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ABSTRACT

In the malware field, learning-based systems have become popu-
lar to detect new malicious variants. Nevertheless, attackers with
specific and internal knowledge of a target system may be able
to produce input samples which are misclassified. In practice, the
assumption of strong attackers is not realistic as it implies access to
insider information. We instead propose HideNoSeek, a novel and
generic camouflage attack, which evades the entire class of detec-
tors based on syntactic features, without needing any information
about the system it is trying to evade. Our attack consists of chang-
ing the constructs of malicious JavaScript samples to reproduce
a benign syntax. For this purpose, we automatically rewrite the
Abstract Syntax Trees (ASTs) of malicious JavaScript inputs into
existing benign ones. In particular, HideNoSeek uses malicious
seeds and searches for isomorphic subgraphs between the seeds
and traditional benign scripts. Specifically, it replaces benign sub-
ASTs by their malicious equivalents (same syntactic structure) and
adjusts the benign data dependencies–without changing the AST–,
so that the malicious semantics is kept. In practice, we leveraged
23 malicious seeds to generate 91,020 malicious scripts, which per-
fectly reproduce ASTs of Alexa top 10,000 web pages. Also, we can
produce on average 14 different malicious samples with the same
AST as each Alexa top 10. Overall, a standard trained classifier has
99.98% false negatives with HideNoSeek inputs, while a classifier
trained on such samples has over 88.74% false positives, rendering
the targeted static detectors unreliable.
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1 INTRODUCTION

JavaScript is a browser scripting language initially created to en-
hance the interactivity of websites and to improve their user-friend-
liness. However, as it offloads the work to the user’s browser, it
is also used to engage in malicious activities such as crypto min-
ing [46], drive-by download attacks, or redirections to websites
hosting malicious software [11, 32]. Given the prevalence of such
nefarious scripts, the anti-virus industry has increased the focus
on their detection [15, 27, 40, 44, 69]. The attackers, in turn, make
increasing use of obfuscation techniques [81], e.g., string manipula-
tion, dynamic arrays, encoding obfuscation, to evade detection by
traditional AV-signatures and impose additional hurdles to manual
analysis. Yet, using the way in which JavaScript’s lexical (e.g., key-
words, identifiers) or syntactic (e.g., statements, expressions) units
are arranged provides valuable insight to capture the salient prop-
erties of the code. When combined with machine learning, such
systems can automatically and accurately detect new malicious (ob-
fuscated) variants [16, 18, 49, 64]. While such static analyses allow
to quickly discard benign samples, forwarding only those likely to
be malicious to more costly dynamic components [11], they are
also heavily dependent on reliable lexical or syntactic detectors.

Therefore, the field of attacks against machine learning systems
is vast [4, 5]. In particular, several attacks have been proposed to
evade classifiers by transforming a given input sample so that it
keeps its intrinsic properties, but the classifier’s predictions between
the original and the modified input differ, e.g., adversarial attacks
on images [24, 61], on malware [22, 26, 38, 50, 51, 66, 74], and
mutations of malicious samples [17, 80]. For them to work, all
these tools need information about the classifier they are trying to
evade, like some knowledge about the target model internals, or the
training dataset, or at least the classification scores assigned to input
samples. Another class of attacks focuses on the transferability in
machine learning. Indeed, adversarial examples affecting one model
often affect another, even if they have different architectures or
training sets, provided they were trained to perform the same task.
Therefore attackers can build and train their surrogate classifier,
craft adversarial examples against it and transfer them to the victim
classifier [41, 59, 60, 72, 75]. Still, the attackers need a specific target
system, as well as access to it, for them to train their own classifier.

In this paper, we introduce a novel attack which works inde-
pendently of any machine learning system and does not need any
knowledge of model internals, training dataset, or a classifier to test.
Indeed, HideNoSeek leverages the fact that malicious obfuscation
leaves traces in the malicious files’ syntax, which enables to differ-
entiate them from benign (even obfuscated) inputs. Thus, changing
the constructs of a malicious sample to reproduce an existing benign
syntax by design foils any classifier based on the syntactic or lexical
structure. Due to the exact mapping onto a benign AST, our attack
is more effective than existing malware, which are, e.g., inserted
in bigger benign files, to evade detection by statistically increasing
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the proportion of benign features. In particular, HideNoSeek au-
tomatically rewrites the AST of a malicious JavaScript input into
an existing benign one, while retaining the malicious semantics,
thereby bypassing any classifier working on the syntactic structure.
Since we can choose a variety of benign samples’ and libraries’
ASTs to reproduce, our attack is also effective against AV-systems
using structural analysis, e.g., signatures or content-matching. In
essence, HideNoSeek specifically crafts samples that are likely to
be labeled as benign by static pre-filtering systems, meaning they
will not be analyzed by dynamic components.

Our implemented attack responds to the following challenges:
practical applicability regarding crafted samples, effective evasion,
and high impact in terms of misclassifications. We address these
challenges by proposing a methodology to detect, replace, and ad-
just so-called clones at the AST level between benign and malicious
files. The key elements of HideNoSeek are the following:
- Program Dependency Graph-Based Analysis — Our system benefits
from a syntactic analysis to transform JavaScript code into an AST.
The latter is then used to build a Control Flow Graph (CFG), which
is leveraged to define a Program Dependency Graph (PDG), also
representing the data dependencies between the nodes.
- Slicing-Based Clone Detection — Using backward slicing with
respect to the control and data flow, we traverse a benign and
malicious AST to detect isomorphic subgraphs (syntactic clones).
- Benign AST Replacement — Once found, the benign clones are re-
placed by the malicious ones. The crafted code is then automatically
adjusted, with respect to the AST, to still be able to run.

We evaluate our system in terms of the proportion, validity, and
complexity of the malicious samples it crafts, the impact these docu-
ments would have, as well as their evasion capability in practice. For
the malicious seeds, we use 23 syntactically unique (deobfuscated)
files extracted after a thorough analysis of our 122,345 sample set.
As for the benign samples, we consider the scripts extracted from
the start pages of the Alexa top 10,000 websites, as well as 268
popular JavaScript library versions. Overall, HideNoSeek crafted
91,020 malicious files which perfectly reproduce ASTs of Alexa top
10k, and evaded the targeted classifiers over 88.74% of the time.

The remainder of this paper is organized as follows. Section 2
introduces state-of-the-art JavaScript obfuscation techniques and
static detection systems. We describe the methodology and imple-
mentation of HideNoSeek in Section 3. Subsequently, in Section 4
we present the results of our evaluation w.r.t. to the quantity, quality,
impact and effective evasion of the crafted samples; the implica-
tions of that evaluation are further discussed in Section 5. Finally,
Section 6 presents related work and Section 7 concludes the paper.

2 JAVASCRIPT OBFUSCATION

This section first provides an overview of existing JavaScript obfus-
cation techniques. Then, we select state-of-the-art static systems,
which can detect malicious (obfuscated) JavaScript. Finally, we in-
troduce HideNoSeek, our advanced method to rewrite the ASTs of
malicious inputs into existing benign ones.

2.1 Obfuscation Techniques

To avoid detection by traditional AV-malware detectors, attackers
abuse obfuscation techniques. Several categories of evasion can be
found in the wild, as stated by [31, 39, 81]:
• Randomization obfuscation consists of randomly inserting or
changing elements of a script without altering its semantics,
e.g., whitespace characters addition, variables name random-
ization, which foils techniques relying on content matching.
• Data obfuscation regroups string manipulation techniques,
e.g., string splitting/concatenation, character substitution.
• Encoding obfuscation avoids that a given string appears in
plaintext by using standard, e.g., ASCII, or custom encoding,
as well as encryption and decryption functions.
• Logic structure obfuscation consists of adding irrelevant in-
structions, e.g., numerous conditional branches, to the script.
• Environment interactions is specific to Web JavaScript, where
statements can be split and scattered across multiple script
tags in the HTML document. This way, the payload can be
stored within the DOM and extracted subsequently.

Still, obfuscation should not be confused with maliciousness: be-
nign obfuscation can protect intellectual property, while malicious
obfuscation hides the malicious intent of the sample. Therefore,
benign, malicious, or no obfuscation leave different traces in the
syntax of the considered files, which can be leveraged for an accu-
rate malware detection.

