
How the Web Tangled Itself:
Uncovering the History of Client-Side Web (In)Security

Ben Stock
CISPA, Saarland University

Saarland Informatics Campus

Martin Johns
SAP SE

Marius Steffens
CISPA, Saarland University

Saarland Informatics Campus

Michael Backes
CISPA, Saarland University

Saarland Informatics Campus

Abstract

While in its early days, the Web was mostly static, it has
organically grown into a full-fledged technology stack.
This evolution has not followed a security blueprint,
resulting in many classes of vulnerabilities specific to
the Web. Even though the server-side code of the past
has long since vanished, the Internet Archive gives us a
unique view on the historical development of the Web’s
client side and its (in)security. Uncovering the insights
which fueled this development bears the potential to not
only gain a historical perspective on client-side Web se-
curity, but also to outline better practices going forward.

To that end, we examined the code and header infor-
mation of the most important Web sites for each year
between 1997 and 2016, amounting to 659,710 differ-
ent analyzed Web documents. From the archived data,
we first identify key trends in the technology deployed
on the client, such as the increasing complexity of client-
side Web code and the constant rise of multi-origin appli-
cation scenarios. Based on these findings, we then assess
the advent of corresponding vulnerability classes, inves-
tigate their prevalence over time, and analyze the security
mechanisms developed and deployed to mitigate them.

Correlating these results allows us to draw a set
of overarching conclusions: Along with the dawn of
JavaScript-driven applications in the early years of the
millennium, the likelihood of client-side injection vul-
nerabilities has risen. Furthermore, there is a noticeable
gap in adoption speed between easy-to-deploy security
headers and more involved measures such as CSP. But
there is also no evidence that the usage of the easy-to-
deploy techniques reflects on other security areas. On
the contrary, our data shows for instance that sites that
use HTTPonly cookies are actually more likely to have
a Cross-Site Scripting problem. Finally, we observe that
the rising security awareness and introduction of dedi-
cated security technologies had no immediate impact on
the overall security of the client-side Web.

1 A Historic Perspective on Web Security

The Web platform is arguably one of the biggest techno-
logical successes in the area of popular computing. What
modestly started in 1991 as a mere transportation mech-
anism for hypertext documents is now the driving force
behind the majority of today’s dominating technologies.
However, from a security point of view, the Web’s track
record is less than flattering, to a point in which a com-
mon joke under security professionals was to claim that
the term Web security is actually an oxymoron.

Over the years, Web technologies have given birth to
a multitude of novel, Web-specific vulnerability classes,
such as Cross-Site Scripting (XSS) or Clickjacking,
which simply did not exist before, many of them mani-
festing themselves on the Web’s client side. These ongo-
ing developments are due to the fact that the Web’s client
side is under constant change and expansion. While early
Web pages were mostly styled hypertext documents with
limited interaction, modern Web sites push thousands of
lines of code to the browser and implement non-trivial
application logic. This ongoing development shows no
signs of stopping or even slowing down. The trend is
also underlined by the increase in client-side APIs in the
browser: while in 2006 Firefox featured only 12 APIs, it
now has support for 93 different APIs ranging from accu-
rate timing information to an API to interact with Virtual
Reality devices1. This unrestricted growth led to what
Zalewski [41] dubbed The Tangled Web.

Now, more than 25 years into the life of the Web, it
is worthwhile to take a step back and revisit the devel-
opment of Web security over the years. This allows us
to gain a historical perspective on the security aspects of
an emerging and constantly evolving computing platform
and also foreshadows future trends.

Unfortunately, the majority of Web code is commer-
cial and, thus, not open to the public. Historic server-

1A list of all available features in current browsers is available at
http://caniuse.com/

http://caniuse.com/


side code that has been replaced or taken offline cannot
be studied anymore. However, the Web’s client side, i.e.,
all Web code that is pushed in the form of HTML or Java-
Script to the browser is public. And thankfully, the Inter-
net Archive has recognized the historical significance of
the Web’s public face early on and attempts to preserve
it since 1996.

Thus, while the server-side portion of old Web appli-
cations is probably gone forever, the client-side counter-
part is readily available via the Internet Archive’s Way-
back Machine. This enables a novel approach to histor-
ical security studies: A multitude of Web security prob-
lems, such as Client-Side XSS or Clickjacking, manifest
themselves on the client side exclusively. Hence, evi-
dence of these vulnerabilities is contained in the Internet
Archive and thus available for examination. Many of the
current state-of-the-art security testing methods can be
adapted to work on the archived version of the sites, en-
abling an automated and scalable security evaluation of
the historic code.

Thus, we find that the archived client-side Web code
offers the unique opportunity to study the security evo-
lution of one of the most important technology platforms
during (almost) its entire existence, allowing us to con-
duct historical analyses of a plethora of properties of the
Web. This way, we are not only able to investigate past
Web trends, but also draw conclusions on current and fu-
ture Web development trends and (in)security. In the fol-
lowing, we give a brief overview of our conducted study
and outline our research approach.

Technological Evolution of the Web’s Client Side
We first examine the evolution of client-side technolo-
gies, i.e., which technologies prevailed in the history of
the Web. We then systematically analyze the archived
code on a syntactical level. The focus of this analysis
step is on observable indicators that provide evidence on
how diversity, complexity, and volume of this code has
developed over the years, as all these three factors have
a direct impact on the likelihood of vulnerabilities. Sec-
tion 3 reports on our findings in this area. The overall
goal of this activity is to enable the correlation of trends
in the security area with ongoing technological shifts.

Resulting Security Problems With the ever-growing
complexity of the deployed Web code and the con-
stant addition of new powerful capabilities in the Web
browser in the form of novel JavaScript APIs the over-
all amount of potential vulnerability classes has risen as
well. As motivated above, several of the vulnerabilities
which exclusively affect the client side have been prop-
erly archived and, thus, can be reliably detected in the
historical data. We leverage this capability to assess a

lower bound of vulnerable Web sites over the years. Sec-
tion 4 documents our security testing methodology and
highlights our key findings in the realm of preserved se-
curity vulnerabilites.

Introduction of Dedicated Security Mechanisms To
meet the new challenges of the steadily increasing secu-
rity surface on the Web’s client side, several dedicated
mechanisms, such as security-centric HTTP headers or
JavaScript APIs, have been introduced. We examine if
and how these mechanisms have been adopted during
their lifespan. This provides valuable evidence with re-
spect how the awareness of security issues has changed
over time and if this awareness manifests itself in overall
improvements of the site’s security characteristics. We
discuss the selected mechanisms and the results of our
analysis in Section 5.

Overarching Implications of our Analysis Based on
the findings of our 20-year-long study, we analyze the
implications of our collected data in Section 6. By look-
ing at historical trends and correlating the individual data
items, we can draw a number of conclusions regard-
ing the interdependencies of client-side technology and
client-side security. Moreover, we investigate correla-
tions between actual vulnerabilities discovered in histori-
cal Web applications and the existence of security aware-
ness indicators at the time, and finish with a discussion
of important next steps for Client-Side Web security.

2 Methodology

In this section, we present our methodology of using the
Internet Archive as a gateway to the past, allowing us to
investigate the evolution of the Web’s client side (secu-
rity), and outline our technical infrastructure.

2.1 Mining the Internet Archive for Histor-
ical Evidence

To get a view into the client-side Web’s past, the Internet
Archive (https://archive.org) offers a great service:
since 1996, it archives HTML pages, including all re-
sources which are included, such as images, stylesheets,
and scripts. Moreover, for each HTML page, it also
stores the header information initially sent by the remote
server allowing us to even investigate the prevalence of
certain headers over time.

For a thorough view into how the Web’s client side
changed over the years, we specifically selected the 500
most relevant pages for each year. Given that these are
the most frequented sites of the time, they also had the
greatest interest in securing their sites against attacks.

https://archive.org


For this purpose, we analyzed the sites identified by
Lerner et al. [19] as the 500 most important sites per year.
For 1996, the Internet Archive only archived copies of
less than half of these sites, though. Therefore, for our
work, we selected the years 1997 to 2016. For each year,
we used the first working Internet Archive snapshot of
each domain as an entry point.

Unlike Lerner et al. [19], who investigated the evolu-
tion of tracking, though, we did not restrict our analy-
sis to the start pages of the selected sites. Instead, we
followed the first level of links to get a broader cover-
age of the sites. In doing so, we encountered similar
issues as described in the previous work: several sites
were unavailable in the archive and links often led to
content from a later point in time. To allow for a pre-
cise analysis, we excluded all domains that either had
no snapshot in the Archive for a given year or did not
have any working subpages. Moreover, when crawling
the discovered links, we excluded any that resulted in a
redirect to either a more recent, cached resource or the
live version of the site. Also, when a page redirected
to an older version, we only allowed the date to devi-
ate at most three months from the start page. On aver-
age, this allowed us to consider 422 domains per year 2.
On these domains, we crawled a grand total of 659,710
unique URLs, yielding 1,376,429 frames, 5,440,958 dis-
tinct scripts, and 21,169,634 original HTTP headers for
our analysis. Since the number of domains varies for
each year, throughout this paper we provide fractions
rather than absolute numbers for better comparability.

