
On the Feasibility of

TTL-based Filtering for DRDoS Mitigation

Michael Backes1, Thorsten Holz2, Christian Rossow3,
Teemu Rytilahti2, Milivoj Simeonovski3, and Ben Stock3

1 CISPA, Saarland University & MPI-SWS, Saarland Informatics Campus
2 Horst Görtz Institute for IT-Security, Ruhr University Bochum

3 CISPA, Saarland University, Saarland Informatics Campus

Abstract A major disturbance for network providers in recent years

have been Distributed Reflective Denial-of-Service (DRDoS) attacks. In

such an attack, the adversary spoofs the IP address of a victim and sends

a flood of tiny packets to vulnerable services. The services then respond

to spoofed the IP, flooding the victim with large replies. Led by the idea

that an attacker cannot fabricate the number of hops a packet travels

between amplifier and victim, Hop Count Filtering (HCF) mechanisms

that analyze the Time-to-Live (TTL) of incoming packets have been

proposed as a solution.

In this paper, we evaluate the feasibility of using HCF to mitigate DRDoS

attacks. To that end, we detail how a server can use active probing to

learn TTLs of alleged packet senders. Based on data sets of benign and

spoofed NTP requests, we find that a TTL-based defense could block

over 75 % of spoofed traffic, while allowing 85 % of benign traffic to pass.

To achieve this performance, however, such an approach must allow for a

tolerance of +/-2 hops.

Motivated by this, we investigate the tacit assumption that an attacker

cannot learn the correct TTL value. By using a combination of tracerout-

ing and BGP data, we build statistical models which allow to estimate

the TTL within that tolerance level. We observe that by wisely choosing

the used amplifiers, the attacker is able to circumvent such TTL-based

defenses. Finally, we argue that any (current or future) defensive system

based on TTL values can be bypassed in a similar fashion, and find that

future research must be steered towards more fundamental solutions to

thwart any kind of IP spoofing attacks.

Keywords: IP spoofing, Hop Count Filtering, Reflective Denial-of-Service

1 Introduction

One of the major hassles for network provides in recent years have been so-called
Distributed Reflective Denial-of-Service (DRDoS) attacks [5]. In these attacks,
an attacker poses as its victim and sends a flood of tiny packets to vulnerable
services which then respond with much larger replies to the victim. This is possible

2 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

because the Internet Protocol (IP) does not have means to protect against forgery
of source addresses in its packets, so-called IP spoofing. A variety of different
UDP-based protocols have been known to be vulnerable for this category of
attacks for long [22], but despite the efforts to locate and shut down vulnerable
services, they remain a problem even today.

To ensure that a server does not become unwilling participant in a DRDoS
attack, an appealing defense is to detect spoofed packets at the recipient. One
such technique is to validate certain IP header fields and drop packets that seem
unsound. Most promising, Cheng et al. [10] propose a technique called Hop Count
Filtering (HCF) to leverage the Time-to-Live (TTL) field encoded in the IP
header. The intuition behind a TTL-based filtering approach is that the route
of the actual source of the traffic and the claimed source is likely different, i.e.,
the spoofing source is in a different network than the spoofed IP address. This is
then also reflected in the TTL value, as the attacker’s route to the server differs
from the one of the spoofed system, and hence the number of hops is different.
Thus, it is seemingly possible to filter most spoofed traffic by dropping any traffic
which does not correspond to the expected TTL.

In this paper, we evaluate the feasibility of using HCF to defend against
DRDoS attacks. To do so, we analyze several means of probing for the TTL of
an alleged sender, using different types of probes towards a host in question as
well as horizontal probing of its neighbors. We show that this process is prone to
errors and frequently tedious in practice, raising the need for a certain tolerance
in TTL-based defenses. More precisely, we show that an error margin of +/-2
must be allowed to enable 85 % of benign traffic to pass, while dropping more
than 75 % of spoofed traffic.

Any TTL-based defense relies on the tacit assumption that an attacker cannot
learn the correct TTL when spoofing a packet. We, however, show that a spoofing
attacker can subvert TTL-based filters by predicting the TTL value—without
having access to the system or network of either server or impersonated victim.
Our idea is to leverage publicly available traceroute data to learn subpaths that
an IP packet from IPA to IPB will take. We follow the intuition that subpaths
from IPA to any other host on the Internet are quite constant and can be learned
by the attacker. Similarly, we show that the attacker can observe that any packet
to IPB traverses a certain subpath. We augment such subpath information with
an approximation of how the packet is routed on the higher-tier Internet layers.
Given the tolerance required in TTL-based defenses, we can estimate the initial
TTL value that the attacker has to set to enable bypassing of such defenses.

These “negative” results prove that TTL-based spoofing filters are unreliable
and (if at all) a short-sighted solution only. Rather than attacking existing
defense systems, our findings conceptually show that TTL-based defenses cannot
work to thwart the outlined attacks. Hence, we see this paper as a valuable
contribution to steer future research towards more fundamental solutions, be it
alternative defenses against spoofing, or conceptual redesigns of the Internet and
its protocols.

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 3

To summarize, we make the following contributions:
– We discuss how a server can use active probing to measure the hops to hosts

which connect to its services (Section 3).
– We re-evaluate the concept of HCF to determine the necessary level of

tolerance required for it to work in practice (Section 4).
– We describe a methodology which leverages previous knowledge about routing

and statistical models to estimate the number of hops between an arbitrary
victim and an amplifier of the attacker’s choosing (Section 5).

– In doing so, we show that TTL-based defenses can be circumvented by an
attacker with as little as 40 globally distributed probes (Section 6).

2 Background

In this section, we discuss the background information on routing on the In-
ternet, Distributed Denial of Service attacks, and Hop Count Filtering as a
countermeasure against such attacks.