2.2 Static Detection Systems

Several systems combine the previous differences at a lexical, syn-
tactic, or structural level with off-the-shelf supervised machine
learning tools to distinguish benign from malicious JavaScript in-
puts. Due to their usage of static features, they represent a subset of
the detectors HideNoSeek targets. Such static systems are particu-
larly relevant to quickly analyze a considerable amount of files and
forward only those likely to be malicious to much slower dynamic
components [11]. In particular, Rieck et al. developed Cujo [64],
which combines a lexical analysis of JavaScript with an SVM classi-
fier for an accurate malware detection. Similarly, Stock et al. pre-
sented Kizzle [69], which uses tokens extracted from different
exploit kits families for clustering and signature generation. More-
over, Curtsinger et al. implemented Zozzle [16], which combines
the extraction of features from the AST, as well as the correspond-
ing JavaScript text, with a Bayesian classification system to identify
syntax elements predictive of malware. Hao et al. also used a naive
Bayes classification algorithm [27] to analyze JavaScript code by
benefitting from extended API symbol features through the AST.
With JaSt, Fass et al. [18] leveraged the use of syntactic units,
combined with a random forest classifier, to accurately detect new
malicious (obfuscated) JavaScript instances. Still, these systems do
not confound obfuscation with maliciousness (c.f. Section 2.1), but
leverage specific constructs for an accurate detection.

2.3 Malicious Transformation of ASTs

Instead of trying to hide the maliciousness of a file behind tradi-
tional obfuscation layers, which are specific to malware and thereby
enable their detection,HideNoSeek changes the constructs of a ma-
licious sample to reproduce an existing benign syntax (this hiding



Figure 1: Schematic depiction of our approach

process can be seen as a new form of obfuscation). As a conse-
quence, it automatically foils the previously outlined classifiers.
The main idea is to rewrite a malicious AST into an existing benign
one. To this end, it first looks for isomorphic subgraphs between
the malicious and benign ASTs. Since malicious obfuscation is re-
sponsible for their differences, we first deobfuscated the malicious
files, to get the original syntax which resembles more a benign
AST than the obfuscated version. JSDetox [71] and box-js [12] are
combined with a manual analysis for the deobfuscation process.

3 METHODOLOGY

HideNoSeek aims at automatically rewriting the AST of a malicious
JavaScript input into an existing benign one while retaining the
malicious semantics after execution. This section first provides a
high-level overview of our system, before discussing its three main
components, namely an abstract code representation part, a clone
detector, and a malicious code generator, into more details.

3.1 Conceptual Overview

As illustrated by Figure 1, HideNoSeek takes a malicious seed m
and a benign document b as input, and outputs a sample s with the
same AST as b, while retaining the malicious semantics of m.

First, we perform a static analysis of JavaScript documents, aug-
menting the traditional AST with control and data flow information,
which we store in a joint structure, namely a PDG [21] (stage 1
of Figure 1). This structure enables to reason about the order in
which statements are executed, as well as the conditions that have
to be met for a specific execution path to be taken (Section 3.2).
HideNoSeek then uses the previous graph structure to look for
identical sub-ASTs between the malicious seed and the considered
benign input (stage 2 of Figure 1). For this purpose, HideNoSeek
looks for pairs of matching benign and malicious nodes (i.e., same
abstract syntactic structure) and slices backward along their control
and data flow as long as it reports further matching statements.
These common structures are stored together in a list (slice), which
we refer to as clones. Since a malicious sub-AST may be found
several times in a given benign input, we define criteria to, e.g.,
maximize the clones’ size or minimize the distance between the
nodes inside a clone, thereby reducing the adjustment surface (Sec-
tion 3.3). As a matter of fact, HideNoSeek replaces the benign
clones by the malicious ones, and follows the original benign data
dependencies, so as to automatically adjust the initial benign nodes–
which were impacted by the replacement process–for them to still
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Figure 2: AST corresponding to the code of Listing 1

respect the initial benign AST structure, while keeping the mali-
cious semantics after execution (stage 3 of Figure 1). Finally, we
transform the AST back to code (Section 3.4).

This way, HideNoSeek crafted a sample, which has the AST
of an existing benign input, while retaining the semantics of a
malicious file, thereby foiling the detectors from Section 2.2.

3.2 Program Dependency Graph Analysis

To detect clones at the AST level between a benign and a malicious
file, with respect to control and data flow, HideNoSeek is based
on an abstract, labeled, and oriented code representation. The AST
provides both a hierarchical decomposition of the source file into
syntactic elements, and code abstraction, ignoring, e.g., the variable
names and values to consider them as Identifier or Literal (for legi-
bility reasons, the variable names and values appear in the paper’s
graphical representations, but they are not part of the graphs). In
addition, we indicate the control and data flow between the graph’s
nodes by labeling the AST, which becomes a PDG.

3.2.1 Syntactic Analysis. The syntactic analysis is performed by
the JavaScript parser Esprima [28], which takes a valid JavaScript
sample as input and produces an ordered tree (AST) describing the
syntactic structure of the program. Overall Esprima can produce
69 different syntactic units, referred to as nodes. Inner nodes repre-
sent operators such as VariableDeclaration, AssignmentExpression
or IfStatement, while the leaf nodes are operands, e.g., Identifier or
Literal (except for ContinueStatement and BreakStatement). Figure 2
shows the Esprima AST obtained from the code snippet of Listing 1.
As presented in the graph, the AST only retains information about
how the programming constructs are nested to form the source
code but does not contain any semantic information such as the
control or data flow, which we need for clone detection.

3.2.2 Control Flow Analysis. Contrary to the AST, the CFG allows
to reason about the conditions that have to be met for a specific
execution path to be taken. To this end, statements (predicates and
non-predicates) are represented by nodes that are connected by
labeled and directed edges to represent flow of control.

We construct the CFG by traversing the previous AST’s nodes
depth-first pre-order. Since the Esprima AST does not only comprise
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Figure 3: AST of Listing 1 extended with control flow

statements, but also contains non-statement and still non-terminal
information, as shown in Figure 2, we first define a statement de-
pendency (labeled with s) to refer to the edge between a statement
node and its non-statement children, or between two non-statement
nodes. After, we define two different labels for the CFG edges link-
ing two statement nodes. The label e is used for edges originating
from non-predicate statements, while edges originating from predi-
cates are labeled with a boolean, standing for the value the predicate
has to evaluate to, for this path in the graph to be chosen, as shown
in Figure 3 (for clarity reasons, we do not graphically represent
the CFG or PDG, but add control and data flow information on
the AST). Contrary to the AST of Figure 2, this graph shows an
execution path difference when the if condition is true, and when
it is not. Nevertheless, the CFG still does not contain any data flow
information, which we also need for clone detection.

3.2.3 Data Flow Analysis. To this end, we implement a PDG [21],
which augments the previous CFG with data flow. This code rep-
resentation enables to bypass the sequencing choices made by the
programmer to capture the data and control dependencies between
the different program components. For this purpose, statements
are connected by a directed data dependency edge if and only if,
an element, e.g., variable, object, function, defined or modified at
the source node is used at the destination node, taking into account
the reaching definitions for each variable, as shown in Figure 4.
This PDG indicates, in particular, the order in which statements
from Listing 1 should be executed, e.g., as suggested by the data
flow, lines 1 and 2 are executed before line 3; we could nevertheless
interchange lines 1 and 2 without altering the code semantics.

In JavaScript, a scope defines the accessibility of variables. If a
variable is defined outside of any function, or without the var, let
or const keywords, or using the window object, it is in the global
scope, whereas variables that can be used only in a specific part
of the code, e.g., block statement, are in a local scope. To build our
PDG, we traverse our CFG depth-first pre-order and maintain two
variables lists. The first one contains the global variables, and the
last one the local variables currently declared in the considered block
statement, taking into account the specific local scope of variables
defined with let or const (in the block where they were defined).
For objects, we keep the order in which they are modified, since we
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Figure 4: AST of Listing 1 extended with control & data flow

1 var x = 1;
2 var y = 1;
3 if (x == 1) {d = y;}

Listing 1: JavaScript code example

cannot statically predict which method should be called on it first,
e.g., an XMLHttpRequest must be opened before the send() method
is called. Thus, we consider the data flow on the complete object and
that an object is modified whenever a method is called on it, or one
of its property changed. In these cases, we implement a data flow
between the previous object version and the current one and update
our variables list (local or global according to the context) with a
reference to the modified object. Next, we handle functions’ name
as a variable (local or global), since functions and variables cannot
share a name in JavaScript. In particular, we make the distinction
between function declarations–a standalone construct defining
named function variables–, and function expressions–named or
anonymous functions that are part of larger expressions. Further-
more,HideNoSeek respects the function scoping rules, and handles
closures and lexical scoping. Finally, we connect the function call
nodes to the corresponding function definition nodes with a data
dependency, thus defining the PDG at the program level [82].