Threats to Validity Given the nature of the data col-
lected by the Internet Archive, our work faces certain
threats to validity. On the one hand, given the redirection
issues to later versions discussed above, we cannot en-
sure a complete coverage of the analyzed Web site, i.e.,
we might miss a specific page which carries a vulner-
ability or might not collect an HTTP header only sent
when replying to a certain request, e.g., a session cookie
sent after login. Moreover, since the Archive’s crawler
cannot log into an application, we are unable to analyze
protected parts of a Web site.

The analyses of Client-Side XSS vulnerabilities are
based on the dynamic execution of archived pages, for
which we use a current version of Google Chrome. To
the best of our knowledge, this should not be cause for
over-approximation of our results. On the contrary, Inter-
net Explorer does not automatically encode any part of a
URL when accessed via JavaScript, i.e., especially in the
case of Client-Side Cross-Site Scripting, our results pro-
vide a lower bound of exploitable flaws.

Nevertheless, we believe that the Archive gives us the

2For a full list of domains see https://goo.gl/eXjQfs

Proxy

Figure 1: Infrastructure overview

unique opportunity to get a glimpse into the state of Web
security over a 20-year time frame. Moreover, several
works from the past that investigate singular issues we
highlight as part of our study confirm our historical find-
ings [16, 10, 24, 17, 31, 38].

2.2 Technical Infrastructure

In this section, we briefly explain the technical infras-
tructure used to conduct our study.

Custom Proxy and Crawlers To reduce the load on
the Wayback Archive, we set up our own proxy infras-
tructure. Archive.org adds certain HTML and JavaScript
elements to each cached page to gather statistics. In our
proxy, before persisting the files to disk, we removed all
these artifacts which would taint our analysis results. The
proxy infrastructure is depicted in Figure 1: for crawling,
we used Google Chrome. The proxy was set up such
that it only allowed access to archived pages. With our
crawlers, we then collected all scripts and all headers sent
from the Archive servers. Note that apart from the reg-
ular HTTP headers, the Archive also sends the original
headers of the site at the time of archiving, prefixed with
X-Archive-Orig-, allowing us to collect accurate orig-
inal header information.

Data Storage and Parsing We stored all information
gathered by our crawlers in a central database. For data
analysis, we developed several tools, e.g., to parse header
information. Moreover, to analyze the collected HTML
and JavaScript we employed lightweight static analysis
techniques. To discover relevant HTML elements, e.g.,
object tags, we used Python’s BeautifulSoup to parse
and analyze the HTML. For JavaScript, we developed
a lightweight tool based on esprima and node.js to parse
JavaScript and extract features such as called APIs, pa-
rameter passed to the APIs, or statements contained in
each analyzed file.

https://goo.gl/eXjQfs


Dynamic Dataflow Analysis To automatically verify
the existence of Client-Side Cross-Site Scripting issues
in the archived pages, we leveraged the techniques we
developed for CCS 2013 [17]. To that end, we ran their
modified version of Chromium on the cached pages to
gather all data flows from attacker-controllable sources
to dangerous sinks, such as document.write or eval.
Subsequently, we ran an exploit generator to craft URLs
modified in such a way that they would allow to exploit
a vulnerability. The crawlers were then sent to visit these
exploit candidates. If indeed a vulnerability existed, this
triggered the payload allowing us to automatically verify
the flaw. As this is not a contribution of this work, we
refer the reader to [17] for further details.

3 Evolution of Client-Side Code

In this section, we discuss how client-side active con-
tent evolved over time, showing that JavaScript remains
the only prevailing programming language on the Web’s
client side. While in the beginning of the Web, all content
was merely static and at best linking to other documents,
the Web has changed drastically over the course of the
years. After server-side programming languages such
as PHP enabled designing interactive server-side appli-
cations, at the latest starting with the advent of the so-
called Web 2.0 around 2003, client-side technology be-
came more and more important. To understand how this
client-side technology evolved over time, we analyzed
the HTML pages retrieved from the Internet Archive,
searching specifically for the most relevant technologies,
i.e., JavaScript, Flash, Java, and Silverlight.

Figure 2 shows the technologies we discovered in the
top-ranked sites in our study over time. We observe that
starting from the beginning our of study in 1997, Java-
Script was widely deployed, while initially Java applets
could also be discovered in few cases. Generally speak-
ing, though, Java and Silverlight did not play a signif-
icant role in active technologies used by the top sites.
Over the years, JavaScript usage increased, spiking from
about 60% to 85% in 2003, reaching its peak in 2009
with 98.3% of all sites using JavaScript. This number
remained stable until 2016. Curiously, not all sites ap-
pear to be using JavaScript. This, however, is caused
by two factors: on the one hand, the Alexa top 500
list contains a number of Content Distribution Networks,
which do not carry any JavaScript on their static HTML
front pages. Moreover, we found that in some cases the
Archive crawler could not store the included JavaScript.
As our analysis only considers executed JavaScript, this
makes for the second part of non-JavaScript domains.

Starting from 2002, we can also observe an increase in
the usage of Flash. Its share increased, also reaching its

1997 2002 2007 2012

0%

20%

40%

60%

80%

100% JavaScript

jQuery

Flash

Java

Silverlight

Figure 2: Technologies used by top 500 sites

peak in 2009 with 48%. However, we also observe that
the use of Flash decreases noticeably in the following
years ending with only approximately 20% of the 2016
site population using it. This is in part related to modern
browsers nowadays switching off Flash by default, and
moreover the fact that HTML5 can be used to develop
interactive advertisements instead of Flash.

In addition to the core technologies, we considered
jQuery in our analysis, since it is one of the main drivers
behind powerful JavaScript applications. We find that af-
ter it was first introduced in 2006, the major sites quickly
picked up on its use. Until 2011, coverage quickly grew
to over 65% of all sites using it, whereas by 2016, almost
75% of the major sites were using jQuery.

JavaScript as the Powerhouse of the Web 2.0 As we
observed in the previous section, at least starting in 2003,
JavaScript was omnipresent on the Web. To understand
the magnitude of its success, we analyzed all JavaScript
which was included in external scripts (not considering
libraries like jQuery). We selected these instead of inline
scripts (i.e., such scripts that do not have a src attribute,
but contain the code in the script tags) as the major func-
tionality of Web sites is mostly contained in such external
scripts instead of being intermixed with the HTML code.
Figure 3 shows the average number of statements in each
external script by year, i.e., whenever a domain included
a single external file in 2016, it contained more than 900
statements. As the figure shows, this number increased
steadily over the years, while at the same time, the aver-
age number of scripts included in each frame remained
stable at about four scripts per frame.

Moreover, we analyzed the Cyclomatic Complexity of
all scripts per year. Designed by McCabe [22] in 1976, it
measures the number of potential paths through the pro-
gram, which equals the number of different test cases
needed to cover all branches of the program. Figure 4
shows the results of our analysis, averaged per exter-
nal script (excluding well-known libraries) in each year.



1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

200

400

600

800

Average statements per external script

Figure 3: JavaScript Statement Statistics

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

50

100

150

200

250

300

350 Average cyclomatic complexity per external script

Figure 4: Cyclomatic Complexity Statistics

By 2016, each external script on average had more than
300 paths to cover. Also, the graph depicts the trend of
an ever-increasing number of paths, underlining the in-
creased complexity of modern applications.

These figures clearly show that modern JavaScript ap-
plications are more powerful than ever, but also incur a
higher complexity due to the large code base to maintain.

Script Inclusions from Remote Domains Next to the
amount of JavaScript code, we investigated the origin of
the code. Browsers allow for Web sites to include script
content from remote origins, which is often used to in-
corporate third-party services (e.g., for site analytics, ad-
vertising, or maps) or to reduce traffic on a site (e.g., by
including jQuery from Google). However, when such re-
mote scripts are included, they operate in the origin of the
including site, i.e., they can modify both the global Java-
Script state as well as the DOM. This adds more com-
plexity to the page, since inclusion of third-party content
might have side-effects, ranging from modified function-
ality all the way to vulnerabilities introduced by third-
party code. As Nikiforakis et al. [24] have comprehen-

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

2

4

6

8

10

12 Average included domains

Figure 5: JavaScript Inclusion Statistics

sively demonstrated, the inclusion of third-party scripts
has an immediate impact on a Web site’s security char-
acteristics, that scales negatively with the number of ex-
ternal code sources. Figure 5 shows the evolution of re-
mote inclusions over time, plotting the number of distinct
remote origins used in average domains. Starting from
2000, domains started using third-party inclusions. The
trend since then is clearly pointing upwards, reaching al-
most 12 distinct remote origins per domain by 2016.