2.1 Relevant Internet Technologies

The Internet is a network of interconnected sub-networks, which route packets
between them based on the established routes. These smaller networks are also
referred to as Autonomous Systems (AS). For a host in network A to connect to
a host in network B, a route must be found through potentially several different
ASes. Traffic between different autonomous systems is routed based on the Border
Gateway Protocol, in which routers exchange information about accessible IP
ranges and the corresponding AS paths, i.e., routes to these ranges.

To ensure that a packet is not stuck in a routing loop, the Internet Protocol
(IP) header contains a field dubbed Time-to-Live (TTL). When handling a
packet, “[...] every module that processes a datagram must decrease the TTL”
and whenever a packet’s TTL value reached zero, the packet must be discarded by
the routing device [19]. In practice, the TTL is implemented as a decreasing hop
count. The value is initially set by the sending host and depends on the operating
system, e.g., Mac OS X uses 64, Windows 128, and while Linux distributions
nowadays mostly use 64, some even use 255 [1]. When receiving a packet, analysis
of the TTL values therefore allows to approximate the number of routing devices
the packet has passed.

The concept of TTLs can also be used to learn the exact route of a packet
(tracerouting). To that end, the initiator of the tracerouting sends an IP packet
towards the intended destination, initially setting the TTL value to 1. When this
packet reaches the first hop, the TTL is decreased. According to the RFC, the
router must now drop the packet. In such a case, most routers will also send an
Internet Control Message Protocol (ICMP) error message to the original sender,
indicating that the timeout of the packet has been exceeded. This response can
be used by the tracerouting machine to learn the IP address of the first hop. By
repeating this process with increasing TTL values, this method can be used to
learn all IP addresses of routers on the packet’s way to its destination.

4 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

2.2 Source Spoofing and DRDoS

In its original design, the Internet Protocol does not feature a means of verifying
the source of a packet. Since IP packets are only directed based on the destination,
an attacker may generate an IP packet with a fabricated (or spoofed) source
address. This design flaw can be abused by an adversary towards several ends.
One example are Denial of Service (DoS) attacks, where an attacker tries to
either saturate the network link to a server or exhaust resources on the target
machine by, e.g., initiating a large number of TCP handshakes. To defend against
this, a network administrator may configure a firewall to drop packets from the
attacker. The attacker, however, can spoof IP packets from other machines to
bypass this defense mechanism.

Moreover, recent years have seen an increase in Distributed Reflective Denial
of Service (DRDoS) attacks. These attacks rely on spoofing packets in conjunction
with services which respond to requests with significantly larger responses. There
are a variety of vulnerable protocols (described in [22,23]), but recently, the most
nefarious attacks have been misusing protocols such as DNS, NTP, SSDP, or
chargen. As an example, the Network Time Protocol’s (NTP) monlist feature may
generate a response that is more than 4,500 times larger than the request. To
abuse this, an attacker generates a flood of monlist requests to vulnerable servers
while spoofing the source IP address to be that of the victim. Subsequently, a
vulnerable NTP server will send the response to the victim’s IP. In doing so, the
attacker can massively amplify his own bandwidth, while also not revealing his
real IP address in the process.

Although this kind of attack has been well-known for long [14,24] and attempts
have been made to shut down vulnerable systems used in such attacks (e. g., [12]),
they still pose a threat to online services. In order to fight such attacks, several
countermeasures dating back to 2001 [17] have been proposed. One obvious
defense strategy would be to limit the number of requests a client may issue.
However, while such mechanisms may help to protect against excessive abuse
of a single amplifier, Rossow’s [22] analysis shows that even with rate limiting
the aggregated attack bandwidth of some protocols is still an issue. This and
many other countermeasures have been evaluated and analyzed by Beitollahi
and Deconinck [7], hence we omit to discuss them further and refer the reader to
their paper. Instead, we discuss the hop count filtering mechanisms relevant for
our work in the following.

2.3 Hop Count Filtering

When a packet is received, its TTL depends on (i) the initial TTL value and
(ii) the number of hops the packet has traversed. While it is easy to forge an
IP header as such, Cheng et al. [10] propose to use the TTL to detect nefarious
packets. More precisely, they assume that an attacker trying to impersonate
a specific host cannot ascertain the hop count between the spoofed host and
the recipient of the packet. Based on this assumption, they present a reactive
defense against DDoS attacks. To detect an attack in which the sender spoofs IP

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 5

addresses to conceal his true location, they first require a period of observing the
legitimate upcoming traffic (learning state), where the victim builds a mapping
between the legitimate clients (IP addresses) and their respective hop count.
Once an attack is detected, the victim rejects all packets where the TTL values
do not match the recorded hop count. This way, the victim does not have to
allocate resources for handling incoming spoofed traffic.

To increase the accuracy of the hop count filtering (HCF), Mukaddam et
al. [15] proposed a modified version of HCF that aims to improve the learning
phase. Instead of recording only one hop count value per IP, they record a
list of all possible hop count values seen in the past. They justify the need for
such an extension by arguing that the hop count may change due to the use of
different routes. Indeed, such a system decreases the collateral damage by correctly
classifying legitimate traffic. On the other hand, however, this mechanism allows
an attacker more guesses in evasion attempts by ascertaining the correct TTL
value.

3 Re-Evaluating the Feasibility of Hop-Count Filtering

As the previous work by Mukaddam et al. has shown, the original HCF approach
may be impaired by routing on the Internet. In addition, such an approach
requires a prior learning phase, e. g., through passive TCP handshake analysis,
to facilitate detection of spoofing. In the following, we investigate how far the
methodology from Cheng et al. can be extended to filter out spoofed traffic used
in DRDoS attacks. In contrast to the original HCF, this process cannot rely solely
on TCP handshakes from previous connections by the client, as protocols used
in DRDoS attacks, such as NTP or DNS, are connection-less. Simply dropping
all packets from any host without a previous TCP connection would render any
benign use of UDP-based services moot. Therefore, we investigate with what
margin of error TTLs for an alleged sender can be learned by the server to
evaluate the efficacy of TTL-based filtering on the Internet.