3.3 Slicing-Based Clone Detection

Given the space B of benign JavaScript samples and the spaceM
of malicious ones (according to some oracle), we aim at building a
sample space S so that:

S = {x |x ∈ M,∃x ′ ∈ B|ast(x) = ast(x ′)}

with ast(x) the AST of the sample x .
First, we aim at detecting sub-ASTs from a malicious file that can
also be found in a benign one. We refer to such common structures
as clones. To detect clones, we consider the algorithm of Komondoor
et al. [45], which combines PDGs and a variation of program slic-
ing [78]. First, we create equivalence classes (Section 3.3.1), which
regroup common benign andmalicious PDG statement nodes, based
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on their abstract syntactic meaning. Then, for each benign and
malicious pair from the same class with the same statement depen-
dencies (i.e., slicing criterion), we add them to the current clones list
and slice backward along their control and data dependencies. We
add these predecessors to the current clones list if and only if they
match (same syntax), and iterate as long as matching statement
nodes are found (Section 3.3.2). Finally, as a malicious sub-AST may
be found several times in the same benign document, we define
criteria to select the strongest clones (Section 3.3.3).

3.3.1 Equivalence Classes. Finding clones between a benign and
a malicious file consists of finding isomorphic subgraphs between
their abstract syntactic representations. Computing all pairs of be-
nign/malicious statement nodes and comparing their syntax, to
keep only the matching ones, would not be efficient. Thus, Hi-
deNoSeek first partitions the benign PDG statement nodes into
equivalence classes based on their syntactic structure. For example,
the PDG of Figure 4 would have four distinct classes: VariableDecla-
ration (with two elements), IfStatement, BlockStatement, and Expres-
sionStatement. Then, the equivalence classes are completed with
the considered malicious file, e.g., the PDG of Figure 5 would add
two malicious elements in the class ExpressionStatement. At this
stage, it is not sure that a benign and a malicious node from the
same class match, as they could have a different subgraph, which
is the case in this example. We perform this test in the next step.

3.3.2 Clone Detection. The next step consists of iterating through
the previous equivalence classes list: for each equivalence class, the
find_clone function, described in Algorithm 1, is called on every
benign and malicious pair (b, m). To find two isomorphic subgraphs,
the former containing b and the latter m, HideNoSeek verifies that
they have the same complete sub-AST by traversing and comparing
their respective nodes along the statement dependencies. Then it
slices backward in lock step along the control and data flow, start-
ing from b and m, adding them as well as their predecessor to the
current clones list if and only if their respective predecessor match
(i.e., same class and same sub-AST). We iterate the process as long
as predecessors that have not been handled yet are found. Because
of backward slicing along the control and data flow, this algorithm
can find non-contiguous clones (i.e., clones whose components do
not occur directly one after the other in the source code), as well as
clones in which matching statements have been reordered. In addi-
tion, whenever we find a pair of matching statement nodes that we
have already handled, the process stops for the current pair, the sys-
tem retrieves the clones which have been found previously on the

1 wscript = WScript.CreateObject('WScript.Shell ');
2 wscript.run("cmd.exe /c \"<malicious powershell >;\"", "0");

Listing 2: Malicious JavaScript code example

1 obj = document.createElement("object");
2 obj.setAttribute("id", this.internal.flash.id);
3 obj.setAttribute("type", "application/x-shockwave -flash");
4 obj.setAttribute("tabindex", "-1");
5 createParam(obj , "flashvars", flashVars);

Listing 3: Initial extract of the plugin jPlayer 2.9.2 (benign)

pair and adds these nodes to the current slice. Besides performance
improvement, it also ensures that no subsumed clones are reported
at this stage. Furthermore, when a pair of non-matching statement
nodes (b, m) is tested, the system still recursively slices backward
from b and tests its predecessors against m, which enables to jump
over benign data dependencies to find more non-contiguous clones.
Because of this step, we can find two isomorphic subgraphs which
are not PDGs, therefore expanding the possible set of clones. For
example, HideNoSeek detects that the ASTs of Listing 2 and List-
ing 3 match respectively for the lines 2 and 3 (format: a.b(str1, str2)).
By slicing backward along the data dependencies, our system re-
spectively tests the lines 1 and 2, which do not match. Applying the
previous rule, it respectively tests the lines 1 and 1 which match
(format: a = b.c(str)). This way, the complete AST of Listing 2 can
be found in Listing 3. To avoid infinite loops on each pair tested,
we keep a list to handle them only once. When the process finishes,
it has identified two isomorphic subgraphs: one benign and one
malicious, which may contain several nodes. Further pairs of iso-
morphic subgraphs (independent from the previous ones) may be
found while iterating through the equivalence classes, hence the
need for some metrics to determine the strongest pair of clones.

Data: benign, malicious, clones_list
Result: clones_list entry with the corresponding benign and malicious

subgraphs
initialization;
if benign and malicious belong to the same equivalence class and have the exact
same complete sub-AST then

if they have already been handled together then
search the corresponding clones_list entry;
append the clones found so far to it;

else

create a a new clones_list entry;
add benign and malicious to it;
beniдn_parents ← backward_slice(benign);
malicious_parents ← backward_slice(malicious);
iterate over benign_parents and malicious_parents;
call find_clone on the resulting combinations;

end

else

beniдn_parents ← backward_slice(benign);
iterate over benign_parents;
call once find_clone(benign_parent, malicious);

end

return clones_list

Algorithm 1: find_clone(): finds two isomorphic subgraphs
between a benign and a malicious PDG



3.3.3 Strongest Clones Selection. A portion of the same malicious
AST can be found several times in the benign one (the opposite
may also be true). In this case, HideNoSeek selects only one. The
first criterion consists of choosing the largest clone (based on the
number of matching statement nodes it contains), and not a sub-
sumed version of it, so as to maximize the clone coverage, knowing
that subsumed clones can only be reported when the system jumps
over a non-matching benign node to consider its data flow prede-
cessors. Still, for the attack to be effective, the complete malicious
sample has to be replaced in syntactically equivalent parts of the
considered benign file. The second criterion consists of maximiz-
ing the proportion of identical tokens between the benign and the
crafted samples. Indeed, reproducing the AST automatically copies
most of the tokens, but we may observe some differences for the
syntactic unit Literal, which can be translated into several tokens,
e.g., Int, Numeric, Null, depending on the context. If some tokens do
not match, HideNoSeek reports them and suggests how to modify
them, for them to match the initial tokens, e.g., the Bool false is
equivalent to the String "0", and to the Int 0. The third and last crite-
rion consists of minimizing the distance between the nodes inside a
clone, therefore minimizing the adjustment surface (Section 3.4.2).

Nevertheless,HideNoSeek does not necessarily report clones for
all (b, m) pairs tested, as theymay have different syntactic structures.
For this purpose, we semi-automatically generated (up to three)
different syntactic versions of a same malicious seed to improve
the proportion of clones reported (c.f. Section 4.1.1). For example,
the VariableDeclaration var a = 10 (in top-level code), the Assign-
mentExpression a = 10, and the ExpressionStatement window.a = 10
are semantically equivalent, but syntactically different.

3.4 Malicious Code with a Benign AST

Once HideNoSeek has found identical benign and malicious sub-
ASTs, it replaces the benign sub-ASTs with the corresponding ma-
licious ones. This process then yields some adjustments for the
crafted code to still be able to run. Therefore, HideNoSeek follows
the data flow originating from the initial benign nodes (which have
been replaced by their malicious equivalent) and modifies them,
with respect to the AST, so that the malicious semantics is kept.

3.4.1 Clone Replacement. An AST is composed of inner and leaf
nodes, the latter which represent the operands. Saying that a benign
AST is identical to a malicious one means that they have the same
nodes, with the same oriented edges. Still, the benign code is differ-
ent from the malicious one, as the variables name are not directly
contained in the AST, but are attributes of the leaves. Therefore,
replacing the attributes of the benign leaves with the malicious
ones would replace the benign code portion, previously selected by
HideNoSeek, by the malicious code, while keeping the same AST
structure. The lines 1 and 3 of Listing 4 illustrate the replacement
of Listing 2 in the corresponding part of Listing 3 (c.f. Section 3.3.2).
Nevertheless, the replacement process has modified the benign
environment and might interfere with the benign functionalities,
which could result in the crafted sample not running anymore.

3.4.2 Benign Adjustments and Code Generation. As a countermea-
sure, HideNoSeek searches for fragments that may have been im-
pacted by the replacement process and automatically adjusts them

to the environment, so that the modified code still runs. To this end,
it recursively explores the data flow originating from benign clone
nodes, under the conditions that (a) they do not belong to a cloned
node and (b) they have not been handled yet, e.g., lines 2, 4 and
5 from Listing 3. HideNoSeek first renames the benign variables,
impacted by the replacement, with the name of the malicious vari-
ables which are now part of the code. Then, it analyses the end of
each data dependency, recursively storing the nodes it contains in a
list, all the way down to the leaves. After that, our system searches
in its database a sublist of the previous nodes list to determine the
generic modifications that have to be done to the benign nodes,
for the code to still run while keeping its initial AST structure (if
HideNoSeek does not find a match in the database, it reports the
missing pattern so that we can search for a new adjustment and
add it to the database). For example, if [’CallExpression’, ’Identifier’]
matches the node list, it means that the benign code would look
like func(my_obj[params]), where func and params are respectively
a benign given function with its parameters, and my_obj stands for
the object the data flow points to, i.e., the object that HideNoSeek
modified. Because of our modification, the function may not run
anymore. To avoid this phenomenon, HideNoSeek replaces the
initial function name by a function which can be executed for ev-
ery possible parameter type and number, without throwing an
error or causing side effects. Such functions include, among others,
decodeURI(), isFinite(), toString(). Our current list contains nine dif-
ferent names, randomly selected each time that such a replacement
is needed. Line 5 of Listing 4 illustrates this specific adjustment
process. Other adjustments may include a property or a method
called on the object we modified, e.g., lines 2 and 4 of Listing 4. As
previously, HideNoSeek has a list of nine properties, that can also
be used as methods, such as hasOwnProperty, toString, which can
be combined and are valid in all contexts.