Cross-Domain Data Access Modern Web sites are of-
ten interconnected, bringing the need for cross-domain
communication and data access. However, such commu-
nication is prohibited by the Same-Origin Policy (SOP),
which states that resources may only access each other
if they share an origin, i.e., protocol, host, and port
match [41]. To nevertheless allow applications to com-
municate across these boundaries, different technologies
can be used. One technique to do so is called JSONP,
short for JSON with padding. The SOP has certain ex-
emptions, such as the fact that including scripts from a
remote origin is permitted. JSONP leverages this by pro-
viding data in the form of a script, where the data is con-
tained as JSON, wrapped in a call to a function which
is typically specified as a URL parameter. This way, a
site may include the script from a remote origin, effec-
tively getting the data as the parameter to the specified
callback function. There are, however, a number of se-
curity issues associated with this, such as cross-domain
data leakage [18] or the Rosetta Flash attack [32]. To
detect JSONP in the data, we pre-filtered all scripts in
which any given URL parameter was contained in the
response as a function call. Subsequently, we manually
checked the results to filter out false positives. The re-
sults of our analysis are depicted in Figure 6, showing
that at most about 17% of all sites used JSONP during
our study timeframe. Moreover, we observe a slight de-
crease since 2014.



2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year

0%

10%

20%

30%

40%

50%

60%

70%
JSONP

postMessage

CORS

Figure 6: Cross-Origin Data Sharing Techniques

While with JSONP, the developer has to ensure that
no unauthorized origin can include the endpoint, Cross-
Origin Resource Sharing (CORS) is secure by default.
CORS is a policy deployed by the server and is meant
to control data access when a request is conducted with
the XMLHttpRequest API [41]. By default, such a re-
quest does not carry authentication credentials in the
form of cookies. If a snippet wants to do such an au-
thenticated request across domains, the remote HTTP
server has to specifically allow the snippet’s origin in the
Access-Control-Allow-Origin header; a wildcard is
not sufficient to grant access. In our study, we found that
CORS deployment has overtaken the use of JSONP in
2014 and has increased drastically resulting in 20% of
the investigated sites to deploy such a header.

The most recent addition to the technologies which
may be used for cross-domain communication, which
was introduced with HTML5, is postMessage [7]. This
API allows for cross-domain message exchange when-
ever two sites are rendered in the same browser tab (or
popup window). It can be used to convey even complex
JavaScript objects allowing for a seamless communica-
tion between origins. The API has gained a lot of popu-
larity since its inception and we find that over 65% of the
sites in 2016 either received postMessages or sent them.

Summary To sum up, we observe that over time, Java-
Script has remained the most important scripting lan-
guage on the Web. At the same time, with increas-
ingly powerful applications, the complexity of the Web
platform has risen, and new APIs are constantly added
to browsers. In turn, JavaScript applications have be-
come much more complex, showing a steady increase
in the amount of code executed by the client, including
code from an increasing amount of different sources, and
exchanging data across the trust boundaries of the do-
main. Moreover, even legacy technology like Flash still
remains in use by a notable fraction of sites. Thus, se-

curing a modern Web application with all its different
components is challenging. Hence, in the following sec-
tions, we analyze how security evolved over time by first
discussing a number of issues we discovered, and subse-
quently showing which countermeasures were deployed.

4 Discovered Security Issues

Based on the technologies we identified as most preva-
lent in the previous section, in this section, we highlight
security issues pertaining to these technologies, as dis-
covered in our study. To that end, we report on the Client-
Side XSS vulnerabilities we found, analyze the insecure
usage of postMessages over time, outline the (in)security
of cross-domain communication in Flash, and show the
general pattern of including outdated third-party library
versions.

4.1 Client-Side XSS Vulnerabilities

The term Cross-Site Scripting (XSS) was first intro-
duced in 2000 by a group of security engineers at Mi-
crosoft [29]. At first, this issue was believed to only
be caused by insecure server-side code. In 2005, Amit
Klein wrote an article about what he dubbed DOM-
based Cross-Site Scripting [12], detailing the risk of
XSS through insecure client-side code. He called it
DOM-based since he argued that it was caused by using
attacker-provided data in interactions with the Document
Object Model (DOM). Nowadays, this does not hold true
anymore considering that the eval construct allows for
JavaScript execution without the use of any DOM func-
tionality. Hence, this type of issue is also referred to as
Client-Side Cross-Site Scripting [34].

In contrast to Cross-Site Scripting caused by server-
side code, Client-Side XSS can be discovered in the
HTML and JavaScript code that was delivered to the
client and in this case to the Archive crawler. There-
fore, this data source allows us to investigate when the
first instances of this attack occurred and how many sites
were affected over the course of the last 20 years. To that
end, we used an automated system developed by us to
crawl the pages, collect potentially dangerous data flows,
and generate proof-of-concept exploits for each of the
flows [17].

Compared to our previous work, which was conducted
on live Web sites, the archived data has one drawback:
in case an exploit could only be triggered by modify-
ing a search parameter, this effectively changed the URL
and, hence, the corresponding page was not contained in
the Archive. Therefore, for each site without a verified
exploit, we sampled one potentially vulnerable flow and
analyzed the JavaScript code manually. In doing so, we



1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0%

2%

4%

6%

8%

10%

12%

14% domains vulnerable

Figure 7: Client-Side XSS Vulnerabilities per year

could manually verify that 33% (142/427) of the sampled
domains were in fact vulnerable.

Figure 7 shows the results of our analysis. Even back
in 1997, sites were vulnerable to Client-Side XSS. We
also notice a distinctive increase in vulnerabilities start-
ing from 2003, which coincides with the advent of the
Web 2.0. Moreover, the results are stable at around 12%
to 14% from 2007 to 2012. In 2013, when we published
our work on discovering Client-Side XSS, we found ap-
proximately 10% of the Top 10.000 sites to be vulnera-
ble, which aligns with our findings. After 2013, the num-
bers slightly drop, leaving about 8% of the 2016 sites
exploitable.

4.2 Insecure postMessage Handling

To allow for an easy cross-domain communication chan-
nel, sites may use postMessages to communicate be-
tween documents of differing origins. The API gives
guarantees on the authenticity and confidentiality of a
message — a receiver can verify the origin of the sender,
and the sender may specifically target an origin ensuring
that the message is not accessible by any other origin. In
practice, however, these checks are often omitted [31].
We therefore analyzed our data set in two dimensions:
handling of received postMessages without performing
origin checks and calls to the postMessage API with a
wildcard origin.

Given the large amount of data we collected, i.e.,
8,992 distinct scripts, we opted to analyze the postMes-
sage receivers in a light-weight fashion. To that end,
whenever our static analysis discovered that a postMes-
sage receiver was registered, we checked the file for ac-
cess to the origin property of the message. Although it
was shown by Son and Shmatikov [31] that the existence
of an origin check does not preclude a vulnerability, we
present the results as an estimation over our study period.
The results of our analysis are shown in Table 1. When-

postMessage no origin postMessage wildcard
received check sent target

2009 0.5% 0% 20.9% 2.2%
2010 10.8% 2.4% 5.9% 3.9%
2011 18.5% 8.4% 19.0% 14.8%
2012 32.7% 11.4% 32.7% 17.9%
2013 31.9% 21.8% 41.2% 22.8%
2014 40.0% 19.6% 52.2% 33.0%
2015 50.5% 18.1% 62.9% 45.8%
2016 48.0% 26.3% 64.1% 50.3%

Table 1: postMessage Statistics

ever a site used at least one postMessage receiver without
an origin check, we marked this domain as not using the
origin check. We find that the data does not show a trend
towards more secure usage. On the contrary: in 2016,
more than half of the pages which received postMessages
had at least one receiver without an origin check.

A missing origin check does not necessarily result in a
vulnerability, as pointed out by Son and Shmatikov [31].
In their work, only 13 out of 136 distinct receivers led to
an actual vulnerability. Their analysis efforts, however,
were mostly manual; hence, while an in-depth analysis
of the discovered receivers is not feasible for our work,
we leave a more automated approach to such analyses to
future work.

Apart from the authenticity issue of postMessages, not
specifying a target origin might endanger the confiden-
tiality of an application’s data. Table 1 shows the re-
sults of our analysis. Note that in comparison to received
postMessages the numbers vary, since not every site that
sends postMessages also receives them. Moreover, the
high number of postMessage senders in 2009 is related to
Google page ads, which featured postMessages in 2009,
but removed its usage in 2010. Even though not every
message with a wildcard target is necessarily security-
critical, we find that by 2016, more than half of the sites
we analyzed sent at least one such message. We leave
further investigation of the actual exploitability of such
insecure postMessages to future work.