3.1 Protocol-based Probing

The most intuitive way for a server to ascertain a TTL value of a client is to
receive an unspoofed packet from that host. This can be done after a successful
TCP handshake, as an established connection can only occur if the alleged sender
actually initiated the connection. Due to its connection-less nature, we cannot
rely on such a process for UDP. Instead, we need to prompt the alleged sender
for an unspoofed packet. To achieve this, we can rely on ICMP, TCP, or UDP
requests to the system in question. The ports we used in our work for TCP and
UDP are derived from the most scanned port discussed by Durumeric et al. [8].
We realize that it might not be feasible to send a plethora of probes to an end host
whenever a packet to a UDP-based service is received, as this itself would be an
amplification attack. Regardless, we want to investigate how different protocols
and techniques might be leveraged to learn the TTL.

6 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

One way of compelling the probed system to send a packet is to use ICMP.
ICMP echo can be used to measure the round trip time of a packet to a given
host. The TTL of the probe target can be extracted from the IP header of an
echo reply. In addition to the echo command, several operating systems also
implement the non-mandated timestamp command. This can be used in the same
fashion to induce a response from the probed system.

Additionally, the probing server can itself try to establish a TCP connection
to the alleged sender. The methodology is independent of the actual application
used underneath, since the TCP handshake is conducted by the operating system
before handing the socket to the underlying application.

In contrast to TCP, where no application data needs to be sent to the probed
host, most UDP-based services require protocol-specific data to be submitted. As
an example, DNS and NTP servers only react to datagrams which are conformant
to the respective protocol. On the other hand, the UDP-based chargen service
“simply sends data without regard to the input” [20]. Therefore, we send protocol-
conformant packets to DNS and NTP ports, and random data to chargen.

3.2 Interpreting Responses

In any of the cases described above, we may receive a positive or negative response.
In the following, we discuss these types of responses and indicate how they can
be used to extract the TTL from probed systems.

Positive Responses When using ICMP, an echo or timestamp reply suffices
to extract the TTL value from the encapsulating IP packet. For TCP, if a
service listens on the probed port, the operating system will follow the three-way
handshake process and respond with a SYN/ACK packet. In the case of UDP,
the process differs slightly: when a service is listening on the probed port and the
incoming packet adheres to the specification of that service, it sends a response
back to the requesting system. Analogously to ICMP, the TTL value can be
extracted from TCP and UDP responses by simply examining the IP header.

Negative Responses In addition to responses which indicate that the host is up or
a service is listening on the probed port, we can also leverage negative responses
or error messages to learn the TTL. For example, in cases where a TCP port is
not open, the host system may respond with a packet which has the RST flag
set. Assuming that the packet is usually generated by the probed system (we
discuss exceptions to this rule in Section 3.4), we can extract the TTL value in
the same fashion used for positive responses. For UDP, we leverage ICMP Port

Unreachable replies.
Next to these protocol-specific errors, we may also receive a message indicating

that the host is not reachable. For example, the last router on the path can issue
an ICMP Host Unreachable message. In this case, given the assumption that only
the last router will send such a message, we can use the TTL from the incoming
packet and decrease it by one (since the original sender would have had one more
hop). ICMP also features a more generic Destination Unreachable message; this,

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 7

however, can be sent by any router on the path and therefore cannot be used
to conclusively calculate the TTL value. Next to these, we may receive ICMP
Communication Administratively Prohibited messages. Such a message can either
be sent by a router or the system itself when a packet is rejected by the firewall.

3.3 Horizontal Probing

A probed host may not answer, e.g., because it is firewalled and drops any
incoming packets. In these cases, we may still gather valuable information on
the path to the host by probing neighboring hosts. A neighbor in this case is a
host which is located within the same subnet as the target. Although assuming
that each subnet consists of exactly 256 IPs is not correct, this measure can still
provide partial insight into the route and give a close estimate of the actual TTL
value. Therefore, we probe neighbors by changing the last octet of the IP address
+/-1, and use previous knowledge from hosts within the same /24 subnet, as this
is the smallest network section generally advertised and accepted via BGP [18].

3.4 Caveats of Active Probing

There are several scenarios which can induce errors in probes. Typically, private
customers receive a router for their dial-up account, which uses Network Address
Translation (NAT) to allow multiple LAN clients access to a single Internet
connection. Unless these routers are configured to forward packets to a machine
behind the NAT, any response to the previously mentioned probes will be
generated by the router. As the router adds an additional hop (and hence
decreases the TTL by one) on the way from the NAT client to the server, the
TTL values will mismatch in such a case.

For negative responses, additional artefacts may skew the results. Specifically,
TCP resets or ICMP error packets may be generated by a firewall located before
the intended probe target. In such a case, the firewall itself must spoof the probed
IP to send these packets to ensure that the packet is attributed correctly on
the system which initiated the connection. Hence, we may assume that negative
responses are indeed generated by the probed system. Since we cannot learn the
number of hops between the firewall and probed system, using negative responses
can yield false results. We discuss the number of false results in Section 4.

As outlined before, the initial TTL value depends on the operating system of
the sending host. Considering an example in which a Windows client is located
behind a NAT router, which is running a Linux system with an initial TTL value
of 255. Even though a packet originating from the Windows machine will only
have one additional hop on its way to the probing server, the TTL value received
by the probing system will greatly differ depending on whether the Windows or
Linux host responded to the probing request. To accommodate for this and for
horizontal probing, we normalize all TTL values to values between 0 and 63, i.e.,
TTL = TTL%64. As the maximum TTL of 255 is not divisible by 64, we first
increment TTL values above 128 by one to correct this discrepancy.

8 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

4 Probing Analysis

To evaluate how well active probing could be used in the wild to enable the use of
HCF, we set up two systems. First, we used a regular NTP server not susceptible
to DRDoS to attract benign clients. Second, we set up a honeypot system running
a vulnerable version of NTP to attract spoofing attackers. In the following, we
describe both data sets, discussing for what fraction of hosts we could learn any
TTL value, and comparing this to the TTL values of incoming packets. Although
we are using NTP servers for our evaluation, it is out of convenience of getting
both spoofed and non-spoofed clients for comparison. In contrast, for protocols
like chargen, getting benign traffic would have been significantly harder. We end
this section with a discussion on the implications of the results of our analysis.