Finally, the ECMAScript code generator Escodegen [70] is used
to transform the modified AST back to JavaScript code.

1 wscript = WScript.CreateObject('WScript.Shell ');
2 wscript.toString('id', this.internal.flash.id);
3 wscript.run('cmd.exe /c "<malicious powershell >;"', "0");
4 wscript.hasOwnProperty('tabindex ', '-1');
5 parseFloat(wscript , 'flashvars ', flashVars);

Listing 4: Modified extract of the plugin jPlayer 2.9.2

(Listing 3) with the malicious code of Listing 2

4 COMPREHENSIVE EVALUATION

In this section, we outline the results of our extensive evaluation.
To produce malicious samples with an existing benign AST, Hi-
deNoSeek uses 23 unique malicious seeds, whose ASTs it can
rewrite in the ASTs of our 8,546 different benign scripts. We first
evaluate the number of malicious samples our system was able to
produce per seed, before considering the impact our attack would
have. Then, we verify the validity and maliciousness of the sam-
ples previously crafted. Finally, we test HideNoSeek on real-world
detectors and analyze its run-time performance.



4.1 Experimental Setup

The experimental evaluation of our approach rests upon two exten-
sive datasets. The former contains 122,345 SHA1-unique malicious
JavaScript samples and the latter 8,941 unique benign files.

4.1.1 Malicious Dataset. Our malicious dataset, presented in Ta-
ble 1, is a collection of samples collected between 2014 and 2018
(73% of which have been collected after 2017). In particular, it in-
cludes exploit kits provided by Kafeine DNC (DNC) [37] and Geeks-
OnSecurity (GoS) [23], as well as the malware collection of Hynek
Petrak (Hynek) [62] and the German Federal Office for Information
Security (BSI) [10]. We consider that all these files are malicious.
Indeed, the deobfuscation and the manual analysis of these inputs,
performed in the next step, enabled us to exclude the documents,
which did not present anymalicious behavior. Initially, JSDetox [71]
and box-js [12] performed the samples’ deobfuscation, but we could
not automate the process due to malicious files conducting envi-
ronment detection and refusing to execute. As a consequence, each
tested sample needed to be, at least partially, manually deobfuscated.
For this purpose, we clustered our data (by source), based on the
syntactic units it contained, using an n-gram analysis [15, 18, 49, 64].
From the 122,345 scripts, we got 61 clusters, which reduced the
number of files to analyze manually. Subsequently, we randomly
selected one file per cluster, deobfuscated and unpacked it until
the initial payload appeared;1 i.e., to a stage were no JavaScript
was dynamically created through means of eval or equivalents. In
essence, this is the state we assume a malicious entity would have
before obfuscation or packing. After deobfuscation, we noticed that
eight samples were either benign or incomplete (e.g., we did not
have the landing page of the exploit kit, which prevented us from
unpacking the malicious content) and we could not find any valid
substitute in the same clusters. In contrast, two files had two mali-
cious behaviors depending on the machine where they executed.
Therefore, they gave us four deobfuscated samples instead of two.
Finally, we got 55 working malicious documents, 30 of which are
droppers, 3 call a PowerShell command, 2 a VBScript command and
20 are exploit kits (e.g., donxref, meadgive, RIG).

To avoid duplicated samples, we manually iterated over the 55
scripts and looked for similar structures, e.g., the combination of
createElement and appendChild is often semantically equivalent to
document.write. As mentioned in Section 3.3.3, we kept the different
variants (up to three for a given file) found for HideNoSeek to
test, in the case that it does not find a clone with the first one.
Still, we refer to all these variants as one seed. Besides, we are
working at the AST level; therefore, we consider that two samples
with the same AST but a different behavior are identical. After
duplicate deletion, we retained 22 malicious seeds, to which we
added a crypto-miner, as cryptojacking in browsers has become
a widespread threat [30, 46, 77]. These 23 unique seeds represent
in total 37 different syntactic variants. Finally, to verify to what
extent our dataset was representative of the malicious distribution
found in the wild, we extracted 13,884 samples from VirusTotal [73].
These were collected after the files we analyzed previously and did
not contain duplicates. As before, we clustered them syntactically
and got 8 clusters (Table 1), one file of each we deobfuscated. As

1We discuss possible drawbacks induced by the deobfuscation process in Section 4.4.1

Table 1: JavaScript malicious dataset description

Source Creation #JS Clusters Deobf

DNC 2014-18 4,444 9 11
Hynek 2015-17 30,247 15 15
GoS 2017 2,595 27 19
BSI 2017-18 85,059 10 10

Sum 2014-18 122,345 61 55

VirusTotal 2017-18 13,884 8 8

Table 2: JavaScript benign dataset description

Source #JS #Valid JS

Alexa 10k 8,673 8,279
Libraries 268 267

Sum 8,941 8,546

the 8 deobfuscated samples matched our 23-sample set (7 matched
exploit kits, and 1 a dropper), we deemed our dataset to be saturated.

4.1.2 Benign Dataset. As for the benign dataset (Table 2), we stat-
ically scraped the start pages of Alexa top 10,000 websites, also
including external scripts. Given the fact that we extracted this
JavaScript from the start pages of high-profile sites, we assume
them to be benign. At the same time, we downloaded the most
popular JavaScript libraries, according to W3Techs [76].

4.2 Evasive Samples Generation

HideNoSeek leverages the previous 23 malicious seeds to produce
malware with an existing benign AST. In this section, we first
report on the samples our system could craft, before evaluating our
attack’s impact on the highest ranked web pages and libraries.

4.2.1 Evasion per Malicious Seed. In our first experiment, we stud-
ied the number of samples that HideNoSeek could produce per
malicious seed, by using the Alexa top 10,000 web pages as a be-
nign dataset. During the deobfuscation process (Section 4.1.1), we
noticed that exploit kits from the same family (based on AV labels)
could have a different syntactic structure, as well as a different
behavior. In these cases, they appear several times in the seeds
from Table 3. This table represents the number of malicious sam-
ples crafted per malicious seed (#Samples), the number of nodes
that HideNoSeek had to adjust due to the replacement of benign
sub-ASTs with syntactically equivalent malicious ones (#Adjust),
as well as the average number of nodes contained in the crafted
samples (#Nodes)–i.e., the average number of nodes in the benign
samples whose ASTs were reproduced by a given malicious seed. In
particular, we make a distinction between the samples crafted with
the benign AST of a top 1k web page, against a top 10k one. In fact,
the number of crafted samples is not linear and, proportionally, we
tend to produce more samples for the first 1,000 web pages (e.g.,
for Blackhole1 we could have expected to generate around 5,600
samples in Alexa top 10k web pages, but in practice we got 10%
less; for Crypto-miner we even got 65% less than expected). Still,
the start pages of the 1,000 most consulted websites do not seem to
be larger (in terms of delivered JavaScript) than the start pages of



the top 10k. It is rather the opposite since, on average, our PDGs
contain more nodes for pages from Alexa top 10k than Alexa top
1k. Nevertheless, the first 1,000 seem to have a more complicated
structure with, in particular, more data flow: for each replacement
HideNoSeek made, it had to adjust more nodes for the first 1,000
web pages. For this reason, we estimate that the higher complexity
of the first 1,000 web pages was more favorable to hide2 malicious
seeds, whose different statements highly depend on each other.

