || 1820% 1817 | 550006 21:95| 26.8000 17.46
cow || 3240% 37.61| 3:.00% 4:10 | 6460% 3808
| | car | cup | cow | horse |
car | 8140% 1193| 0:00% 0:00 | 1400% 996 | 460006 2:87
cup || 12800 8:.06 | 47.2000 1965 | 1940% 1823 | 2060% 3:38
cow || 27.80% 3385| 1.40% 1.96 | 4860% 37.82| 2220% 1248
horse|| 5:40% 2:58 240% 294 | 27.80% 17.08| 64406 1444
| | car | cup | cow | horse | dog |
car | 7940% 1282| 0:.00% 0:00 | 14800 11.75| 38006 2:23 2.00% 1.67
cup 146006 7:23 | 37.20% 11.75| 164000 1208 | 204006 891 | 11:40% 1208
cow || 2320% 1763| 0:200 0:40 | 3360% 26:88| 20:00% 1364 | 23.00%0 2682
horse|| 11:80% 9:68 | 1.00% 2:00 | 2240% 1485 | 5520% 7:68 | 9:60% 9:39
dog 5800 3:76 0:80% 075 | 2200% 1295| 44.:60% 9:00 | 26:80% 1717

Table B.9: Averaged confusion matrices over 5 partitionstifie experiments on the CogVis
database with testing images in cluttered background ukagain scales method to compensate
for scale changes. The feature distance constraint is used.
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| | car | cup | cow |
car || 20000% 3308| 240% 480 | 77.60%0 3787
cup || 11:20% 1429 | 132006 2251 | 756000 3623
cow || 6:00% 1200 | 1400% 2800 | 80:00% 40.00
| | car | cup | cow | horse |
car || 2600% 3742 | 0:.00% 0:.00| 6440% 3258, 9.60% 7:.94
cup || 27.60% 3697 | 0:80% 1:60| 6280% 3231| 880% 515
cow || 2000% 4000 | 0:00% 0.00| 64406 3312 | 1560% 1098
horse| 20:80% 3867 | 0:00% 0:00 | 54.00% 2859 | 2520% 14.01
| | car | cup | cow | horse | dog |
car | 4040% 4867 | 0.000%0 0:00| 9:60%0 1091 | 0:40%% 0:80 | 4960% 4109
cup || 36:00% 44:25| 4:.00% 6:20| 11:20% 1372 | 2.40% 3:88 | 46.40% 3852
cow || 3960% 4850 | 0:40% 0:80| 8806 845 | 3.60% 543 | 47.6006 3989
horse| 3840% 47:10| 1:.60% 3:20| 20:40% 1986 | 9:60% 1439 | 30.00% 2511
dog || 3960% 4850 | 0:4000 0:80| 2520% 2776 | 7:2006 9:68 | 27.6006 2525

Table B.10: Averaged confusion matrices over 5 partitianstiie experiments on the CogVis
database with testing images in cluttered backgroundd&tadin is done on cluttered views. No
constraint is used.
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| car | cup | Cow |
car || 704000 833 | 2.80% 204 | 2680% 9:52
cup || 6:40% 543 | 7320% 7:00 | 2040% 7:31
cow || 1920% 2096 | 124006 1292 | 6840% 2518

| | car | cup | cow | horse |

car || 60800 9:68| 3600 344 | 2320 5146 | 12400 427
cup || 480% 0:98 | 6360% 880| 32000 392 | 28400 4:.08
cow || 1440% 941 | 8800 4:83 | 6280% 1552 | 14000 9:21
horse| 6:00% 2:19 | 1400% 6:32| 17.60% 4:27 | 6240% 871

| | car | cup | cow | horse | dog |
car | 6640% 9:50| 1.60% 1.50 | 2320% 806 | 800 4.00 | 0:80% 0:98
cup || 560% 0:80 | 5280% 7:33| 4:80% 0:98 | 1360% 1098 | 2320% 7:44
cow || 1320% 9:68| 800 3:10 | 6200% 1649| 840% 6:74 | 840 5:99
horse|| 5:60% 1:50 | 880 2:04 | 17.60% 4.08 | 56:80% 4:66 | 11:20% 8:26
dog || 52006 1:.60 | 240% 2:33 | 1200% 1.26 | 41.20% 5:15 | 392000 8:06

Table B.11: Averaged confusion matrices over 5 partitianstiie experiments on the CogVis
database with testing images in cluttered backgrounddatdin is done on cluttered views. The
feature distance constraint is used.

exp | feature distance average train time average test time parameter | parameter
constraint for one model for one image

1 without 3min 1.6s 10 -
with 3 min 16s 10 25

2 without 5min 30s 15 -
with 6 min 30s 10 20

3 without 10min 36s 50 -
with 12min 4.0s 10 25

Table B.12: Parameters, training time for one model giveargat parameter set, testing time
for one image for the real-world experiments with training ©ogVis. If the feature distance
constraint is used, the parametelis speci ed. Time measured on a SunBlade 100 with an
UltraSPARC Il processor with 400Mhz
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