4.1 Benign Traffic

To capture benign traffic, we set up an NTP server that does not implement
monlist feature at all, and is therefore not susceptible to amplification vectors. To
attract NTP clients, we joined the NTP pool project. Note that the term client

refers to its role in NTP, i.e., such a host could either be an end user’s computer
or a server synchronizing its clock with us. Within hours, the server was added to
the public pool and started to receive NTP requests. We analyzed the incoming
traffic for patterns of suspicious behavior (especially dreaded monlist requests).
Our analysis showed that such requests were only issued in small numbers by
scanners (e.g., operated by research groups). As we did not respond to such
amplification requests and did not notice any suspicious activity, it is highly
unlikely that an attacker would choose our server for his amplification attack.
Hence, we deem this data set to consist exclusively of unspoofed traffic.

In total, we gathered data for 48 hours, in which we received packets from
543,514 distinct IP addresses. In a first step, we probed each of these hosts
immediately after their first contact using the different types of probes outlined
in Section 3.1. In doing so, we could extract TTL values for 316,012 (58.1 %)
for probed systems. The most successful type of probe was ICMP echo, which
yielded a result for 257,694 or 47.4 % of the hosts. In comparison, the most
successful TCP-based, positive response were SYN/ACKs from TCP port 443
(HTTPS), which accounted for a mere 31,966 (5.9 %) of the hosts. For any
UDP-based probes, we only received negligible amounts of positive responses.
Among the negative responses, ICMP Communication Prohibited for TCP port
4899 (Radmin) was the most frequent message (113,058 or 20,8 %).

To find out how accurate these results actually are, we compared the nor-
malized TTL values to the ones from the incoming traffic. As stated before, we
assume that the traffic directed to the NTP server is indeed generated by the
alleged senders, i.e., the ground truth value for each sending host can be extracted
from these incoming packets. Initially, we consider all probes to a specific host
for our analysis. In cases where the measured TTL values differ between the
probe types, we select the minimum value of any test. The intuition of this is
straightforward: whenever a firewall or router answers instead of the probed

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 9

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of responsive clients

Comm. Proh. 4899

ICMP echo

SYN/ACK 443

0 1 2 3

Figure 1. Deviation differences for selected probe types

system, the number of hops between them and our probing server is smaller.
Hence, by choosing the minimum TTL value, we ensure that we measure the
longest path between us and the host responding to the probe. Therefore, if the
probed system answers to one probe whereas all others are responded to by the
firewall, we still measure the accurate value for the system in question.

The results of applying this methodology on the data set are shown in Table 1.
We observe that, with respect to the total number of responding systems, 26.1 %
of the measured TTLs match the ground truth. Moreover, 92.2 % of the values
are within a threshold of +/-1, and almost 97 % within +/-2. In the following, we
analyze the results for specific tests in more detail, and discuss potential reasons
for the observed deviations.

The deviation between the measured and actual values is shown in Figure 1
for ICMP echo, Communication Prohibited to TCP port 4899, and SYN/ACK
for TCP port 443. We can observe that for ICMP echo, 12.8 % of measured TTLs
were correct, whereas an additional 78.8 % were off-by-one, i.e., 91.6 % of the
measured TTLs were within a threshold of +/-1. For Communication Prohibited

on port 4899, we observe that 96.8 % of the values are within +/-1, whereas 91 %
are off-by-one. This appears natural to the scenarios we discussed: ICMP echo
requests will often be answered by routers and firewalls due to network address
translation. Although SYN on TCP port 443 was only responsive on 5.9 % of the

Deviation Amount Fraction Cumulated Fraction

+/-0 82,629 26.1 % 26.1 %

+/-1 208,891 66.1 % 92.2 %

+/-2 14,623 4.6 % 96.9 %

+/-3 4,684 1.5 % 98.4 %

more 5,185 1.6 % 100 %

Table 1. Accuracy of measured TTLs (direct probes only)

10 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

hosts, the results are quite interesting. We observe that for 42.2 % of the hosts
which responded to such a probe, the TTL value could be correctly measured. In
addition, another 45.9 % were off-by-one, resulting in 88 % of the values being
within a threshold of +/-1. We argue that this is caused by nature of TCP, i.e.,
we only receive a SYN/ACK in case a service is listening on the probed system.
This can either occur if the connection directly reached the probed system, i.e.,
it is not behind a NAT or the corresponding port is forwarded, or there could be
a chance that a public-facing administrative interface is being exposed for service
needs [2]. Therefore, it is plausible that such routers may respond to HTTPS
requests, explaining the high number of our off-by-one measurements.

Next to probing of the target system itself, we can probe neighboring hosts.
More specifically, we probe direct neighbors (IP +/-1) and additionally rely on
previous measurements aimed towards other hosts within the same /24 network.
In doing so, we find that both types of probing increase the coverage. In our
experiment, we found that directly probing neighbors increases the number of
measurable TTLs by 69,399, resulting in a total coverage of 73.4 %. Taking into
account all information from hosts within the same /24 network increases the
coverage more drastically (by 168,730 hosts), yielding TTL values for 91.6 % of
all hosts. At the same time, the accuracy remains similar, with 27 % of the probed
values matching the ground truth. For +/-1, we can correctly measure the TTL
in 88.9 % of the cases, and 94.3 % of all measurements are within a threshold
of +/-2. Given these results for coverage and accuracy, we note that combining
different types of probing towards a single host with horizontal probing of the
system’s neighbors allows us measure the TTL within a threshold of +/- 2 for
86.4 % of all connecting hosts.