The success of our hiding process also depends on the syntactic
structures the seeds contain, and to what extent their syntax is iden-
tical to benign scripts’. With the exploit kit Misc, HideNoSeek was
able to generate an evasive sample for 78% of the pages from Alexa
top 10k. On the contrary, it had difficulty to craft samples for the
malicious seed Dropper and was unable to produce any outputs for
RIG2. For both of them, the difficulty lay in the syntactic structures
they used, which were practically never present in benign docu-
ments. For example, our dropper initially used three times the con-
struct new ActiveXObject("object"), which we could, e.g., map to the
benign construct new RegExp("regexp"); in our sample set, however,
we found no such pattern three times in the same benign data. Thus,
we looked for a new syntactic construct, semantically equivalent,
but which could be found in benign documents too. For this purpose,
we studied the most common structures between our malicious
seeds and benign dataset.We found the following structure a.b("") in
118,700 statements that matched benign and malicious documents.
As a consequence, we replaced the previous malicious dropper’s
construct with its equivalent WScript.CreateObject("object") and
could this time hide the malicious seed in ten benign documents.
Nevertheless, our tool crafted 4,735 samples for the PowerShell
seed (Table 3), which is a dropper too. Therefore, an attacker could
still hide a dropper in 4,735 web pages from Alexa top 10k. As
for RIG2, it contained complex syntactic structures, such as win-
dow.frames[0].document.body.innerHTML, that benign web pages
might tend to simplify, e.g., by storing this statement into several
variables. We highlight improvements for this process in Section 5.

Overall, and out of the 23 malicious seeds HideNoSeek got
as input, it was able to craft malware for 22 of them. In total, it
produced 9,725 malicious samples with benign ASTs of Alexa top 1k
web pages and 91,020 for the top 10k. We believe this number can
be improved by using different syntactic structures for the seeds: as
shown above, we can identify the most common structures between
the benign and malicious datasets, and therefore envision that the
malware authors could adjust their code to use those constructs.

4.2.2 Impact of the Attack. HideNoSeek can hide a givenmalicious
seed into different web pages–while keeping their initial AST–,
thereby static detectors would fail to see the maliciousness. Next,
we studied the impact our attack would have by targeting specific
domains. For that, we focused on hiding malicious JavaScript in
the most frequented web pages and libraries. Table 4 indicates how
many malicious seeds HideNoSeek could hide in Alexa top 10. In
particular, we could hide 78% of our seeds in the start pages of the
two most visited web pages, which would maximize the impact
of our attack, in terms of infected users. Except for wikipedia.org,

2We define the process of hiding a malicious seed in a benign sample to refer to the
rewriting of the malicious AST into an existing benign one

Table 3: Number of samples crafted permalicious seed, num-

ber of nodes that had to be adjusted (#Adjust) and average

number of nodes contained in the crafted samples (#Nodes)

ALEXA-1k ALEXA-10k
Seed #Samples #Adjust #Nodes #Samples #Adjust #Nodes

Blackhole1 558 101 106,897 5,040 76 120,189
Blackhole2 558 157 106,897 5,041 100 120,224
Crimepack1 568 45 107,991 5,424 38 117,841
Crimepack2 532 30 113,575 5,072 35 123,490
Crimepack3 127 74 140,399 1,364 97 156,408
Crypto-miner 90 203 80,943 311 119 133,927
Donxref1 629 90 102,710 5,888 36 112,674
Donxref2 454 262 117,727 4,233 221 133,895
Dropper 0 0 0 10 142 153,840
EK 683 27 96,434 6,487 6 104,422
Fallout 427 143 120,639 3,732 67 137,716
Injected1 680 72 97,069 6,447 54 105,217
Injected2 502 131 117,838 4,810 66 128,429
Meadgive 535 55 112,639 5,106 47 122,856
Misc 683 27 96,434 6,487 6 104,431
Neclu1 300 93 122,893 2,890 110 144,388
Neclu2 530 59 113,118 5,031 64 123,925
Packer 204 45 126,836 2,325 48 138,996
PowerShell 507 24 110,891 4,735 22 123,046
RIG1 23 124 179,150 244 171 170,135
RIG2 0 - - 0 - -
VBScript1 584 15 100,254 5,275 8 114,502
VBScript2 551 49 105,198 5,068 16 118,696

Table 4: Number of samples that HideNoSeek hid in Alexa

top 10 and number of nodes the crafted samples contain

Rank Domain #Samples #Nodes

1 google.com 18 58,322
2 youtube.com 18 151,527
3 facebook.com 13 143,772
4 baidu.com 8 35,018
5 wikipedia.org 0 90
6 qq.com 14 54,450
7 yahoo.com 14 67,264
8 taobao.com 19 89,910
9 tmall.com 17 63,102
10 amazon.com 17 36,060

where HideNoSeek did not report any clone3, we could hide on
average more than 61% of our seeds in the other top 10 web pages.
Still, we know that for the attack to be effective in practice, the
server of these pages would have to be compromised, so that the
original web page could be replaced by our crafted one. Should
that happen, our modified website version would be harder to spot
than, e.g., the British Airways attack [43], because of its structure
exactly mimicking a benign syntax. A secondway of infecting pages
consists of infecting the libraries that these websites use.

For our third experiment, we considered five of the most popu-
lar JavaScript libraries, based on the proportion of websites using
them [76], and studied the number of malware we could hide inside
(Table 5). The proportion ranges from 22% to 74% and is a bit lower

3The start page contained almost no JavaScript code; therefore its PDG only had 90
nodes, which is, e.g., 648 times less than google.com, and prevented HideNoSeek from
finding any matches with malicious seeds



Table 5: Analysis of the number of seeds successfully hidden

among the most widely used JavaScript libraries [76]

Library Alexa usage Most common version #Seeds #Nodes

jQuery 73.5% 1.12.4 17 35,511
Bootstrap 18.1% 3.3.7 12 10,973
Modernizr 11.4% 2.8.3 5 3,174
MooTools 2.4% 1.6.0 15 27,786
Angular 0.4% 1.7.5-min 17 60,234

than from Alexa top 10, where on average 14 seeds could be hid-
den, compared to 13 in the libraries. Similar to Android malware in
repackaged applications [9, 65, 85], HideNoSeek could alter benign
libraries and present them as an improved version of the original
one, for malicious purpose. More specifically, such a modification of
jQuery 1.12.4 would affect 29.7% of the websites, according to [76].

4.3 Validity Tests

Based on the insights that HideNoSeek could leverage 22 out of 23
malicious seeds to craft 91,020 malicious scripts, which have the
same AST as scripts extracted from Alexa top 10k, in this section,
we verify the validity and maliciousness of the produced samples.

4.3.1 Same AST for Crafted and Benign Scripts. First and by con-
struction, all HideNoSeek crafted samples have the same AST as
the benign scripts it used for the replacement process. Without
further testing, this guarantees that classifiers purely based on
syntactic features (e.g., JaSt [18]) are not able to distinguish them.

4.3.2 Same Tokens for Crafted and Benign Scripts. Second, most of
the tokens are similar between an initial benign file and a crafted
one. The minor differences may come from a Literal node, which
can represent several tokens (Section 3.3.3). On average, 0.29 to-
ken differ for each 91,020 file crafted from Alexa top 10k websites
(containing on average 127,693 nodes). Depending on the detector
our implementation is targeting, this may be sufficient to prevent
the evasion; e.g., for Kizzle [69], our malicious sample would be
clustered together with benign samples due to the choice of max-
imum distance within a cluster. Also, we would produce at most
three such samples every ten crafted script, which we assume to be
negligible when considering the impact of our attack (e.g., 73.5% of
the websites use jQuery and a malicious modification of the most
widely used version 1.12.4 would affect 29.7% of these sites [76]).

4.3.3 Crafted Scripts Still Running. Third, HideNoSeek rewrote
the ASTs of malicious JavaScript inputs into existing benign ones,
which could result in the crafted samples not running. To decrease
the proportion of broken samples, we implemented a module, which
detects the program’s parts impacted by our transformations–by
following the data flow originating from our replacements (Sec-
tion 3.4.2). Still, some adjustments may not be working in the con-
text where they have been transplanted, e.g., trying to get the length
of an undefined object will throw an error. In addition,HideNoSeek
searches for clones between a benign and a malicious input. Never-
theless, it still is valid to replace two independent benign sub-ASTs
by two syntactically equivalent malicious ones, with variables de-
clared in the global scope, depending on one another. In this case,

we have to ensure that the execution order of the variables is re-
spected to avoid a ReferenceError at run-time. To verify the correct
execution of our crafted samples, we used the library jsdom [35]–
which emulates web browser functionalities, e.g., DOM elements–to
test JavaScript implementations using web standards with Node.js.
This way, we could ensure that we did not break functionality that
requires DOM components. However, this environment cannot
be used to test scripts scraped from websites, as the JSDOM is a
placeholder, and the downloaded JavaScript often relies on spe-
cific constructs in the DOM. Therefore, we executed every crafted
sample from standalone benign libraries, like jQuery, to verify that
they could still run without throwing, e.g., a ReferenceError. Out
of the 1,631 samples we crafted from jQuery, 1,175 were still able
to run (72%). In addition, we could hide 19/23 malicious seeds in
jQuery libraries.4 With the exception of Crimepack3 (accounting
for two jQuery crafted files), each seed had at least one running
sample. As stated in Section 4.3.2, we rather consider the impact
our attack would have by using the working crafted samples, than
the proportion of working samples HideNoSeek generates. For this
purpose, related work [17, 51, 75, 80] combined their implemen-
tation with an oracle, which dynamically tested the validity and
maliciousness of the samples they produced. In our specific case,
such an infrastructure could not be built due to the complexity of
emulating environments specific to each web page that should have
been tested. Still, we were able to use 23 malicious seeds to produce
1,175 malicious working versions of jQuery, which had the same
AST as the original ones.