4.3 Flash Cross-Domain Policies
Similar to JavaScript, Flash also offers APIs to conduct
HTTP requests, either to the same site or across domain
boundaries. To nevertheless ensure the user’s protection
against cross-domain data leakage, Flash tries to down-
load a policy file (crossdomain.xml) from the remote
origin before allowing access to that site’s content. If
it is missing, no data can be exchanged between the
sites [35]. If it exists, the policy file can specify which
origins may access the site’s data, and can contain wild-
cards, e.g., to allow for all subdomains of a given domain



2004 2006 2008 2010 2012 2014 2016

0%

5%

10%

15%

20%

25%

30%

35%

40%
crossdomain.xml

* wildcard

* wildcard and session

Figure 8: Crossdomain.xml files and wildcards

to gain access (*.domain.com). However, this wildcard
can also be used to whitelist any site (*) or any prefix
(prefix*), e.g., prefix.otherdomain.com for cross-
domain access.

In part, these policy files are also stored by the Web
Archive. However, we discovered a number of cases
where no policy file was available 3. Therefore, all re-
sults we present in the following must be considered
lower bounds. This drawback of the archived data is
also clearly visible in the number of sites hosting a
crossdomain.xml file in 2009, as shown in Figure 8.

We analyzed the crossdomain policy files for danger-
ous wildcards, i.e., wildcards allowing access to any re-
mote origin. The results are shown in Figure 8 as the
grey line. We find that for 2008, about 7% of all domains
had such wildcards and the number decreased afterwards
(along with the general decline in the use of Flash, and
hence crossdomain.xml files). The existence of a wild-
card does not necessarily imply a vulnerability, since ac-
cess might be granted to any domain by a content dis-
tribution network [16]. Hence, we also analyzed which
of the domains with wildcard policies had artefacts of a
login, e.g., login pages or session cookies. The result of
this analysis is also shown in the graph as the red line.
Here, we observe that at most 3% of all domains should
be considered vulnerable, which is in line with the results
presented by Lekies et al. [16] and Jang et al. [10].

4.4 Usage of Outdated Libaries
Much of the success of JavaScript stems from the pow-
erful libraries used by many Web sites. The most widely
used library on the Web is undoubtedly jQuery; in our
work we found that up to 75% of the Web sites we an-
alyzed used jQuery. The usage pattern is also shown in

3A prime example is the facebook.com policy http://web.archi
ve.org/cdx/search/cdx?url=facebook.com/crossdomain.xml,
which does not have entries between 2011 and 2013

2006 2008 2010 2012 2014 2016

0%

10%

20%

30%

40%

50%

60%

70% jQuery (all)

jQuery (vulnerable)

Figure 9: jQuery usage and vulnerability statistics

Figure 9. When code is included from a third party into
any Web site, this code is implicitly trusted, i.e., it runs in
the origin of the including Web site. Therefore, whenever
any third-party component is vulnerable, this implies that
all sites which include the flawed code will suffer from
the vulnerability.

To understand the risk associated with this, we used
retire.js [25], a tool to detect libraries and report known
vulnerabilities in them, on the versions of jQuery we col-
lected in our study. Moreover, for each domain that used
jQuery we checked if the used version had a known vul-
nerability at the time of use. The results are also depicted
in Figure 9: it becomes clear that the majority of Web
sites used outdated versions of jQuery, for which known
vulnerabilities existed at the time.

Although this paints a grim picture, a vulnerable li-
brary does not necessarily directly imply a site at risk.
As an example, one vulnerability which was disclosed
in 2012 [11] could only be triggered if user-provided in-
put was used in a CSS selector. Nevertheless, as previous
work has shown, such outdated libraries can cause severe
security issues, such as Client-Side XSS [34].

Next to jQuery, only the YUI library was discovered
on a notable fraction of domains. In 2011, its usage
reached its peak with about 10% prevalence, dropping
off until 2016 to 3.5% of the domains that included the
library. Similar to what we observed for jQuery, the frac-
tion of domains running a known vulnerable version of
YUI is high: for 2016, 85% of the sites running YUI ran
a vulnerable version. These results are comparable to the
results of Lauinger et al. [14].

5 Indicators for Security Awareness

In this section, we highlight a number of features we can
measure, that indicate whether a site operator is aware of
Web security mechanisms.

Most of the security awareness indicators can be found

http://web.archive.org/cdx/search/cdx?url=facebook.com/crossdomain.xml
http://web.archive.org/cdx/search/cdx?url=facebook.com/crossdomain.xml


in the HTTP headers of the responses. The Web Archive
records all headers it received when originally crawling
the target site, which allows us to go back in time and
investigate how many sites used any of the relevant head-
ers. For our work, we identified a number of these rel-
evant headers, which we discuss in the following in the
order of their introduction on the Web. An overview over
the fraction of domains that make use of these security
headers is shown in Figure 10. Moreover, Table 2 shows
when each of the discussed security measures was imple-
mented by the major browsers.

5.1 HTTP-only Cookies
The Web’s principle feature for session management is
the use of cookies. These are sent along with every re-
quest to the server, allowing a user to establish a session
in the first place and for the server to correctly attribute
requests to a user. At the same time, by default, cook-
ies are accessible from JavaScript as well, making these
session identifiers prime targets for Cross-Site Script-
ing attacks. To thwart these attacks, starting from 2001
browsers added support for so-called HTTP-only cook-
ies. This flag marks a cookie to only be accessible by
the browser in an HTTP request, while at the same time
disallowing access from JavaScript.

We mark a domain as using HTTP-only cookies when
at least one cookie was set using the httponly flag. This
only represents a lower bound for the sites, though. Nat-
urally, the Archive crawler does not log into any Web
application. It is reasonable to assume that some sites
do not use session identifiers until the need arises, i.e., a
user successfully logs in. Hence, sites might have made
use of the header more frequently, but the archived data
cannot account for such behavior.

In our study, we found that sites started employing
this technique in 2006 before any other security measures
were in place. Moreover, we can clearly observe a trend
in which by 2016, over 40% of all domains made use of
this. This indicates that the admins of the most relevant
sites on the Web are well-aware of the dangers of cookie
theft and try to mitigate the damage of an XSS attack.

Chrome IE Firefox

HTTP-only Cookies 2008 2001 2006
Content Sniffing 2008 2008 2016
X-Frame-Options 2010 2009 2009
HSTS 2010 2015 2010
CSP 2011 2012 2010

Table 2: Browser support for Web security features

2006 2008 2010 2012 2014 2016

0%

10%

20%

30%

40%

50%

60%
CSP

HSTS

X-Frame-Options

httponly cookie

Content Sniffing

Figure 10: Use of Security Headers per year

5.2 Disallowing Content Sniffing

Although all markup and programming languages used
in the Web are well-specified, Web application develop-
ers often make more or less subtle mistakes when build-
ing their sites. To still allow users of these sites an un-
hindered view on the pages, modern browsers are very
error-tolerant, i.e., they compensate for a number of mis-
takes which can be introduced by developers. One of
the mechanisms used to achieve this tolerance is content
sniffing, a technique used by browsers to guess the type
of content being shown, to allow for proper rendering.
The HTTP/1.1 standard specifically states that such sniff-
ing should only happen when no Content-Type header
is sent from the server [5]. Depending on the implemen-
tation of the browser, this can either can be done by an-
alyzing the URL (e.g., looking for a .html suffix) or by
investigating the content of the resource [41].

For the sake of presentation, let us assume a Web site
offers users a way to upload text files (marked by a .txt
suffix). In this case, a user can upload a text file contain-
ing HTML code. If a victim’s browser is now lured to the
URL hosting the .txt file and no explicit Content-Type
header is sent, modern browsers will analyze the con-
tent, deem it to be HTML and render it accordingly. This
effectively results in the attacker’s HTML and accompa-
nying script code to be executed under the origin of the
vulnerable site, leading to a Cross-Site Scripting vulner-
ability. In addition, improper content sniffing could also
lead to the site being used to host malware.

To prevent such attacks, Internet Explorer first im-
plemented the X-Content-Type-Options header in
2008 [15]. When the value of this header was set to
nosniff, it would prevent IE from trying to guess the
content. In the specific case, Internet Explorer’s al-
gorithm was also more aggressive than RFC2616 de-
manded: it tried to sniff content regardless of the pres-
ence of any Content-Type headers. Google Chrome
showed a similar behavior, which can also be controlled



using the X-Content-Type-Options header. Similar to
what we observed for HTTP-only cookies, at first only
few sites adopt this security mechanism. Again, a no-
table increase can be observed over time, resulting in al-
most 47% of the analyzed sites using the protective mea-
sure by 2016.