4.2 Spoofed Traffic

Next to the benign data set, for which we can measure the TTL within a small
threshold for the majority of the hosts correctly, we wanted to investigate how
well HCF would be suited for spoofed traffic. To that end, we set up a honeypot
running a vulnerable version of NTP server prone to becoming an amplifier for
DRDoS attacks. To avoid unnecessarily harming the spoofed targets while still
pretending to be attractive to adversaries, the outgoing bandwidth was limited,
i.e., we answered to at most two monlist requests per host per minute. We did
not announce the IP address of this machine in any manner and hence assume
that no legitimate traffic would be directed to the host. Instead, incoming NTP
requests are either due to scanning, or spoofed packets sent by an attacker. In a
time-period of 96 hours, we recorded 5,616 distinct alleged sender addresses, for
which we could gather direct probe results in 3,983 cases (70.9 %). This slightly
higher coverage (compared to the benign data) can be explained by the fact that
most attacks are targeting servers, which also are more likely to expose services
we actively probe for.

Before conducting any of our measurements, one property of the spoofed
traffic became apparent: more than 99 % of all incoming packets had an assumed
initial TTL of 255. This specific feature, however, should not be used solely to

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hop count deviation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

ag
e

of
 re

sp
on

si
ve

 c
lie

nt
s

Non-spoofed (single) Non-spoofed (/24-subnet) Spoofed (single) Spoofed (/24-subnet)

Figure 2. Deviation difference between spoofed and non-spoofed traffic

detect spoofed traffic, since the initial TTL can be changed without much effort
by the attacker. Therefore, we normalized the TTL value as outlined before.

Figure 2 shows the comparison between the measured TTL values and the
TTL values extracted from incoming packets, for both benign and spoofed data
sets. While we can clearly observe that for the majority of benign clients, the
TTL can be guessed within a threshold of +/-2, we note that no such trend is
visible for spoofed traffic.

4.3 Implications

In this section, we outlined the results of our experiments on benign and spoofed
data sets to evaluate a feasible margin of error for HCF. With respect to those data
sets, we find that distinguishing between benign and spoofed traffic appears to
yield useful results when using a threshold of 2. The reasons for the imprecision
of the measurements are manifold, e.g., when a client is behind a NAT or
incoming traffic to the machine is filtered by a firewall. Therefore, a TTL-based
defense mechanism must make a trade-off between false positives and false
negatives, respectively. Based on the data sets we analyzed, if a TTL-based
defense mechanism was to be deployed to protect a service against becoming an
unwilling actor in an attack, over 85 % of the benign traffic could pass, while
more than 3/4 of spoofed packets could be dropped, thus avoiding to harm the
targets.

Depending on the type of attacked hosts, this distinction might be even easier
to make. Nevertheless, any TTL-based defense relies on one tacit assumption:
an attacker can not learn the correct TTL value for an arbitrary victim and
an amplifier of his choosing. Therefore, in the following section, we discuss the
feasibility of a method in which the attacker can learn the TTL value (within a
given threshold).

12 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

5 Methodology for Estimating Hop Count Value

So far we showed that deploying a TTL-based filtering at the server side would
require some tolerance interval to be functional and avoid collateral damage by
incorrectly classifying legitimate traffic. In this section, we assess if an attacker can
actually bypass the filtering by predicting the correct hop count value between the
hosts and properly adjusting the TTL value. That is, we present a methodology
for estimating the hop count value between amplifiers and victims.

5.1 Key Idea and Attacker Model

Our key idea lies on the observation that paths between arbitrary locations
to a selected destination share (small) segments of the path. We leverage the
fact that such path information can be learned by an attacker to estimate the
number of hops of a packet sent from one location to another. To learn subpaths,
we (i) probabilistically model known paths obtained via traceroutes, and (ii)
combine this knowledge with BGP routing information. Figure 3 shows our idea
for estimating the distance (number of hops) between an amplifier (M) and a
victim (V). For our methodology, we use the common approach for representing
the Internet, which is a graph where nodes are the autonomous systems and edges
are the peerings (routing links) between them. Additionally, we assign weights
to the nodes to denote the hop count number within the individual AS. One
way to build such a graph that illustrates the AS-level topology of the Internet
is to use available BGP data to discover the connectivity information for the
ASes. Nevertheless, studies have shown that BGP data is only available to a
limited extent, therefore the Internet AS-level topology is partially hidden [9,16].
However, our methodology does not primarily rely on the available BGP data,
but rather on the traceroute information an attacker can obtain. We use the
BGP data, when available, as a complement to the traceroute data in order to
discover the missing ASes, and to subsequently calculate the number of hops.

Our attacker (A) aims at evading any TTL-based filter or, at least, reduce its
effectiveness in mitigating amplification attacks. His main goal is to predict the
TTL value as close as possible to the correct one, such that he can craft requests
which are deemed to be legitimate to the server, i. e., amplifier. In theory, there
are few approaches that the attacker may follow to learn the correct TTL value.
First, he may learn the TTL value by actively or passively monitoring traffic
anywhere on the route, and then probe the destination in order to calculate
the remaining part of the route. This approach is neither realistic nor practical
because the attacker has to be present at every route Ri between Mi and the
victim V . Second, if the attacker can position a probe either in the network of M
or V, he can easily measure the TTL value by tracerouting to the other host.

For a more realistic scenario, we restrict the attacker’s capabilities. Figure 3
illustrates this attacker model. Similar to the reverse traceroute method [11], our
attacker is capable of probing from random, distributed locations and can use
any publicly available online resources to traceroute to the amplifier and to the

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 13

AS-M

AS-2 AS-3

AS-V

AS-4

Common subpathCommon subpath

AS-1

Figure 3. Approach to estimate the hops between amplifier (M) and victim (V)

victim (e. g., RIPE Atlas[3] or looking glass servers). However, he does not have
control over the amplifier and not necessarily full control over the probes.

We restrict neither the location of the amplifiers nor the victims, i.e., they
can be located at arbitrary network locations. We assume that A can obtain a
set of amplifiers (e. g., NTP, DNS), all of which deploy TTL-based filtering and
respond to valid requests only4.