4.3.4 Crafted Scripts with a Malicious Behavior. Finally, besides
verifying the executability of the crafted samples, we checked their
maliciousness. To this end, we randomly selected 5 working crafted
samples per malicious seed5 and analyzed them in two dimensions.

First, we executed these 88 crafted scripts in a web browser
and manually verified which malicious statements were already
called during initialization, and which required manual calling. In
particular, the jQuery library defines objects and methods for future
use and does not necessarily directly call them. As a consequence,
we searched for all malicious parts in the considered scripts and
instantiated, e.g., the functions or objects–with correct parameter
values–required to execute the malicious functionalities. Still, if
the malicious part was defined, e.g., within a closure, we could not
call it. In addition, if the considered malicious element was in an if
condition, for the sake of simplicity, we first changed the condition
to true. Out of the 88 samples we analyzed, we validated the correct
execution and the expected malicious behavior of 59 (67%).

Second, changing the if conditions to true is not acceptable as it
changes the AST of the crafted samples, while our attack aims at
reproducing existing benign ASTs. Still, given our attacker model,
attackers can freely modify the code as long as the AST does not
change. Hence, they can either directly manipulate the conditions
that have to evaluate to true for their attack to be effective, or change
the environment prior to the conditions (e.g., the value of a vari-
able defined before the condition and used in it). For this purpose,

4In Section 4.2.2, we could hide 17 seeds in jQuery version 1.12.4 specifically, while we
consider here all different jQuery versions
5We considered the 18 seeds from Section 4.3.3 (which generated running samples),
one of which only had 3 working samples, therefore we tested 88 crafted samples



HideNoSeek includes a module which slices backward along the
control flow of amodified node and outputs the different conditional
statements that need to evaluate to true for the malicious code to be
executed. In particular, we applied this module on the previous 59
scripts and analyzed their conditional statements. To change them
to true, without modifying the AST, we followed the five following
rules. First, the and and or operators are both LogicalExpressions
and can therefore be interchanged. Second, the comparison oper-
ators ==, !== and === are all BinaryExpressions and can also be
interchanged. Still, this is not the case for the operator !, which
is an UnaryExpression. Thus, we need both an element, which
directly evaluates to true and another one to false. Hence the third
point: any object whose value is not undefined or null evaluates to
true [56], e.g., window, String. These objects can then be combined
with the functions, properties, and methods used in Section 3.4.2.
Fourth, undefined evaluates to false, therefore also calling a non-
existing property on an object, e.g., console.foo. We cannot leverage
the undefined property to call a method on an object though. In
this case, we can use window.Boolean(false). Last but not least, to
access a property of an object, both bracket and dot notations can
be used [55] and are syntactically equivalent. Finally, we combined
these rules on the previous 59 scripts and could modify all the
required conditions so that they always evaluate to true.

4.4 Evaluation Against Real-World Systems

In this section, we evaluate the camouflaging of malicious samples
by HideNoSeek in practice. We first target traditional structural-
based detectors before focusing on lexical and syntactic classifiers.

4.4.1 Evading Structural-Based Detectors. To exactly reproduce a
benign AST, we first deobfuscated the malicious seeds, thus leaving
theirmalicious logic in the open. Therefore, signaturesmight be able
to detect our crafted samples. For this purpose, we manually studied
the Yara rules [84] built for malicious JavaScript detection. These
rules are based on strings and aim at describing patterns-based
malware families. In particular, the rules targeting exploits, obfus-
cation, and exploit kits would not work on HideNoSeek crafted
samples thanks to our deobfuscation process. As a matter of fact,
the regular expressions considered try to match calls to eval, un-
escape, special encodings or specific identifiers (which we renamed
during the deobfuscation process), that are not present in the de-
obfuscated version anymore. Nevertheless, some rules could still
detect JavaScript implementing CVEs, e.g., whenever the reference
to a specific instantiated Java object is written in plain text. Yet,
in this case, string splitting would foil the signature. In practice,
VirusTotal analyzed the 88 samples from Section 4.3.4 with between
48 and 60 AV-systems. 8 crafted samples were detected (Donxref1 5
times and PowerShell 3 times), and by at most 2 AV-vendors. Even
though the detection accuracy is very low, we envision that Hi-
deNoSeek could slightly obfuscate obvious malicious behavior, e.g.,
with percent-encoding, to bypass signature-detection. After such
modifications, we could still produce 211 samples for Donxref1 and
795 for PowerShell, but this time they evaded VirusTotal detection.

Initially, attackers focused on obfuscation to significantly compli-
cate the detection and analysis of malware. Still, by doing so, they
added specific and recurrent malicious patterns to their JavaScript
files. As a consequence, analyses directly based on the code were

able to leverage these differences for an accurate detection. Deob-
fuscation now enables to evade most detections by such systems
(Section 4.4.2). In addition, HideNoSeek can be seen as a new form
of obfuscation, which this time does not add specific patterns to the
files it modifies. Even though it may adjust some nodes with generic
transformations (Section 3.4.2), it does not change the overall code
syntax. Implementing a system, which would know HideNoSeek’s
internals and recognize, e.g., the function’s names we changed,
such as toString, or isFinite, or integrate a new set of rules targeting
deobfuscated malicious JavaScript, e.g., ActiveXObject, is deemed
to produce a lot of false positives (c.f. Section 4.4.2).

4.4.2 Evading Lexical and Syntactic Classifiers. Besides evading
structural-based detectors, HideNoSeek is also effective against
lexical and syntactic classifiers. In this section, we train a model on
benign and malicious samples found in the wild before evaluating
its accuracy on HideNoSeek crafted samples, also assessing the
classification of the benign samples used for the camouflage. As a
second scenario, we update our previous model with HideNoSeek
samples and perform the same experiments as before.

Classifiers Training. First, we built machine learning models–
each one of them containing 10,000 unique malicious files and
as many benign ones–to train the classifiers selected to test Hi-
deNoSeek samples. In the first scenario (S1), we randomly picked
8.17% of the malicious samples from each of our malware providers
(DNC, Hynek, GoS and BSI, Section 4.1.1), to have a malicious
dataset containing 10,000 files, representative of the distribution
found in the wild, through our multiple sources and the respect of
their initial proportions (Table 1). For the benign part, we randomly
selected 5,000 unique benign samples from our Alexa dataset and
5,000 from Microsoft products,6 to have both web and non-web
JavaScript. We deemed our model to be balanced, with as many
malicious as benign samples. To improve the experiments’ repro-
ducibility and limit effects from randomized datasets, we repeated
the previous procedure 5 times and averaged the detection results.

In the second scenario (S2), we leveraged the fact that machine
learning-based detectors are able to learn. In particular, since the
detectors we consider are based on machine learning algorithms,
our evaluation should also use machine learning models, trained
with samples crafted by HideNoSeek. For this purpose, we built 5
new models. We randomly selected 5,000 malware from our previ-
ous models and added 5,000 randomly selected samples from our
crafted scripts, to illustrate the adaptation of the models to inputs
that may be found someday in the wild (i.e., documents produced
by HideNoSeek). We kept the same benign sets as previously.

Evasion in Practice. We now consider exclusively the model S1
for classification purpose. HideNoSeek is a novel camouflage at-
tack that rests upon the assumption that malicious obfuscation
leaves traces in the syntax of malware, which lexical and syntactic
classifiers leverage for an accurate detection. Hence, perfectly map-
ping a benign AST (while retaining the malicious semantics) will
automatically foil most of these detectors. At the same time, some
systems also consider identifiers value or type information of AST
nodes, e.g., for CSP generation [58], vulnerability detection [68], as
well as in Zozzle for malicious JavaScript detection [16].
6Microsoft Exchange 2016 and Microsoft Team Foundation Server 2017



To verify the evasion capability of HideNoSeek in practice, we
used the open source tool JaSt [2], a reimplementation of Cujo [64]
and a reimplementation of Zozzle7 [16] (c.f., Section 2.2) to classify
our crafted samples. We first focussed on classifying one mali-
cious sample extracted from each of the 61 clusters obtained in
Section 4.1.1. JaSt accurately detected 52 samples on average, Cujo
51.4 and Zozzle 44. We manually looked at the false negatives,
which were either not obfuscated or just using a call to unescape
(translated by a function call with a string parameter) and explains
why these tools did not perform as well as in their corresponding
papers. Also, and more specifically for Zozzle which includes iden-
tifiers’ name information, the detectors may struggle to classify
inputs whose syntactic structures they had never seen before; this
may happen as the 61 clusters have a different syntax and may not
all be represented in the training set. As a next step, we classified
the 37 different deobfuscated variants (Section 4.1.1) obtained from
the previous samples. This time, JaSt recognized only 1 of them as
malicious, Cujo 0.4 and Zozzle 2. These results are in line with the
assumption that malicious obfuscation induces specific patterns in
the files, while deobfuscated samples have a more benign-looking
structure, which can thereby also be found in benign documents.