5.3 Clickjacking Protection

Another potential danger to Web applications is so-called
Clickjacking [9]. This type of attack is a sub class of the
more general attack dubbed Unsolicited Framing by Za-
lewski [41]. The main idea relies on the ability of an
attacker to mask a frame pointing to a benign-but-buggy
site with the opacity CSS attribute on his own site. The
attacker now tries to motivate the victim to click in the
area in which this hidden frame resides. This can, e.g.,
be achieved by a pretend browser game. However, in-
stead of interacting with the apparent browser game, the
victim actually clicks in the hidden frame. The extend
of this attack can range from invoking actions, such as
soliciting likes on a social media site, all the way to an
attack outlined by Jeremiah Grossman, in which Click-
jacking was used to gain access to the video and audio
feed from the victim’s computer [6].

While the unsolicited framing itself was already dis-
cussed before the devastating demonstration by Gross-
man, the clear attack potential as shown by their attack in
2008 motivated browser vendors to develop and deploy
a protective measure, dubbed the X-Frame-Options
header (for short also XFO). Even though the X in the
name denotes the fact that this was not a standardized
header, it was introduced within a few months after the
presented attack by Internet Explorer and Firefox, while
Chrome followed a year later (see Table 2). The notion of
this header is simple: framing can either be completely
blocked (DENY), only be allowed from the same origin
(SAMEORIGIN), or specifically allowed for certain URLs
(ALLOW-FROM url) [23]. Depending on the browser,
there also exists a variant ALLOWALL, which effectively
disables any protection as well as SAMEDOMAIN, which is
an alias for SAMEORIGIN. Note, however, that these val-
ues are not presented in the accompanying RFC, which
was introduced in 2013 [28].

For our measurements, we only counted sites which
use the protective measure by either setting it to DENY,
SAMEORIGIN, its alias SAMEDOMAIN, or ALLOW-FROM
with a specific list of domains. The results are depicted in
Figure 10. The results indicate that although the header
was introduced in 2010, an increase in its usage can only
be observed starting from 2012. The number of sites
using XFO increased rapidly since then and reached its
peak in 2016 with 53% of all sites deploying it. Note,
however, that use of the header has been deprecated

by Content Security Policy (CSP) Level 2 [39] starting
from around 2015, being replaced by the more powerful
frame-ancestors directive of CSP.

5.4 Content Security Policy

One of the biggest client-side threats to any Web appli-
cation is the injection of markup, either HTML or even
JavaScript code, into it. In such a case, the browser can-
not distinguish between markup originating from the de-
veloper of the application and the attacker’s code. Hence,
all code is executed, leading to a client-side code injec-
tion known as Cross-Site Scripting. To mitigate the ex-
ploitability of such an injection vulnerability, the W3C
has proposed the so-called Content Security Policy. In
its foundation, CSP is a technique that aims to specifi-
cally whitelist sources of code with the goal of stopping
any attacker-provided code from being executed. To that
end, a Web application that deploys CSP sends a header
containing a number of whitelisted code origins, e.g.,
self or cdn.domain.com. Even if an attacker man-
ages to inject her own markup into the application, the
code is bound to be hosted on either the site itself or
cdn.domain.com. The main assumption here is that the
attacker is unable to control any code on these origins.
Also, by default, CSP disallows the use of inline script
elements and the eval construct.

CSP has many more directives, allowing Web devel-
opers to control which hosts may be contacted to retrieve
images or stylesheets, specifying how the site may be
framed (deprecating the X-Frame-Options header), or
to report violations of the policy. The setup of a prop-
erly working policy, however, is non-trivial, as has been
shown by previous work [37, 38]. Nevertheless, we deem
the presence of a CSP header to be an indicator for the
awareness of a site’s operator. Given the results from
previous work, investigating the security of the policies
of single sites is out of scope for our work.

Initially, CSP was introduced by Firefox and
WebKit-based browsers (including Chrome) with dif-
ferent names, i.e., X-Content-Security-Policy and
X-WebKit-CSP, respectively. We therefore count the
presence of these headers as a regular use of the nowa-
days standardized Content Security Policy. As we
can observe in Figure 10, even though implemented in
browsers for a number of years, CSP only was used in
the wild starting from 2013 by any of the major sites.
As previous work has shown, setting up CSP for legacy
applications is very challenging. Our data indicates that
even by 2016, less than 10% of the sites we considered
deployed any CSP at all. Hence, although CSP mitigates
the effect of XSS vulnerabilities in JavaScript-enabled
Web applications, its adoption still lags far behind other
security measures.



5.5 HTTP Strict Transport Security

Along with the success of the Web as the number one
platform for information access also came a number
of attacks on the connection between client and server.
While in the Web’s beginning, transfer of sensitive infor-
mation was less likely to occur, modern Web applications
almost always require a login. Arguably, the transport of
such sensitive information should be conducted in a se-
cure manner, i.e., should always be encrypted. On the
other hand, network attackers have an interest to gain ac-
cess to such information. To that end, they might either
eavesdrop (in case of a passive network attacker) on a
plaintext connection, or try to manipulate a connection to
an extend where the encryption is dropped, e.g., by SSL
stripping attacks [13]. In addition, Web developers might
accidentally transmit sensitive information over insecure
channels. An example of this is the use of cookies with-
out specifically setting the secure flag. In that case, the
cookies are transferred in any connection to the domain
for which they were set, regardless of the use of HTTPS.

To ensure that neither an active attacker can strip SSL
nor an unknowing developer can accidentally build an
insecure application, browsers implement HTTP Strict
Transport Security, or HSTS for short [8]. With this
HTTP header, browsers can be instructed to only con-
nect to a domain via HTTPS regardless of the URL and
to only do so using a validated certificate.

Obviously, HSTS is only a relevant feature for any site
that runs via HTTPS. The Archive.org crawler, however,
does not store whether a site was retrieved via HTTP or
HTTPS, i.e., based on the historical data we gathered, we
cannot decide whether a site was running HTTPS in the
first place. Also, setting an HSTS header on an unen-
crypted connection has no effect, i.e., it is ignored by the
browser [13].

Support for HSTS was first introduced in Chrome and
Firefox in 2010. In addition to the header, browsers also
feature a preload list of domains, to which only HTTPS
connections are allowed, regardless of the existence of
the HSTS header. For our analysis, we therefore consid-
ered both the headers as well as entries for the domains
in the preload list for January of each year. Our analy-
sis shows that only very few domains made use of HSTS
until 2012. Starting from 2013, we observe a steady in-
crease, resulting in almost 30% adoption rate by 2016.

5.6 Additional Indicators for Security
Awareness

On top of the headers we discussed so far, we identified
additional features which indicate awareness of poten-
tial security problems. In 2010, Bates et al. [2] showed
that the built-in XSS filter of Internet Explorer could not

only be bypassed by encoding data in UTF-7, but even
be used to disable Clickjacking protections or conduct
phishing attacks. At that time, Internet Explorer allowed
Web sites to specifically disable its XSS filter by send-
ing the X-XSS-Protection: 0 header to the client. In
our study we found that in 2009 and 2010, 30 and 55
sites, respectively, disabled the XSS filter in IE by send-
ing this header. For 2009, all these sites were related
to Google (e.g., including Youtube), showing that the is-
sues in IE were known to Google before the publication
in 2010. One reasonable explanation is that Google en-
gineers were confident that no XSS vulnerabilities were
contained in their sites, and wanted to ensure that no vul-
nerabilities could be introduced into otherwise bug-free
sites.

A more recent feature for securing the client side is the
sandbox feature of iframes in HTML5. Using this fea-
ture, a site may restrict the capabilities of an iframe, e.g.,
by disabling JavaScript or isolating content in a unique
origin, thereby mitigating any exploitable vulnerabilities
in the sandboxed content. We found that only three sites
made use of it in any of the HTML pages we analyzed,
showing that this feature is hardly used.

6 Key Insights

In this section, we discuss the key insights of our study
results. We first discuss the takeaways on client-side
technology, following with the implications of our anal-
ysis for client-side security. Finally, we investigate the
correlation between discovered vulnerabilities and the
awareness indicators outlined in the previous section.

6.1 Client-Side Technology
The Web’s Complexity is still on the Rise In our
study of the Web’s evolution, we found that although sev-
eral technologies for client-side interaction were devel-
oped over the years, the only prevailing one is JavaScript.
Moreover, we determined that the general complexity of
JavaScript kept rising over the years. On the one hand,
the average number of statements per external script has
almost reached 1,000 by 2016 — without counting pow-
erful libraries such as jQuery. On the other hand, code
does not necessarily only originate from a site’s devel-
oper, but often resides on remote domains. In our work,
we found that on average, a domain in our 2016 dataset
included script content from almost twelve distinct ori-
gins, which is an increase by almost 100% since 2011.
Along with the introduction of powerful new APIs in
the browsers, which nowadays, e.g., allow for client-to-
client communication that was never envisioned by the
Web’s server/client paradigm, we find that the general
complexity of client-side Web applications is on the rise.