5.2 Methodology

We propose a methodology for estimating the distance between hosts on the
internet through an Exploratory Data Analysis (EDA)5. Our methodology is
comprised of three main components, namely, data collection, data processing,
and EDA. Figure 4 illustrates the methodology we propose in this paper.

Data Collection First, depicted in the data collection component, the attacker
collects traceroute data for the victim and the amplifier(s). The attacker launches
traceroutes to the targeted locations from a globally distributed set of hosts on
the Internet such as RIPE Atlas [3]. Note that the distribution of the selected
hosts is required to be global such that there will be a diversity of the paths,
allowing us to predict TTLs for arbitrarily chosen victims.

Data Processing Second, in the data processing component, we have to ensure
that the relevant data collected in the previous stage is complete and usable. In an
4 We assume that the amplifiers have deployed HCF to protect against amplification

attacks, therefore “valid” protocol requests are those with matching TTL value.
5 Exploratory Data Analysis is not a method or a technique, but rather a philosophy

for data analysis that employs a variety of techniques.

14 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

Raw data
collection

Data
processing

Build
a model

Find common
patterns

Approximate
the TTL value

Compare

RIPE DB

Extract the
ground truth

EDA

Figure 4. Workflow of the methodology

ideal world, tracerouting returns a complete path including all the IP addresses
and ASes on the way up to the destination. In practice, the collected data from
the previous phase is usually imperfect, with a plethora of missing connecting
hops [13]. Such data can pose difficulties in effective data analysis; therefore, we
need to develop certain methods for efficient data scrubbing. First, we discard all
the traceroutes that are missing more than a certain percentage (e. g., 50%) of
the intermediate hops. Also, we ignore traceroutes that cannot reach at least the
AS of the destination. In the case where the destination address belongs to the
same AS as the last replying node, we make an intuitive assumption that this is
the last AS in the path, and we supplement the route with the AS number of the
last replying node. We then continue filling up the gaps of the unknown ASes
due to private IP addresses within the traceroute. Private addressing might occur
when a packet passes through someone’s internal network with implemented
Multiprotocol Label Switching (MPLS) routing [21]. In such cases, we assume
that the border AS, the one with a public IP address before the MPLS routing, is
the correct one, and we fill in the gaps accordingly. Finally, to fill in the remaining
missing hops, we apply a technique that employs the publicly available BGP
data. The BGP data assists in the discovering of the neighboring AS 6 and helps
us to bridge the gap between two known autonomous systems. Note that this
technique can only complete the lacking AS numbers, but not the actual hops
(and their IP addresses).

Exploratory Data Analysis Once the data is processed, i. e., prepared for
analysis, we dissect the data set using the EDA approach. This stage of the
methodology repeats for every victim and it involves three subsequent steps.
6 A neighbor (or peering) autonomous system is the one that the AS directly intercon-

nect with in order to exchange traffic.

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 15

AS-M

AS-Mi

AS-V
Common subpathCommon subpath

AS-ViAS

ASj ASn

a

b

c

Figure 5. Connecting border ASes (AS-Mi and AS-Vi)

Find common patterns Finding common patterns is the first step in the data
exploration. This method transforms the paths from detailed traceroutes with IP
addresses of the hops to coarse-grained ones with only AS-level paths and their
weights, i. e., the number of hops in each AS for a particular traceroute.

Build a model This method assists in constructing a probabilistic table that
identifies the likelihood of an AS to be part of the route between amplifier and
victim. If all collected traceroutes pass through a particular AS, say AS-1, on
the way to the target location T, the method denotes the probability of 1 that
the AS-1 exist as a hop on the way to T. Moreover, this method also considers
the average number of hops within the AS and the distance of the AS from the
target. The average number is the AS internal hop count value, and it may vary
due to routing-related reasons such as load balancing. To identify the border
autonomous systems (in the next step), we need to define the distance as a
number of hops that a particular AS is distant from the target AS. For example,
the AS the target T belongs to always has a probability of 1 and distance 0.

Approximate the TTL value The probabilistic modeling helps in building a
partial path between two hosts. Consider the scenario illustrated in Figure 5. The
model identifies with a degree of certainty the common subpaths of the target
and the source. Furthermore, it estimates the hop count value of these subpaths.
To estimate the final hop count value, we need to bridge these two subpaths with
the missing intermediate AS(s). To this end, we apply techniques based on the
available BGP data such that the final result is a fully connected AS-level path.

Initially, we identify the border autonomous systems (labeled as AS-Mi and
AS-Vi in Figure 5), i. e., the last certain (most distant) AS in the common
subpaths. With respect to the possible missing hops for connecting these two
subpaths, we distinguish three different scenarios (marked with a, b and c in
Figure 5):

Direct connection (a) When a direct peering between the border autonomous
systems exists, i. e., AS-Mi is in the neighborhood7 of AS-Vi and vice versa,

7 Peering ASes are ASes which directly interconnect with each other. We obtain this

information from the available BGP data.

16 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

and the intersection set of the AS-Mi and AS-Vi neighbors is empty; we
assume that the border ASes are directly connected (AS-Mi ←→ AS-Vi).

One-hop connection (b) To identify the single connecting point in between,
accordingly, we have to check the neighbors of the border ASes. In the case
where only one intersecting AS exists, we assume that this particular AS is
the connecting point. If the intersection set contains more than one common
AS, we refer to our probability table. We then accordingly choose the AS
with the biggest probability to be a part of the route.

N-hop connection (c) A more complex scenario is when two or more interme-
diate AS are missing. In such a scenario, we build a tree of possible subpaths
by examining additional two levels8 of neighbors. Upon building up the tree
of all possible paths, we test every branch over the database of available
BGP routes and the pre-computed table of probabilities. In case the branch
is present in the BGP routing database, we deem that particular route to be
the accurate one.

Once the bridging subpath is identified, we add up the average hop count
of the connecting ASes to the sum of the hop count value estimated for the
subpaths.