Finally, we classified the 118,052 samples8 produced by
HideNoSeek. By construction, our attack foils JaSt, which purely
relies on the AST for malicious JavaScript detection. Still, it could
detect 26.6 crafted samples (accuracy: 0.02%). Since these files have
the same AST as the original benign samples, the 6.2 benign docu-
ments (on average) used to produce the previous 26.6 samples are
false positives. On the contrary, Zozzle also includes the text of the
AST node as an additional feature. Still, it could detect 3.8 crafted
samples (accuracy: 3.2E-3%), which used 0.8 benign files for the
hiding process. As none of them were classified as malicious (false
positives), 0.8 scripts changed classification between the benign and
the malicious variants (6.8E-4% of the crafted samples). Thereby,
HideNoSeek can also evade syntactic detectors using nodes’ value
as additional features. Similarly, Cujo detected 15.8 crafted samples
(accuracy: 0.01%), leveraging 7.6 benign files for the camouflaging
process, 6.6 of which are false positives. Thus, 1 script changed clas-
sification between the benign and the malicious versions (8.5E-4%
of the crafted samples). Thereby, we assume that the tokens which
might differ between the two file versions have a negligible impact
on the overall files’ classification.

Evasion of Retrained Classifiers. As a second scenario, we up-
dated our previous models with HideNoSeek samples (model S2)
to illustrate the fact that machine learning-based detectors are able
to learn. Contrary to the previous experiments, JaSt was this time
able to detect 108,164.4 crafted samples9 (accuracy: 95.68%). Never-
theless, the 5,907.8 benign files used to hide the previous malware
were all misclassified as malicious. In fact, we trained the detec-
tors with malicious samples, which have the same AST as benign
samples. Therefore, they could not learn any features specific to
one class and had to decide whether to classify all such files as

7With automatic features selection, 1-level features and multinomial Naive Bayes,
which provided a detection rate similar to the original paper’s, see Appendix A
8We consider here all crafted samples, i.e., also produced by variants from the same
seed
9We excluded the samples used to train the detectors from their corresponding test
set; therefore we classified 113,052 samples in this section

Figure 6: Time required to test our 23malicious seeds on the

two most popular websites and libraries

malicious (thereby Alexa samples would be false positives, actual
case) or as benign (thereby HideNoSeek crafted samples would be
false negatives). We observe a similar trend for Zozzle and Cujo,
which accurately detected 103,513.4 and 108,489 crafted samples
respectively (accuracy: 91.56% and 95.96%). The true positives from
Zozzle leveraged 5,695 benign inputs for the hiding process, 5,054
of which it classified as false positives (88.74%). Hence 641 samples
changed classification between the benign and malicious variants
(0.57% of the crafted samples). Similarly, Cujo reported 377 classifi-
cation changes (0.3% of the crafted samples). For both tools, even if
the proportion of classification changes is higher than with S1, it
is still too low to provide a useful and reliable defense mechanism
against HideNoSeek. Therefore, considering the nodes’ value of
the AST or the tokens value (including type information) does not
enable to accurately detect HideNoSeek samples.

4.5 Run-Time Performance

We tested HideNoSeek’s run-time performance on a commodity
PC with a quad-core Intel(R) Core(TM) i3-2120 CPU at 3.30GHz
and 8GB of RAM. The throughput evaluation was done on the two
highest ranked Alexa web pages (google.com and youtube.com) and
the two most popular JavaScript libraries (jQuery and bootstrap).
Figure 6 presents the processing times, for all stages of HideNoSeek,
to craft the 65 previous malware (Section 4.2.2). The most time-
consuming operation is the clones detection, which is NP-complete
(Section 3.3) and highly depends on the PDGs’ size (Table 4, Table 5).
The code generation phase is also time-consuming as we traverse
the PDGs of the crafted samples so that Escodegen can produce the
code back. Last but not least, the generation of the benign PDGs
(each of them produced only once and stored for future use) may
take some time depending on the size of the AST and the complexity
of the code (number of data dependencies). Overall, the generation
of the previous 65 samples took sixteen minutes.

5 DISCUSSION

In this section, we first examine the limitations our attack might
have, focusing on the static analysis of JavaScript. We then discuss
existing defenses against attacks on machine learning systems and
argue why they would not work forHideNoSeek. Still, we motivate
some defenses that might prevent our system from crafting evasive
samples. Finally, we introduce new strategies to improve our attack.



5.1 Limitations

HideNoSeek is based on a static analysis of JavaScript to build both
the control and data flow in a given script. On the one hand, this
approach provides complete code coverage, evaluating all possible
execution paths. On the other hand, it is subject to the traditional
flaws induced by the high dynamic of the language [1, 20, 33, 34].
In particular, JavaScript can generate code at run-time, e.g., with
the eval function, a dynamically constructed string can be inter-
preted as a program fragment and executed in the current scope.
In addition, JavaScript uses prototype chaining [54] to model in-
heritance, where properties can be added or removed during the
execution, and property names may be dynamically computed. Still,
HideNoSeek is resilient to many of these flaws, as it is applied to
manually deobfuscated malicious samples. In particular, we specifi-
cally deleted all dynamic constructs to have the payload directly
accessible (this should not be a problem to malware authors as they
have the malicious payload at their disposable).

5.2 Existing Defenses

As mentioned in Section 1, the field of attacks against systems using
machine learning for classification purpose, e.g., in the image or
malware fields, is vast. Different studies assessed the security of
learning-based detection techniques by evaluating the hardness
of evasion, according to the information leaks an attacker might
have, such as black-box access to the classifier or dataset related
inputs [8, 13, 14, 19, 75]. More recently, systems have been proposed
to detect adversarial examples–i.e., inputs specifically crafted to
foil a target classifier. They rely on the detection of unreliable re-
sults [67], statistical tests [25], dimensionality reduction [7, 79], the
detection of adversarial perturbations [52, 53], or vectorization [36].
Nevertheless, we envision that none of them would work for our
attack as we perfectly reproduce an existing benign syntax, instead
of merely injecting benign features.

5.3 Potential Detection Strategies

A possibility to detect HideNoSeek samples would be to (a) rec-
ognize the original benign input used for the hiding process, and
(b) notice that it differs from the benign file it is supposed to be. If
the original sample is recognized, a checksum test should indicate
whether it is the original version or not. Still, the official library
source code can be altered for benign purposes, like functionality ex-
tensions or caching proxies, or stored together with other libraries.
In particular, we used retirejs [57] to extract 73 different versions of
jQuery used by Alexa top 10k. Still, none of them matched the hash
given on the official jQuery web page, because they were either
combined with other JavaScript code or contained, e.g., the name
of the caching proxy, essentially nullifying a checksum. In practice,
hash testing is, therefore, not a reliable solution against our attack.

Apart from this and sinceHideNoSeek adjusts the code it crafted
with calls to, e.g., toString or isFinite, it can create seemingly dead
code (due to the lack of proper usage of the result) whose frequency
could be an indicator of our crafted scripts. Still, relying on such
artifacts is likely to produce a lot of false positives (Section 4.4),
as also evidenced by, e.g., Google sites making extensive use of
parameterless toString invocations [63]. Similarly, given the quality
of JavaScript code in the wild, our experience leads us to believe that

otherwise useless variables are not a good indicator of HideNoSeek
crafted samples either: for example when calls to console.log are
commented out without removing the assignments of variables
only used in that call.

Last but not least, HideNoSeek is an attack against static mali-
cious JavaScript detectors, and does not necessarily foil hybrid or
dynamic detectors such as Rozzle [44] or J-Force [42], which force
the JavaScript execution engine to test all execution paths systemat-
ically. Similarly, Revolver [40] could detect that the original benign
and the crafted samples have the same AST but its dynamic detector
would classify the samples differently, hence detecting the evasion
attempt.10 Still, dynamic detectors are usually slow, thus rather
work on a pre-filtered list of samples likely to be malicious [11].
Since this list tends to be generated by static systems–which are
much faster–, e.g., lexical or syntactic,HideNoSeek crafted samples
may not even be dynamically analyzed.

5.4 Improving the Evasion

To improve the number of malicious samplesHideNoSeek can craft,
we envision that it could be paired with an intelligent syntactic
obfuscator module. This system would be able to automatically
transform amalicious syntactic structure into a semantically similar
one, whose AST could be found in a benign file. We leave this
implementation for future work.