Involvement of Third Parties Including content from
third parties allows Web sites to outsource certain parts
of their application, e.g., advertisements. However,
whenever code is included from a remote domain, it
may contain vulnerabilities, which effectively compro-
mise the including site. With the rise in complexity
in these third-party libraries, the risk for vulnerabilities
also increases. As an example, while jQuery 1.0 only
contained 768 statements, the most recent version 1.12
(in the 1.* branch) already consists of 3,541 statements.
Moreover, sites rarely update their third-party compo-
nents. As shown by Lauinger et al. [14], a large num-
ber of Web sites use outdated versions of well-known li-
braries, such as jQuery, which contain exploitable flaws.
In our work, we found that especially jQuery was often
used in versions with known vulnerabilities at the time of
use. Moreover, the fraction of domains that use such vul-
nerable third-party libraries remained high since 2012.

Another risk of including third-party code stems from
the fact that this code may be arbitrarily altered by the
remote site or in transit. In the recent past, this was used
to conduct large-scale DDoS attacks against Web sites
used to bypass censorship in China [21]. However, such
attacks can be stopped if sites start implementing Subre-
source Integrity, which ensures that included JavaScript
is only executed when its has the correct checksum [1].

The Rise of the Multi-Origin Web The Web’s pri-
mary security concept is the Same-Origin Policy, which
draws a trust boundary around an application by only al-
lowing resources of the same origin to interact with one
another. In the modern Web, though, applications com-
municate across these boundaries, e.g., between an ad-
vertisement company and the actual site. In our work, we
observed a clear trend towards interconnected sites, espe-
cially using postMessages, which are used by more than
65% of the Web sites we analyzed for 2016. In addition,
we note that the usage of CORS is on the rise as well,
with 20% of the 2016 domains sending a corresponding
header. Given the nature of the Internet Archive crawler,
i.e., the fact that it cannot log in to any applications,
all these numbers need to be considered lower bounds.
Hence, we clearly identify a trend towards an intercon-
nected, multi-origin Web in which ensuring authenticity
of the exchanged data is of utmost importance.

6.2 Client-Side Security
Client-Side XSS Remains a Constant Issue One of
the biggest problems on the Web is Cross-Site Scripting.
In our work, we studied the prevalence of the client-side
variant of this attack over the years. We found that with
the dawn of more powerful JavaScript applications as a
result of so-called Web 2.0, the number of XSS vulnera-

bilities in the JavaScript code spiked. Between 2007 and
2012, more than 12% of the analyzed sites had a least one
such vulnerability. Even though the general complex-
ity of JS applications kept rising after 2012, the number
of vulnerable domains declined, ranging around 8% un-
til 2016. Nevertheless, given our sample of the top 500
pages, such attacks still threaten a large fraction of the
Web users and developer training should focus more on
these issues.

Security vs. Utility Many new technologies intro-
duced in browsers come with security mechanisms, such
as the authenticity and integrity properties provided by
the postMessage API. However, oftentimes these fea-
tures are optional — a developer may, e.g., choose not
to check the origin of an incoming postMessage. As we
observed in our work, technology which enables com-
munication across domain boundaries, such as JSONP,
Flash’s ability to access remote resources, or postMes-
sages, is often used without proper security considera-
tions. Especially in the context of postMessages, this is
a dangerous trend: more than 65% of the sites we ana-
lyzed for 2016 either send or receive such messages, with
a steady increase in the previous years (see Figure 6). As
shown by Son and Shmatikov [31], improper handling of
postMessages can result in exploitable flaws. Hence, any
technology added to browsers should default to a secure
state similar to CORS.

Complexity of Deploying Security Measures During
the course of our study, a number of new security mech-
anisms were introduced in browsers. In our analysis, we
found that the rate of adoption varies greatly for the dif-
ferent technologies. As an example, within two years
of being fully supported by the three major browsers,
the X-Frame-Options header was deployed by 20%
of the sites we analyzed, within four years its adoption
rate even reached more than 40%. In contrast, although
CSP has been fully supported since 2012, even after four
years, only about 10% of the sites we analyzed deployed
such a policy. The main difference between the two types
of measures is the applicability to legacy applications:
XFO can be selectively deployed to HTML pages which
might be at risk of a clickjacking attack. In contrast, CSP
needs to be adopted site-wide to mitigate a Cross-Site
Scripting. Moreover, previous work [37, 38] has shown
that deploying a usable CSP policy is non-trivial, espe-
cially considering the multitude of third-party compo-
nents in modern Web apps. In contrast, even though dep-
recated by CSP, the X-Frame-Options header still shows
increased usage in 2016. Hence, we find that the more ef-
fort needs to be put into securing a site with a specific se-
curity mechanism, the less likely sites in our study were
to adopt the mechanism.



6.3 Correlating Vulnerabilities and Aware-
ness Indicators

To understand whether there is a correlation between ac-
tual vulnerabilities and the general understanding of se-
curity concepts for the Web, we compared the set of sites
vulnerable against Client-Side XSS attacks with their use
of security indicators. The intuition here is that the use
of a security indicator implies a more secure site. We
chose Client-Side XSS specifically, since a vulnerability
can be proven, whereas it is, e.g., unclear if usage of an
outdated library could actually lead to an exploit.

The results of this analysis are shown in Figure 11: for
each indicator we checked how many sites were vulner-
able against a Client-Side XSS attack. To reduce noise,
we only included an indicator for a given year if it was
present on at least 10% of the analyzed sites. Hence, we
exclude all years before 2009, since (as shown in Fig-
ure 10) no security measure was deployed on at least
10% of the sites. For each year, we plot the fraction
of sites which carry the indicator and are susceptible to
XSS. In addition, the graph shows the baseline as all sites
that do not have any indicator.

HTTP-only Cookies When considering the httponly
cookie flag, the results are surprising: In our dataset,
its presence actually correlates with a higher vulnerabil-
ity ratio compared to cases in which no indicators are
found. Note however, that our study focusses on a small
data set of 500 domains per years, and hence the results
are not statistically significant. Even though the overall
numbers are too small to produce significant results, this
trend is counter-intuitive. We leave a more detailed in-
vestigation of this observation by analyzing a large body
of sites to future work. It is noteworthy, however, that
previous work from Vasek and Moore [36] investigated
risk factors for server-side compromise, and found that
httponly cookies are negative risk factors. Similar to
our work, however, there findings were inconclusive due
to a limited sample set. Comparing server- and client-
side vulnerabilities with respect to the use of httponly
cookies, however, is an interesting alley for future work.

The correlation between httponly cookies and in-
creased fraction of vulnerabilities might be caused by
several reasons: applications that use session cookies are
more likely to have a larger code base and thus, more
vulnerabilities. For 2011, the year with the highest frac-
tion of vulnerable sites, we therefore analyzed the aver-
age number of instructions for domains with httponly
cookies and found that they only have a code base which
is about 10% larger than an average Web site, with a
comparable average cyclomatic complexity. Another po-
tential reason for our findings might be the fact that de-
velopers underestimate the dangers of an XSS vulnera-

2009 2010 2011 2012 2013 2014 2015 2016

0%

5%

10%

15%

20%

25%

30%
No security indicator

HTTP-only Cookies

Content Sniffing

X-Frame-Options

HSTS

Figure 11: Security Headers vs. Client-Side XSS

bility. Although taking over a session of a user might be
considered the worst-case scenario which is averted by
HTTP-only cookies, attackers may leverage an XSS ex-
ploit for many other attacks, e.g., XSS worms or stealing
passwords from password managers [33].

Early Adopters For X-Frame-Options and HSTS
(considered from 2010 and 2013 respectively) we see an-
other trend: early adopters of new security mechanisms
are less likely to be susceptible to Client-Side XSS at-
tacks, even though the code bases for these sites are also
about 10% larger than an average site. We find that for
both XFO and HSTS, the first two considered years show
no vulnerabilities. However, until the end of our study
in 2016, more and more sites deploy both headers, re-
sulting in vulnerability rates comparable to sites without
security indicators. Hence, we find that the late adopters
of such new technologies are more likely to introduce
Client-Side XSS vulnerabilities in their sites.