6 Experimental Setup and Results

In the following, we describe the data set used to evaluate our approach. Subse-
quently, we present and discuss the experimental results of the evaluation.

6.1 Data Set

To evaluate the proposed methodology, we mainly use services provided by the
RIPE Atlas network [3], which is the largest Internet measurement network built
by RIPE NCC. Moreover, they provide an API for creating different types of
measurements and for collecting the data in a structured format. In the following,
we list the services and data sources used for our experimental evaluation.

1. RIPE Atlas probes: To attain a global coverage and also to have a possibility
to obtain the ground truth, we use the RIPE Atlas network of probes [3] as
a basis for our experiments. We observe that this network has around 9,000
active probes, spread across 181 countries and 3,386 ASes [4]. Such a global
coverage fulfils the requirements for our experimental evaluation. Moreover,
the platform give us the flexibility for requesting custom measurements, in
our case traceroutes, by selecting any of the deployed active probes. This
flexibility is of particular importance for our experiments since we can select
a subset of nodes with different geographical and logical locations to collect

8 Statistics [3] show that average length of AS-level paths is 4, therefore we bound the

subpath examination to 2 levels, i. e., we can examine paths of at least 6 hops.

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 17

the traceroute data. Additionally, when a probe acts as a victim in our leave-
one-out analysis (which we outline in the following), we can easily obtain
the ground truth by running traceroute measurement from the probes to the
amplifiers.

2. BGP data: When the collected traceroute data is not enough for making the
final assessment of the connectivity between the ASes, we utilize available
BGP data. In order to infer the AS-level connectivity, we use RIPE Atlas
as an accurate source for BGP data. Also the BGP data helps to obtain a
ground truth of individual ASes.

3. Amplifiers: To investigate the real-world implications of our attack, we
scanned for chargen amplifiers on the Internet. In total, we randomly selected
16 such servers.

6.2 Leave-one-out Evaluation

To evaluate the performance of our methodology, we use a leave-one-out (L-1-

O) evaluation approach, in which every probe acts like a victim at a selected
time. Informally, for a data set with P probes, we perform P experiments with
P − 1 training cases and one test case. In other words, for every experiment we
temporarily remove one probe from the data set and select that particular probe
as our victim. Upon fixing the probe Pi as a victim V , the model is rebuilt upon
this newly defined set.

Suppose that P = p1, . . . , pn is a set of probes, M = m1, . . . , ml set of
amplifiers, and R = r11, . . . , rnm set of traceroutes where rij is a traceroute from
pi to mj . For ease of exposition, we use the notation pi ⇒R M to describe a
set of all traceroutes from pi to every member of the set M . Applying the L-1-0
approach to the methodology works as follows:

1. Collect the traceroute data (R
⋃
{pi ⇒R P \ {pi}|i = 1, . . . , n}).

2. Process the data and extract the ground truth.
3. Remove probe pi from P (P \ {pi}) and set V = pi, where V is the victim.
4. Extract the ground truth for pi to M i. e., the distance from pi ⇒R M .
5. Run the EDA using the remaining data.
6. Repeat step 3-5 for i = 1, . . . , n

L-1-O in practice. We apply the L-1-O method on a set of 40 random RIPE Atlas
probes, located in different ASes, and 16 randomly distributed chargen amplifiers.
We first collect the required data, namely, we obtain the path from every probe
to all of the 16 amplifiers, and also between the probes within the set. We use
the RIPE Atlas REST API to create IPv4 traceroutes using ICMP packets and
hops limit of 32. In order to get more precise paths and avoid measurements
inconsistencies caused by load balancing routers, we employ the paris traceroute
measurement tool [6].

Once the traceroute data is collected and the data set is processed, i. e.,
cleaned up using the method described in Section 5.2, we pass the data through
step 3-6 from the L-1-0 approach. In such experimental setup, L-1-O theoretically

18 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

can evaluate 640 TTL predictions, i. e., paths from 16 amplifiers to 40 victims.
Unfortunately, because of the incompleteness of the traceroute data as well as
instability of some of the probes, the method was able to predict and evaluate
around 593 (92.6%) individual paths.

Overall performance Table 2 shows the overall performance of our method-
ology. The experimental results show that using our methodology, an attacker
can predict correctly without any deviation roughly 13% of the paths between
the amplifiers and the victims, i. e., 13% of the measured hop counts match the
ground truth. However, we showed in Section 4 that, with a tolerance of +/-2, a
TTL-based defense could block over 75% of spoofed traffic, while allowing 85% of
benign traffic to pass. Therefore, when we take this threshold into consideration,
our methodology is effective for 56.3% of the paths.

Amount Fraction Cumulated Fraction

+/-0 78 13.2% 13.2%

+/-1 170 28.7% 28.5%

+/-2 132 22.3% 56.3%

+/-3 49 8.3% 69.1%

more 164 27.7% 100%

Table 2. Overall performance of the methodology

Moreover, we observe that applying our methodology to a set of randomly
chosen amplifiers, the attacker can isolate amplifiers for which he can predict
the hop count value between the amplifier and any arbitrary victim with higher
accuracy. Thus, he can bypass the TTL-based defense running on the amplifier
and exploit it for a DRDoS attack. Figure 6 illustrates the average hop count
deviation per amplifier and shows that the attacker can, indeed, sample a set
of good amplifiers. We see several explanations for such a deviation among the
amplifiers. The geographical and logical location of the amplifiers and the victims
plays an important role. As we discussed before, the limitation of the BGP data
makes our methodology not equally precise for all the AS. Also another cause is
the inconsistency of the collected data between BGP data and traceroute path
caused by Internet Exchange Points and sibling ASes managed by the same
institution. However, these results show that even with a low threshold value
at the amplifier, by wisely choosing amplifiers to use, an attacker is able to
circumvent any TTL-based defense against DRDoS attacks.