6 RELATEDWORK

HideNoSeek is a novel attack against malware detectors. Indeed,
contrary to previously presented attacks, it does not need any in-
formation about the systems it evades. Also, it does not try to
statistically enhance the proportion of benign features in a mali-
cious file, but exactly reproduces actual benign JavaScript ASTs,
which by construction foils most static detectors. At the same time,
it uses different data representations, e.g., AST and PDG, which are
used in the fields of security analysis and clone detection too.

6.1 Adversarial Attacks

In the literature, several approaches have been proposed to evade
targeted malware detectors, all of which need to have at least a
black-box access to the system they are trying to evade. In particu-
lar, Šrndić et al. assessed the security of learning-based detection
techniques by studying the range of possible attacks, according to
the information leaks an attacker might have [75]. In addition, they
explored the strategy of training a substitute model to find evasive
inputs, as well as the possibility to modify a malicious file so that it
mimics the features of a chosen benign target [74]. Similarly, Fogla
et al. introduced the polymorphic blending attacks to evade byte
frequency-based network anomaly IDS by matching the statistics
of the mutated attack instances to normal profiles [22]. Then, both
Dang et al. and Xu et al. developed a system which stochastically
manipulates malicious samples to find a variant, preserving the
malicious behavior (oracle needed), while being classified as benign
by the target (black-box access to the detector required) [17, 80].
Contrary to the previous approaches, Maiorca et al. aimed at inject-
ing malicious content in benign PDF documents so as to introduce

10We contacted the authors to test our samples on Revolver, but the system is not
available anymore, which prevented this experiment



minimum differences within its benign structure, while having
a malicious behavior (reverse mimicry) [51]. Last but not least,
Grosse et al. adapted the algorithm of Papernot et al. [61]–initially
defined for images–to find which features should be changed to
craft adversarial samples in the malware field [26].

6.2 PDG for Security Analysis

HideNoSeek can also be compared to systems using ASTs or PDGs
for vulnerability detections. For example, LangFuzz from Holler et
al. automatically crafts valid JavaScript samples based on inputs
known to have caused invalid behavior before [29]. In particular,
it replaces a given code fragment of an input file by a fragment
of the same type (according to the grammar), while we replace a
benign chunk by a syntactically equivalent malicious one (with
respect to control and data flow in our case). Similarly, Yamaguchi
et al. guided the search for new exploits by extrapolating known
vulnerabilities using structural patterns extracted from the AST,
which enabled them to find similar flaws in other projects [83]. To
mine a more significant amount of source code for vulnerabilities,
Yamaguchi et al. later introduced the code property graph–merging
AST, CFG, and PDG into a joint data structure–to inspect the code
structure with respect to control and data flow [82]. This new data
structure was also used by Backes et al. to identify different types
of Web application vulnerabilities [3].

6.3 PDG for Clone Detection

HideNoSeek also rests upon a clone detection algorithm to care-
fully spot isomorphic subgraphs between benign and malicious
ASTs. First, Koschke et al. proposed a token-based clone detection
algorithm based on suffix trees. Nevertheless, it yields clone can-
didates whose syntactic units might differ [47]. On the contrary,
Baxter et al. introduced in 1998 an algorithm capable of detecting
exact and near-miss clones over program fragments by means of
ASTs [6]. Then, Krinke et al. considered PDGs, as an abstraction of
the source code semantics, to identify similar code in programs [48].
Last but not least, Komondoor et al. combined PDGs with the use of
program slicing to find clones in C programs [45]. The addition of
the slicing part enabled them to find non-contiguous clones, clones
in which matching statements had been reordered, as well as clones
intertwined with each other.

7 CONCLUSION

Many malicious JavaScript samples today are obfuscated to hinder
the analysis and the creation of signatures. Nevertheless, these
specific evasion techniques tend to leave recurrent traces in the
syntax of malware, thereby contributing to their detection by lexical
or syntactic classifiers. In this paper, we proposed HideNoSeek, a
generic camouflage attack, which evades the entire class of syntactic
detectors, as well as most of the lexical and structural systems,
without needing any information about (or access to) the target
systems. In fact, it rewrites the ASTs of malicious samples into
existing benign ones. The key elements of our approach are the
following: (a) a modeling of the control and data flow extracted from
themalicious seeds to rewrite, and from the benign files whose ASTs
we perfectly reproduced; (b) a detection and analysis of isomorphic
sub-ASTs, with respect to control and data dependencies, between

the previous benign and malicious inputs and (c) the replacement
and adjustment of benign sub-ASTs by their malicious equivalents.

We evaluated HideNoSeek on an extensive dataset of both mal-
ware and benign scripts. In practice, our approach is highly effective
with its production of 91,020 malware from 22 malicious seeds and
8,279 benign web pages. In addition, it has a high impact: on av-
erage HideNoSeek produces 14 different malicious samples with
the same AST as each Alexa top 10 and 13 for each of the five
most popular JavaScript libraries. As far as evasion is concerned,
HideNoSeek is highly effective. When the targeted systems have
no knowledge about our crafted samples, they misclassify them
99.98% of the time (false negatives). In the case that defenders are
aware of HideNoSeek and trained their detectors with such crafted
samples, around 91.56% are accurately detected, but in return over
88.74% of the benign inputs, whose ASTs we reproduced, are false
positives. As a consequence, most of the static detectors relying on
syntactic, lexical or structural features are impacted by our attack,
which makes them misclassify input samples over 88.74% of the
time, rendering them inapt to handle HideNoSeek samples.
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A REIMPLEMENTATION OF ZOZZLE

To evaluate the evasion capability of HideNoSeek on static detec-
tors also including node values, we reimplemented Zozzle [16]. In
particular, we extract features such that they contain the context in
which they appear (AST node) and the corresponding node value.
To select the features most predictive of malicious or benign intent,
we use the χ2 algorithm, such that χ2 ⩾ 10.83 (confidence of 99.9%,
as Curtsinger et al. described in their paper).

First, we trained the classifier with the samples from scenario
(S1), representative of real-world samples (Section 4.4.2). To verify
if our results are similar to the paper’s, we classified our benign and
malicious JavaScript collections (excluding HideNoSeek samples
at this stage). As we only retained 86% accuracy and over 78% false
positives with Bernoulli Naive Bayes (BNB)–the classifier used in
Zozzle–we tested Multinomial Naive Bayes (MNB), which also
assumes all features to be statistically independent, and Random
Forest (RF) that does not have this assumption. We assume that
BNB did not perform as well as in the paper for two reasons. First,
the authors focussed on heap spray payloads, while we have more
diverse JavaScript samples, which may, therefore, have more differ-
ent syntactic structures. Second, Zozzle is from 2011 and malicious
JavaScript from that time may have been less obfuscated, in partic-
ular concerning identifiers renaming, than more recent samples.

Table 6: Comparison of Zozzle’s accuracy on HideNoSeek

samples depending on the classifier used

Tool Zozzle-BNB Zozzle-MNB Zozzle-RF

on 61 clusters 61 44 43.6

on 37 seeds 37 2 2

(S1) - TP 1.26% 0.003% 0%
(S1) - #benign used in TP 409.4 0.8 0
(S1) - FP on benign from TP 97.41% 0% 0/0
(S1) - changed classification 9E-3% 6.8E-4% 0%

(S2) - TP 92.08% 91.56% 91.54%
(S2) - #benign used in TP 5,474.4 5,695 5,688.8
(S2) - FP on benign from TP 99.67% 88.74% 88.82%
(S2) - changed classification 0.016% 0.57% 0.56%

On the contrary, with MNB, we had less than 1% false positives
and around 7% false negatives (w.r.t. the previously mentioned data
set), which is similar to the paper’s results. Also, MNB is still close
to BNB: the former takes into account the frequency of a feature,
while the latter considers its presence or absence. On the contrary,
RF performed significantly better than the initial paper, with less
than 1% false positives and false negatives. For this purpose, we
performed the experiments from Section 4.4.2 with MNB (i.e., apply
the learned models to HideNoSeek samples), but also present the
results we would have had with BNB and RF in Table 6. We can see,
in particular, that BNB classifies more samples as malicious than
MNB and RF (for true positives as well as false positives), which
is in line with our previous observation. MNB and RF have similar
results: they recognize extremely few HideNoSeek crafted samples
(less than 0.003%) in the scenario (S1), which was expected due to
the benign-looking structures of our samples. On the contrary, they
recognize most of our crafted samples as malicious in (S2)–which
was trained on such samples–but at the same time misclassify the
benign inputs we used to hide the detected malicious samples in
(over 88%). Also, less than 0.57% changed classification between
the initial benign samples and the malicious files reproducing their
ASTs, which shows that HideNoSeek can bypass static detectors
even when node values are adopted in the AST (a more thorough
analysis is presented in Section 4.4.2).
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