CSP Deployment Another insight here is the fact that
not a single site using CSP had a vulnerability, even leav-
ing out the 10% threshold discussed above. It is impor-
tant to note that even a valid CSP policy would not have
stopped exploitation of a Client-Side XSS issue: since
our analysis was conducted on the Archive.org data, CSP
policies would not be interpreted by the browser since
they all carried an X-Archive-Orig- prefix. The rea-
son for lack of Client-Side XSS on these sites is likely
twofold: either companies invested enough in their secu-
rity to go through the tedious process of setting up CSP
in general have better security practices, or this again
shows the early adoption effect we observed for XFO and
HSTS.



6.4 Going Forward
In our study, we found a number of recurring patterns in
the Web’s insecurity, i.e., that deployment heavily hinges
on the ease of use, optional security mechanisms are
rarely used, and that several vulnerabilities are still in
existence even though they have been known for many
years. Therefore, in the following, motivated by our find-
ings, we discuss how Web security can move forward.

Ease of Use Considering the security technologies we
investigated, we find that regardless of the potential
benefit, a security measures adoption rate is controlled
mostly by the ease of its deployment. While CSP al-
lows very fine-grained control over resources that can be
accessed and — more importantly — script code which
can be executed, setting up a working CSP policy is of-
ten tough. Apart from this hurdle, significant changes
on the application itself are required. This high effort
must be considered a big roadblock for CSP’s success.
In contrast, headers like HSTS or XSO, which are easy
to deploy and address a single issue, are adopted more
swiftly in a shorter timeframe. Thus, we argue that for
future techniques ease of use should be a primary design
concern.

Make Security Mandatory Our findings highlight
that if security checks are optional, they are oftentimes
not used, as evidenced, e.g., by the lack of origin check-
ing on postMessages. Moreover, if there is an easy way
to ensure utility, e.g., through using a wildcard, develop-
ers tend to follow that path. Hence, we argue that new
technology should ship with mandatory security, which
either does not allow for generic wildcards or in that
case, following the approach taken by CORS, limit the
privileges of an operation. Also, existing APIs could be
changed to at least warn developers. As an example,
accessing the data property of a postMessage without
a prior access to the origin property could result in a
JavaScript console warning for a potentially missing ori-
gin check. Future generations of APIs could extend this
behavior to throw security exceptions, in case crucial se-
curity checks have been omitted.

Ensure Better Developer Training The results of our
study indicate that although security measures exist to
prevent or mitigate attacks, developers are often un-
aware of the underlying security issues. Examples for
this include (missing) origin checking on postMessages,
the ineffective use of HTTP-only cookies, or the inclu-
sion of user-controllable data in the generation of script
code, which causes Client-Side XSS. Especially Client-
Side Cross-Site Scripting appears a class of vulnerabil-
ity that remains unresolved — even in light of mitigat-

ing technologies like CSP. We therefore argue that re-
search should continue to investigate how developers can
be better educated on security issues and how develop-
ment tools can be designed in a way that they empower
their users to build secure applications.

7 Related Work

Our work touches on many areas of Web security. In the
following, we discuss research related to our work.

Large-Scale Analysis of Web Security and Privacy
Several papers have conducted large-scale analyses of
different aspects of Web security. Yue and Wang [40]
analyzed inclusions of external scripts and investigated
dangerous API calls. In 2010, Zhou and Evans [42]
investigated the use of HTTP-only cookies finding that
only 50% of the investigated sites make use of the fea-
ture. In 2011, two works analyzed the use of crossdo-
main policies for Flash, as well as other cross-domain
communication channels [16, 10], which align with the
results we presented for that time. In the same year,
Richards et al. [27] provided the first large-scale anal-
ysis of the (mis)use of eval, showing that while it can
be replaced in certain cases, removing it all-together is
impossible. In 2012, Nikiforakis et al. [24] examined
Javascript inclusions over time of the Alexa top 10.000,
pointing out the trend of an evermore increasing amount
of external inclusions, which we also observed in our
work. In the area of privacy, Lerner et al. [19] conducted
an analysis of how trackers evolved over time, also using
data from archive.org.

Vulnerability Detection in the Wild In addition to
the previously discussed papers, several works have fo-
cussed on examining a certain type of vulnerability in
the wild. In 2013, Son and Shmatikov [31] analyzed
insecure usage of postMessage receivers finding several
exploitable issues. In the same year, we presented an
automated system to measure the prevalence of Client-
Side Cross-Site Scripting in the wild [17]. More recently,
Lauinger et al. [14] performed an in-depth analysis of the
usage of vulnerable libraries in the wild, showing results
comparable to our historical view.

Content Security Policy An area that has gained more
attention over the last years is the Content Security Pol-
icy. While Doupé et al. [4] showed in 2013 that automat-
ically separating code and data is feasible for ASP.net
applications, Weissbacher et al. [38] conducted a long-
term study which indicated that CSP was not deployed
at scale. Moreover, they discussed the difficulties in set-
ting up CSP for legacy applications. In 2016, Pan et al.



[26] showed that automatically generating CSP policies
for the Alexa top 50 is feasible. In the same year, Weich-
selbaum et al. [37] investigated the efficacy of deployed
CSP policies in the wild, highlighting that around 95%
of the examined policies are susceptible to bypassing.
Moreover, though, the authors propose an extension to
CSP to allow for easier deployment.

HTTPS Over the last year, the research community
also has focussed more on HTTPS. Clark and van
Oorschot [3] systematically explored issues in the area of
HTTPS in terms of infrastructure as well as attack vec-
tors against HTTPS in general. Later on, Liang et al. [20]
examined the relation between the usage of HTTPS and
the embedding of CDNs into Web pages. Most recently,
Sivakorn et al. [30] presented an overview of the privacy
risks of exposing non authenticating cookies over HTTP,
leading to intrusions of end-user privacy.

8 Conclusion

In this paper, we conducted a thorough study on the secu-
rity history of the Web’s client side using the preserved
client-side Web code from the Internet Archive. In the
course of our study, we were able to observe three over-
arching developments: For one, the platform complexity
of the client-side Web has not plateaued yet: Regardless
of the numerical indicator we examine, be it code size,
number of available APIs, or amount of third-party code
in web sites, all indicators still trend upwards.

Furthermore, the overall security level of Web sites is
not increasing noticeably: Injection vulnerabilities found
their way onto the client side in the early years of the new
millennium and show no sign of leaving. Vulnerabilities
that are on the decrease, due to deprecated technology, as
it is the case with insecure crossdomain.xml policies,
appear to be seamlessly replaced with insecure usage of
corresponding new technologies, e.g., insecure handling
of postMessages.

Finally, we could observe a steady adoption of easy to
deploy security mechanisms, such as the HTTPOnly-flag
or the X-Frames-Option header. Unfortunately, this
trend does not apply to more complex security mech-
anisms, such as the Content-Security-Policy or
sandboxed iframes. Furthermore, we found that while
early adopters of dedicated security technologies are
overall less likely to exhibit vulnerabilities, this does not
apply into the extended lifetime of the mechanism – late
adopters appear to have no inherent security advantage
over average sites despite their demonstrated security
awareness.

Overall, these results paint a sobering picture. Even
though Web security has received constant attention from

research, security, and standardization communities over
the course of the last decade, and numerous dedicated
security mechanisms have been introduced, the overall
positive effects are modest: Client-Side XSS stagnates at
a high level and potentially problematic practices, such
as cross-origin script inclusion or usage of outdated Java-
Script libraries are still omnipresent. At best, it appears
that the growing security awareness merely provides a
balance to a further increase in insecurity, caused by the
ever-rising platform complexity.

Thus, this paper provides strong evidence, that the pro-
cess of making the Web a secure platform is still in its
infancy and requires further dedicated attention to be re-
alized.

Acknowledgements

We would like to thank the anonymous reviewers for
their valuable feedback and our shepherd Nick Niki-
forakis for his support in addressing the reviewer’s com-
ments. This work was supported by the German Federal
Ministry of Education and Research (BMBF) through
funding for the Center for IT-Security, Privacy and Ac-
countability (CISPA) (FKZ: 16KIS0345).

References

[1] Devdatta Akhawe, Frederik Braun, François
Marier, and Joel Weinberger. Subresource integrity.
https://www.w3.org/TR/SRI/, Jun 2016.

[2] Daniel Bates, Adam Barth, and Collin Jackson.
Regular expressions considered harmful in client-
side XSS filters. In WWW, 2010.

[3] Jeremy Clark and Paul C van Oorschot. SoK: SSL
and HTTPS: Revisiting past challenges and evalu-
ating certificate trust model enhancements. In IEEE
Security and Privacy, 2013.

[4] Adam Doupé, Weidong Cui, Mariusz H
Jakubowski, Marcus Peinado, Christopher
Kruegel, and Giovanni Vigna. deDacota: to-
ward preventing server-side xss via automatic code
and data separation. In CCS, 2013.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999.