7 Conclusion

In this paper, we evaluated the feasibility of using Hop Count Filtering to mitigate
DRDoS attacks. To that end, we detailed how a server can use active probing to

On the Feasibility of TTL-based Filtering for DRDoS Mitigation 19

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

Amplifier

0

1

2

3

4

5

6

A
ve

ra
ge

 h
op

 d
iff

er
en

ce

Figure 6. Average hop deviation per amplifier

learn TTLs of alleged packet senders. Based on data sets of benign and spoofed
NTP requests, we find that with a tolerance of +/-2, a TTL-based defense
could block over 75 % of spoofed traffic, while allowing 85 % of benign traffic to
pass. Subsequently, however, we show that an attacker can use a combination
of tracerouting and BGP data to build statistical models, which allows him to
estimate the TTL for his target within that tolerance level. Hence, by wisely
choosing amplifiers to use, he is able to circumvent any TTL-based defense against
DRDoS attacks. We therefore argue that any (current or future) defensive system
based on TTL values can be bypassed in a similar fashion, and find that future
research must be steered towards more fundamental solutions to thwart any kind
of IP spoofing attacks.

Acknowledgments

This work was supported by the German Federal Ministry of Education and
Research (BMBF) through funding for the Center for IT-Security, Privacy and
Accountability (CISPA) as well as through the BMBF grant 01IS14009B (“BD-
Sec”).

The authors would like to thank Sven Bugiel for his comments on an earlier
version of the paper. Additionally, we are grateful for the feedback from our
shepherd Roberto Perdisci as well as those of our anonymous reviewers.

References

1. Default TTL Values in TCP/IP. http://www.map.meteoswiss.ch/map-doc/ftp-

probleme.htm

2. Functional Requirements for Broadband Residential Gateway Devices. https://

www.broadband-forum.org/technical/download/TR-124.pdf

3. RIPE Atlas: Internet data collection system. https://atlas.ripe.net/

4. RIPE Atlas: Statistics and Network coverage. https://atlas.ripe.net/results/maps/

network-coverage/

5. Technical Details Behind a 400Gbps NTP Amplification DDoS Attack. https:

//goo.gl/j7zWEp

http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm
http://www.map.meteoswiss.ch/map-doc/ftp-probleme.htm
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://www.broadband-forum.org/technical/download/TR-124.pdf
https://atlas.ripe.net/
https://atlas.ripe.net/results/maps/network-coverage/
https://atlas.ripe.net/results/maps/network-coverage/
https://goo.gl/j7zWEp
https://goo.gl/j7zWEp

20 M. Backes, T. Holz, C. Rossow, T. Rytilahti, M. Simeonovski, B. Stock

6. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,

Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with Paris traceroute. In:

Internet Measurement Conference (2006)

7. Beitollahi, H., Deconinck, G.: Analyzing well-known countermeasures against dis-

tributed denial of service attacks. Computer Communications (2012)

8. Durumeric, Z., Bailey, M., Halderman, J.A.: An Internet-wide View of Internet-wide

Scanning. In: USENIX Security Symposium (2014)

9. Gregori, E., Improta, A., Lenzini, L., Rossi, L., Sani, L.: On the incompleteness of

the AS-level graph: a novel methodology for BGP route collector placement. In:

Internet Measurement Conference (2012)

10. Jin, C., Wang, H., Shin, K.G.: Hop-count filtering: an effective defense against

spoofed DDoS traffic. In: Proceedings of the 10th ACM conference on Computer

and communications security. ACM (2003)

11. Katz-Bassett, E., Madhyastha, H.V., Adhikari, V.K., Scott, C., Sherry, J., van

Wesep, P., Anderson, T.E., Krishnamurthy, A.: Reverse traceroute. In: USENIX

NSDI (2010)

12. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from Hell? Reducing the

Impact of Amplification DDoS Attacks. In: USENIX Security Symposium (2014)

13. Mao, Z.M., Rexford, J., Wang, J., Katz, R.H.: Towards an accurate AS-level

traceroute tool. In: Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication (2003)

14. Mirkovic, J., Reiher, P.L.: A taxonomy of DDoS attack and DDoS defense mecha-

nisms. Computer Communication Review (2004)

15. Mukaddam, A., Elhajj, I., Kayssi, A.I., Chehab, A.: IP Spoofing Detection Us-

ing Modified Hop Count. In: International Conference on Advanced Information

Networking and Applications (2014)

16. Oliveira, R.V., Pei, D., Willinger, W., Zhang, B., Zhang, L.: The (in)completeness

of the observed internet AS-level structure. IEEE/ACM Trans. Netw. 18(1) (2010)

17. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.

Computer Communication Review 31(3) (2001)

18. Pepelnjak, I., Durand, J., Doering, G.: BGP Operations and Security. RFC 7454,

RFC Editor (2015), https://tools.ietf.org/html/rfc7454

19. Postel, J.: Internet protocol specification. RFC 791, RFC Editor (1981), https:

//tools.ietf.org/html/rfc791

20. Postel, J.: Character generator protocol. RFC 864, RFC Editor (1983), https:

//tools.ietf.org/html/rfc864

21. Rosen, E.C., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architec-

ture. RFC 3031, RFC Editor (January 2001), http://tools.ietf.org/html/rfc3031

22. Rossow, C.: Amplification Hell: Revisiting Network Protocols for DDoS Abuse. In:

NDSS (2014)

23. Ryba, F.J., Orlinski, M., Wählisch, M., Rossow, C., Schmidt, T.C.: Amplifica-

tion and DRDoS Attack Defense–A Survey and New Perspectives. arXiv preprint

arXiv:1505.07892 (2015)

24. Specht, S.M., Lee, R.B.: Distributed Denial of Service: Taxonomies of Attacks, Tools,

and Countermeasures. In: International Conference on Parallel and Distributed

Computing Systems (2004)

https://tools.ietf.org/html/rfc7454
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc864
https://tools.ietf.org/html/rfc864
http://tools.ietf.org/html/rfc3031