[6] Jeremiah Grossman. Clickjacking: Web pages can
see and hear you. http://blog.jeremiahgross
man.com/2008/10/clickjacking-web-pages
-can-see-and-hear.html.

https://www.w3.org/TR/SRI/
http://blog.jeremiahgrossman.com/2008/10/clickjacking-web-pages-can-see-and-hear.html
http://blog.jeremiahgrossman.com/2008/10/clickjacking-web-pages-can-see-and-hear.html
http://blog.jeremiahgrossman.com/2008/10/clickjacking-web-pages-can-see-and-hear.html


[7] Ian Hickson. HTML5 Web Messaging. https:
//www.w3.org/TR/webmessaging/, May 2015.

[8] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). RFC 6797 (Proposed
Standard), November 2012.

[9] Lin-Shung Huang, Alexander Moshchuk, Helen J
Wang, Stuart Schecter, and Collin Jackson. Click-
jacking: Attacks and defenses. In USENIX, 2012.

[10] Dongseok Jang, Aishwarya Venkataraman,
G Michael Sawka, and Hovav Shacham. Analyz-
ing the crossdomain policies of Flash applications.
In W2SP, 2011.

[11] jQuery Bug Tracker. SELECTOR INTERPRETED
AS HTML. http://goo.gl/JNggpp, 2012.

[12] Amit Klein. DOM based cross site scripting or XSS
of the third kind. Web Application Security Consor-
tium, Articles, 2005.

[13] Michael Kranch and Joseph Bonneau. Upgrading
HTTPS in mid-air. In NDSS, 2015.

[14] Tobias Lauinger, Abdelberi Chaabane, Sajjad Ar-
shad, William Robertson, Christo Wilson, and En-
gin Kirda. Thou shalt not depend on me: Analysing
the use of outdated javascript libraries on the web.
In NDSS, 2017.

[15] Eric Lawrence. IE8 security update VI: Beta 2
update. https://blogs.msdn.microsoft.com/i
e/2008/09/02/ie8-security-part-vi-bet
a-2-update/, September 2008.

[16] Sebastian Lekies, Martin Johns, and Walter Tighz-
ert. The state of the cross-domain nation. In W2SP,
2011.

[17] Sebastian Lekies, Ben Stock, and Martin Johns. 25
million flows later: large-scale detection of DOM-
based XSS. In CCS, 2013.

[18] Sebastian Lekies, Ben Stock, Martin Wentzel, and
Martin Johns. The unexpected dangers of dynamic
javascript. In USENIX Security, pages 723–735,
2015.

[19] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi
Kohno, and Franziska Roesner. Internet jones and
the raiders of the lost trackers: An archaeologi-
cal study of web tracking from 1996 to 2016. In
USENIX Security, 2016.

[20] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao
Wan, and Jianping Wu. When HTTPS meets CDN:
A case of authentication in delegated service. In
IEEE Security and Privacy, 2014.

[21] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya
Ensafi, David Fifield, Sarah McKune, Arn Rey,
John Scott-Railton, Ronald Deibert, and Vern Pax-
son. China’s great cannon. Citizen Lab, 2015.

[22] Thomas J McCabe. A complexity measure. IEEE
Transactions on Software Engineering, 1976.

[23] Mozilla Firefox Team. X-frame-options.
https://developer.mozilla.org/en/do
cs/Web/HTTP/Headers/X-Frame-Options.

[24] Nick Nikiforakis, Luca Invernizzi, Alexandros
Kapravelos, Steven Van Acker, Wouter Joosen,
Christopher Kruegel, Frank Piessens, and Giovanni
Vigna. You are what you include: large-scale evalu-
ation of remote javascript inclusions. In CCS, 2012.

[25] Erlend Oftedal. Retire.js - identify JavaScript li-
braries with known vulnerabilities in your applica-
tion. http://goo.gl/r4BQoG, 2013.

[26] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou,
Yan Chen, and Tingzhe Zhou. CSPAutoGen:
Black-box enforcement of content security policy
upon real-world websites. In CCS, 2016.

[27] Gregor Richards, Christian Hammer, Brian Burg,
and Jan Vitek. The eval that men do - A large-scale
study of the use of eval in javascript applications.
In ECOOP, 2011.

[28] D. Ross and T. Gondrom. HTTP Header Field X-
Frame-Options. RFC 7034, October 2013.

[29] David Ross. Happy 10th birthday cross-site
scripting! http://blogs.msdn.com/b/dross
/archive/2009/12/15/happy-10th-birthda
y-cross-site-scripting.aspx, 2009.

[30] Suphannee Sivakorn, Iasonas Polakis, and Ange-
los D Keromytis. The cracked cookie jar: HTTP
cookie hijacking and the exposure of private infor-
mation. In IEEE Security and Privacy, 2016.

[31] Sooel Son and Vitaly Shmatikov. The post-
man always rings twice: Attacking and defending
postmessage in HTML5 websites. In NDSS, 2013.

[32] Michele Spagnuolo. Abusing JSONP with rosetta
flash. https://miki.it/blog/2014/7/8/ab
using-jsonp-with-rosetta-flash/, August
2014.

[33] Ben Stock and Martin Johns. Protecting users
against XSS-based password manager abuse. In
AsiaCCS, 2014.

https://www.w3.org/TR/webmessaging/
https://www.w3.org/TR/webmessaging/
http://goo.gl/JNggpp
https://blogs.msdn.microsoft.com/ie/2008/09/02/ie8-security-part-vi-beta-2-update/
https://blogs.msdn.microsoft.com/ie/2008/09/02/ie8-security-part-vi-beta-2-update/
https://blogs.msdn.microsoft.com/ie/2008/09/02/ie8-security-part-vi-beta-2-update/
https://developer.mozilla.org/en/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en/docs/Web/HTTP/Headers/X-Frame-Options
http://goo.gl/r4BQoG
http://blogs.msdn.com/b/dross/archive/2009/12/15/happy-10th-birthday-cross-site-scripting.aspx
http://blogs.msdn.com/b/dross/archive/2009/12/15/happy-10th-birthday-cross-site-scripting.aspx
http://blogs.msdn.com/b/dross/archive/2009/12/15/happy-10th-birthday-cross-site-scripting.aspx
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/


[34] Ben Stock, Stephan Pfistner, Bernd Kaiser, Sebas-
tian Lekies, and Martin Johns. From facepalm
to brain bender: Exploring client-side cross-site
scripting. In CCS, 2015.

[35] Apurva Udaykumar. Setting a crossdomain.xml
file for HTTP streaming. http://www.adobe.com
/devnet/adobe-media-server/articles/c
ross-domain-xml-for-streaming.html.

[36] Marie Vasek and Tyler Moore. Identifying risk
factors for webserver compromise. In Financial
Crypto, 2014.

[37] Lukas Weichselbaum, Michele Spagnuolo, Sebas-
tian Lekies, and Artur Janc. CSP is dead, long live
CSP! On the insecurity of whitelists and the future
of Content Security Policy. In CCS, 2016.

[38] Michael Weissbacher, Tobias Lauinger, and

William Robertson. Why is CSP failing? trends
and challenges in csp adoption. In RAID, 2014.

[39] Mike West, Adam Barth, and Dan Veditz. Content
security policy level 2, W3C candidate recommon-
dation. https://www.w3.org/TR/2015/CR-CSP
2-20150219/, February 2015.

[40] Chuan Yue and Haining Wang. Characterizing in-
secure javascript practices on the web. In WWW,
2009.

[41] Michal Zalewski. The tangled Web: A guide to se-
curing modern web applications. No Starch Press,
2012.

[42] Yuchen Zhou and David Evans. Why aren’t HTTP-
only cookies more widely deployed. W2SP, 2010.

http://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-xml-for-streaming.html
http://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-xml-for-streaming.html
http://www.adobe.com/devnet/adobe-media-server/articles/cross-domain-xml-for-streaming.html
https://www.w3.org/TR/2015/CR-CSP2-20150219/
https://www.w3.org/TR/2015/CR-CSP2-20150219/

	A Historic Perspective on Web Security
	Methodology
	Mining the Internet Archive for Historical Evidence
	Technical Infrastructure

	Evolution of Client-Side Code
	Discovered Security Issues
	Client-Side XSS Vulnerabilities
	Insecure postMessage Handling
	Flash Cross-Domain Policies
	Usage of Outdated Libaries

	Indicators for Security Awareness
	HTTP-only Cookies
	Disallowing Content Sniffing
	Clickjacking Protection
	Content Security Policy
	HTTP Strict Transport Security
	Additional Indicators for Security Awareness

	Key Insights
	Client-Side Technology
	Client-Side Security
	Correlating Vulnerabilities and Awareness Indicators
	Going Forward

	Related Work
	Conclusion

